

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

BVAGQ-AR for Fragmented Database
Replication Management

A.Noraziah1,2, Ainul Azila3, Sharifah Hafizah Sy Ahmad Ubaidillah1, Basem Alkazemi4, Julius
Beneoluchi Odili5

1 Faculty of Computing, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia.
2 Centre for Software Development & Integrated Computing, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia.
3 Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara Kelantan, 18500 Machang, Kelantan, Malaysia.
4 College of Computer and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia
5 Departments of Mathematical Sciences, Anchor University Lagos, Lagos, Nigeria

Corresponding author: noraziah@ump.edu.my

ABSTRACT Large amounts of data have been produced at a rapid rate since the invention of computers.

This condition is the key motivation for up-to-date and forthcoming research frontiers. Replication is one of

the mechanisms for managing data, since it improves data accessibility and reliability in the distributed

database environment. In recent years, the amount of various data grows rapidly with widely available low-

cost technology. Although we have been packed with data, we still have lacked of knowledge.

Nevertheless, if the impractical data is used in database replication, this will cause waste of data storage and

the time taken for a replication process will be delayed. This paper proposes Binary Vote Assignment on

Grid Quorum with Association Rule (BVAGQ-AR) algorithm in order to handle fragmented database

synchronous replication. BVAGQ-AR algorithm is capable for partitioning the database into disjoint

fragments. Fragmentation in distributed database is very useful in terms of usage, reliability and efficiency.

Managing fragmented database replication becomes a concern for the administrator because the distributed

database is disseminated into split replica partitions. The result from the experiment shows that handling

fragmented database synchronous replication through proposed BVAGQ-AR algorithm able to preserve

data consistency in distributed environment.

INDEX TERMS Replication, algorithm, fragmentation, data mining, computational intelligence,

distributed databases, data grid

I. INTRODUCTION

Large amounts of data have been produced at a rapid rate

since the invention of computers. This condition is the key

motivation for up-to-date and forthcoming research

frontiers. Nowadays, huge numbers of data are generated

around the world distributed across data grid. One of the

biggest problems that data grids users have to overcome

today is to improve the management of data. Providing

reliable services along with high data availability and the

performance are the important requirements that need to be

essentially met. The concept of replication is used to ensure

these requirements. The main idea of replication is to

manage large volumes of data in a distributed manner,

speeds up data access, reduces access latency and increases

data availability [1, 2]. In addition, fragmentation

replication is designed to enhance the data availability and

the system performance of the distributed database for data

management [3].

Distributed database replication is a very challenging

platform especially when dealing with a huge data.

However, in recent years, with widely available, low-cost

technology, the amount of various data grows rapidly. The

problem is although we are packed with data, but we still

lacked of knowledge. Nevertheless, if the impractical data

is used in database replication, this will cause waste of data

storage and the time taken for a replication process will be

delayed. In Distributed Indexing Dispatched Alignment

(DIDA), when there are too many requests and/or huge

targets, the arrangement process becomes computationally

challenging [4]. However, this research not focusing on

query updates processing. The BSCA strategies [5] applied

association rules in its replication strategies. Association

Rules is used to find the correlations between the data. This

method will improve the average response time for the

transactions. However, data replication will only be done

during the collecting components process. Hence, this

method does not apply synchronous replication method. In

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 2

Prefetching-Based Replication Algorithm (PRA), when a

local site obtains a file request but the file is not stored

locally, it will search other site to transfer the required file

replica through the Replica Directory Server [6]. The local

site will select some adjacent files to start the replication

process. However, the sequence databases need some

storage space. This is because as the time goes on, the size

of the databases will become larger. Hierarchical

Replication Scheme (HRS) consists of a root database

server and one or more database servers organized into a

hierarchy topology [7]. Once the changes have been made,

all the data will be replicated into the entire replicas. In

order to maintain consistency among the updates by clients,

all blocks are propagated and locked during the transaction

process. This means only one client can modify the data at

a time. Branch Replication Scheme (BRS) is composed of

a different set of sub-replicas organized using a hierarchical

topology [7]. In order to maintain consistency among the

updates by clients, a mechanism is proposed. Clients only

can modify the data located in the terminal replica, or

referred as the leaf nodes of the replication tree. A problem

may occur in BRS when a client tries to write in a sub-

replica which is not terminal, because that sub-replica has

been split into other sub replica. For replication techniques

namely Read-One-Write-All (ROWA), they copy all data to

all sites which means all servers will have the same data [8,

9]. Data reliability and availability is confirmed but the

issues are the data redundancy will be high, it will waste the

storage space and the processing time for a transaction also

will be high because it has to commit the transaction at all

servers.

Although data availability is better because data are

stored at more than one site, most of existing replication

strategies neglects the correlation between the data files in a

Distributed Database Systems (DDS). The information

about the data correlation can be dig out from past data

using techniques from data mining field. Data mining

technique is a part of data clustering method [10]. It is a

powerful tool for assisting the extraction of meaningful data

from large data sets [11, 12, 14, 15]. The objective for

mining grid data is analyzing grid systems with data mining

techniques in order to find new meaningful knowledge. The

information later can be used to improve grid systems in

numerous fields. However, only a small number of works

have applied data mining techniques to discover file

correlations in data grids [13]. Therefore, the study on this

basis is initiated.

In our previous work, the Binary Vote Assignment on

Grid (BVAG) has been proposed in order to increase write

query availability with low communication cost through the

small replication quorum [21]. However, the paper not

considering the data fragmentation design, which is more

suitable for distributed database environment. Thus, this

paper proposes Binary Vote Assignment on Grid Quorum

with Association Rule (BVAGQ-AR) algorithm in order to

handle fragmented database synchronous replication.

BVAGQ-AR algorithm is capable for partitioning the

database into disjoint fragments.

This paper is organized as the following. The nature of

data mining in grid is explained in Section 2. Section 3

presents the BVAGQ-AR technique for data management.

Section 4 elaborate experimental results in distributed

environment. Finally, Section 5 and 6 discuss and conclude

our research finding from this article.

.
II. DATA MINING IN GRID

One of the data mining techniques is called Association rules.

The rules are created by analyzing data for frequent if/then

patterns and using the criteria support and confidence to

identify the most important relationships. Support is an

indication of how frequently the items appear in the database.

In addition, Association rules are also able to discover a set

of items that appear frequently together in a transaction by

using Apriori algorithm. This data set is called a frequent

item set.

The basic concepts of data mining association rules are

called support and confidence. These concepts showed the

practicality and certainty in data discovery rules.

Rule 1: 𝐴 ⇒ 𝐵 set up in transaction 𝐷, it has support 𝑠,

where 𝑃 is percent of 𝐴 ∪ 𝐵 in transaction 𝐷, it is the

𝑃 (𝐴 ∪ 𝐵) where 𝐴 and 𝐵 are item sets which 𝐴 ≠ 𝐵. So

support is defined as:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴 ⇒ 𝐵) = 𝑃 (𝐴 ∪ 𝐵) (1)

Each discovery mode should be denoted by a certainty

measure of its efficiency or reliability, so rule 2 is:

Rule 2: 𝐴 ⇒ 𝐵 has confidence 𝑐, it is percent both 𝐴 and

𝐵 in transaction 𝐷. It is conditional probability 𝑃 (𝐴 | 𝐵), so

the certainty measure confidence is defined as:

 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 ⇒ 𝐵) = 𝑃 (𝐴 | 𝐵) (2)

If rule 1 and rule 2 meet the specified minimum support

and confidence, that the rules for strong association rules.

Rule 3: it is strong association rule, if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ≥
min 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ≥ min 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 . The

min support is minimum support, and min confidence is

minimum confidence.

An algorithm namely Apriori is proposed for mining

frequent item sets for Boolean association rules [16]. The

name of the algorithm is established on the fact that the

algorithm uses prior knowledge of frequent item set

properties, which will be explained later. Apriori is an

iterative method known as a level-wise search, where 𝑘 −
𝑖𝑡𝑒𝑚 sets are used to explore (𝑘 + 1) − 𝑖𝑡𝑒𝑚 sets.

First, the set of frequent 1-itemsets is discovered by

scanning the database to determine the count for each item,

and assembling those items that satisfy the minimum support.

The resulting set is represented as 𝐿1. After that, 𝐿1 is used to

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 3

identify the set of frequent 2-itemsets, 𝐿2, which later is used

to identify 𝐿3, and so on, until no more frequent k-item sets

can be discovered. The process of discovering each of the 𝐿𝑘

involves one full scan of the database.

An important property called the Apriori property is used

to reduce the search space in order to improve the efficiency

of the level-wise generation of frequent item sets,

Apriori property: All nonempty subsets of a frequent

item set must also be frequent.

The Apriori property is based on the following

observation. By definition, if an item set, 𝐼 does not satisfy

the minimum support threshold, min sup, then 𝐼 is not

frequent, that is, 𝑃(1) < min 𝑠𝑢𝑝. If an item 𝐴 is added to

the item set 𝐼, then the resulting item set (i.e., 𝐼 ∪ 𝐴)

cannot occur more frequently than 𝐼. Therefore, 𝐼 ∪ 𝐴 is

not frequent either, that is, 𝑃 (𝐼 ∪ 𝐴) < 𝑚𝑖𝑛 𝑠𝑢𝑝.

III. BVAGQ-AR TECHNIQUE

The main idea of replication is to create multiple copies of

the same data or replicas in several storage resources.

However, while focusing in replication, there are some

methods that neglect the correlation among different data

files. Actually, in many applications, data files may be

correlated in terms of accesses and have to be considered

together in order to reduce the access cost [17]. Indeed, the

analysis of data usage in several real data grids such as Dzero

[18] and Coadd [19] revealed the existence of strong

correlations between files, i.e., jobs tend to request a set of

correlated files. This paper proposes Binary Vote

Assignment on Grid Quorum with Association Rule

(BVAGQ-AR) technique. In BVAGQ-AR, all sites are

logically organized in the form of a two-dimensional grid

structure. For example, if BVAGQ-AR consists of twenty-

five sites, it will be logically organized in the form of 5 x 5

grid. There are four phases involves in BAVGQ-AR

framework, which are:

1. Data mining – Apriori algorithm from Association

Rules

2. Database fragmentation

3. Database allocation

4. Database replication

Figure 1 shows the BVAGQ-AR framework.

FIGURE 1. BVAGQ-AR framework

1. Data mining – Apriori algorithm from Association Rules

Data mining technique that has been deployed in this

experiment called association rules. It is used to discover the

correlation between data. Apriori algorithm is an algorithm

for frequent item set mining and association rules learning

over transactional databases. Learning association rules

basically means finding the items that are appeared together

more frequently than the others.

2. Database fragmentation

This method also has been proposed to make sure data

replication can be effectively done while minimize storage.

In general, applications work with some relations rather than

entire relations. Therefore, for data distribution, it is better to

work with subsets of relation as the unit of distribution. Thus,

not all data will be replicated to all sites. The data is

fragmented based on data mining analysis results.

3. Database allocation

All sites are logically organized in the form of two-

dimensional grid structure. For example, if BVAGQ-AR

consists of twenty-five sites, it will logically organize in the

form of 3 × 3 grids. Each site has database relation files. The

databases that are produced after database fragmentation

process are allocated at their assigned sites.

4. Database replication

After database allocation process, each site has a

database relation file. A site is either operational or failed

and the state (operational or failed) of each site is

statistically independent to the others. A copy at a site is

available when the site is operational; otherwise it is

unavailable [20,21].

A. BVAGQ-AR ALGORITHM DEFINITION

In this section, BVAGQ-AR is proposed by considering the

distributed database fragmentation. The following notations

are defined:

i. 𝑆 is a relation in database.

ii. 𝑆′ is relation after mining

iii. 𝑠 is the instance in 𝑆 or 𝑆′
iv. 𝐽1 is the frequent item sets

v. 𝐽2 is not the frequent item sets

vi. 𝑆(𝐵)1 is the four sites in the corners

vii. 𝑆(𝐵)2 is the other sites on the boundaries

viii. 𝑆(𝐵)3 is the middle sites

ix. 𝑉 is a transaction.

x. 𝑇 is a tuple in 𝐽1.

xi. 𝑥 is an instant in 𝑇 which will be modified by element of

𝑉.

xii. 𝑦 is an instant in 𝑇 which will not be modified by

element of 𝑉.

xiii. 𝑆1 is a vertical fragmented relation with instant 𝑥 derived

from 𝐽1.

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 4

xiv. 𝑆2 is a vertical fragmented relation without instant 𝑥

derived from 𝐽1.

xv. 𝑃𝑘 is a primary key.

xvi. 𝑃𝑘, 𝑥 is a primary key with data 𝑥.

xvii. 𝑃𝑘, 𝑦 is a primary with data y, where 𝑦 ≠ 𝑥

xviii. 𝑆1(𝑃𝑘,𝑥)
 and 𝑆1(𝑃𝑘,𝑦)

 are a horizontal fragmentation

relation derived from 𝐽1.

xix. 𝜂 and 𝜓 are groups for the transaction 𝑉.

xx. 𝜆 = 𝜂 𝑜𝑟 𝜓 where it represents different transaction 𝑉

(before and until get quorum).

xxi. 𝑉𝜂 is a set of transactions that comes before 𝑉𝜓, while

𝑉𝜓 is a set of transactions that comes after 𝑉𝜂.

xxii. 𝐷 is a union of all data objects managed by all

transactions 𝑉 of BVAGQ-AR.

xxiii. Target set = {1,0} is a result of transaction 𝑉.

xxiv. BVAGQ-AR transaction element 𝑉𝜆 is an element

either in different set of transactions 𝑉𝜂 or 𝑉𝜓.

xxv. 𝑤𝑉𝜆 is write counter for the transaction.

xxvi. �̂�𝜆𝑥
 is a transaction that is transformed from 𝑉𝜆𝑥

xxvii. 𝑉µ𝑥
 represents the transaction feedback from a neighbour

site. 𝑉µ𝑥
 exists if either 𝑉𝜆𝑥

 or �̂�𝜆𝑥
 exists.

xxviii. Successful transaction at primary site 𝑉𝜆𝑥
= 0 where

𝑉𝜆𝑥
 𝜖 𝐷 (i.e., the transaction locked an instant 𝑥 at

primary). Meanwhile, successful transaction at

neighbour site 𝑉 (𝜇𝑥) = 0, where µ𝑥 𝜖 𝐷 (i.e., the

transaction locked a data 𝑥 at neighbour).

xxix. ⌈
𝑛

2
⌉ is the greatest integer function (i.e., 𝑛 = 9, ⌈9

2
⌉ = 5.

 This model starts with inserting database 𝑆. Then, S is

mined into 𝑆′. From 𝑆′, the data is fragmented into 𝐽1 and

𝐽2. If 𝐽1 is less than or equivalent to three, then the data will

be allocated at 𝑆(𝐵)1 because it has three replication

servers. If the 𝐽1 is equivalent to four, the data will be

allocated at 𝑆(𝐵)2 because it has four replication servers. If

𝐽1 is more than or equivalent to five, then the data will be

allocated at 𝑆(𝐵)3 because it has five replication servers.

After all data are replicated to their specific servers, the

replication process can be executed.

 The primary replica for a particular instant 𝑥 is a replica

that accepts the client’s request. In BVAGQ-AR model,

each replica of 𝑆(𝐵) can be a primary or a neighbour

replica at the same time. Any replica 𝑖 𝜖 𝑆(𝐵) can be

chosen as the primary replica, while other replicas 𝑗 𝜖 𝑆(𝐵)

where 𝑖 ≠ 𝑗 are neighbours. When a transaction 𝑉𝜂 request

an instant 𝑥 from any replica of 𝑆(𝐵), that replica will be

the primary, while others will be the neighbour replica for

processing 𝑉𝜂 . At the same time, if other sets of transactions

invoke to update 𝑥 after 𝑉𝜂 , these set of transactions are

called 𝑉𝜓. When 𝑉𝜓 obtain lock from instant 𝑥 from any

site of 𝑆(𝐵), which is a different site of the primary replica

for processing 𝑉𝜂 , that site becomes the primary processing

for 𝑉𝜓. Simultaneously, the primary processing for 𝑉𝜓 also

functions as neighbour replica for processing 𝑉𝜂 and vice

versa. Other sites of 𝑆(𝐵) that is neither primary replica for

processing 𝑉𝜂 nor primary replicas for processing 𝑉𝜓 will

function as neighbour replicas for processing 𝑉𝜆𝑥
 , where

𝜆 = 𝜂, 𝜓.
 𝑆(𝐵) is the set of replicas with replicated copies are

stored corresponding to the assignment 𝐵 for particular

instant 𝑥,

𝑆(𝐵𝑥) = {
𝑚(𝑖, 𝑗), 𝑚(𝑖 − 1, 𝑗), 𝑚(𝑖, 𝑗 − 1),

𝑚(𝑖, 𝑗 + 1), 𝑚(𝑖 + 1, 𝑗)
}.

Two sets of transactions, 𝑉𝜂 request instant 𝑥 from

𝑚(𝑖, 𝑗) replica, while 𝑉𝜓 request instant 𝑥 from 𝑚(𝑖 −

1, 𝑗) respectively. The 𝑚(𝑖, 𝑗) replica functions as the

primary replica for processing 𝑉𝜂, where 𝑚(𝑖 −

1, 𝑗), 𝑚(𝑖, 𝑗 − 1), 𝑚(𝑖, 𝑗 + 1), 𝑚(𝑖 + 1, 𝑗) are neighbour

replicas for processing 𝑉𝛾𝑥
 𝜖 𝑉𝜂. Simultaneously, 𝑚(𝑖 −

1, 𝑗) replica functions as the primary replica for processing

𝑉𝜓, while 𝑚(𝑖, 𝑗 − 1), 𝑚(𝑖, 𝑗 + 1), 𝑚(𝑖 + 1, 𝑗) and

𝑚(𝑖, 𝑗) are neighbour replicas for processing 𝑉𝛾𝑥
 𝜖 𝑉𝜓.

Both 𝑚(𝑖, 𝑗) and 𝑚(𝑖 − 1, 𝑗) replicas execute two different

processing task concurrently. The 𝑚(𝑖, 𝑗) replica is the

primary replica processing 𝑉𝜂 and neighbour replica

processing for 𝑉𝜓, whereas the 𝑚(𝑖 − 1, 𝑗) replica is the

primary replica for processing 𝑉𝜓 and neighbour replica for

processing 𝑉𝜓. BVAGQ-AR model considers different sets

of transactions 𝑉𝜂 and 𝑉𝜓. 𝑉𝜂 is a set of transactions that

comes before 𝑉𝜓, while 𝑉𝜓 is a set of transactions that

comes after 𝑉𝜂. The effect of BVAGQ-AR transaction is

defined as the processing of one instance of the transaction.

 One site has a preliminary database, 𝑆, which will be

converted into binary format. Each row corresponds to a

transaction and each column corresponds to an item. An

item can be treated as a binary variable whose value is one

if the item is present in a transaction and zero otherwise.

 For example, a database with binary variable is shown

in Table I. 𝑊and 𝑍 represent the items in the database and

𝑛 is the total number of transactions.

Support, 𝑠, is the fraction of transactions that contain both

𝑊 and 𝑍 where

𝑠 = 𝜎(𝑎, 𝑏, 𝑐, 𝑑)/𝑛 = 7/20 = 0.35 @ 35% (3)

Confidence, c, measures how often items in 𝑍 appear in

transactions that contain 𝑊.

𝑐 = 𝜎(𝑎, 𝑏, 𝑐, 𝑑)/𝜎(𝑎, 𝑏) = 7/10 = 0.7 @ 70% (4)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 5

TABLE I

DATABASE WITH BINARY VARIABLE

a b c d e f g h I j k l m n o p q r s t u

1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1

1 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0

1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0

1 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1

1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0

1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 1

1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1

1 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1

1 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1

1 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0

1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0

1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1

1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1

1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1

1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1

1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1

1 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1

 For simplicity, data from row 1 to 5 and column 1 to 6

in Table 2 is used for this example case. Figure 2 shows

an illustration of the frequent item set generation in the

Apriori algorithm for the transactions. It is assumed that

the support threshold is 60%, which is equivalent to a

minimum support count equal to three because in this

example, the items have to appear more than half of the

transactions to be taken as a frequent item sets. In large

databases, if the threshold is 40% or below, all the data

most likely will appear together.

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 6

FIGURE 2. Generating frequent item sets using the Apriori algorithm

Initially, every item is considered as a candidate 1-

itemset. After counting their supports, the candidate item

sets {𝑐} and {𝑓} are discarded because they appear in

fewer than three transactions. In the next iteration,

candidate 2-itemsets are generated using only the frequent

1-itemsets because the Apriori algorithm ensures that all

supersets of the infrequent 1-itemsets must be infrequent.

Because there are only four frequent 1-itemsets, the

number of candidate 2-itemsets generated by the

algorithm is (24) = 6.

Two of these six candidates, {𝑏, 𝑒} and {𝑑, 𝑒}, are

subsequently found to be infrequent after computing their

support values. The remaining four candidates are

frequent, and thus will be used to generate candidate 3-

itemsets. Without support-based pruning, there are
(36) = 20 candidate 3-itemsets that can be formed using

the six items given in this example. With the Apriori

algorithm, only candidate 3-itemsets whose subsets are

frequent will be kept. The only candidate that has this

property is {𝑎, 𝑏, 𝑑}.

The relation that is resulted from identifying the

frequent item sets, 𝑆′ will be fragmented into relation

with frequent item sets, 𝐽1 and relation without frequent

item sets, 𝐽2 using vertical fragmentation. When 𝑆′ is

fragmented, it is divided into a number of fragments

𝑆′1,𝑆′2, … . 𝑆′𝑛 .

𝑆′ = 𝑆′1 ∪ 𝑆′
2 ∪ … .∪ 𝑆′𝑛 (5)

The fragmentation should be done in such a way that

relation 𝑆 can be reconstructed from the fragments:

𝑺′ = 𝑺′𝟏 ⋈ 𝑺′
𝟐 ⋈ ⋯ . ⋈ 𝑺′𝒏 (6)

It is necessary to include the primary key or some

candidate key attribute in every vertical fragment so that

the full relation can be reconstructed from the fragments.

After fragmentation, 𝐽1 is allocated at its replica sites,

𝑆(𝐵)1, 𝑆(𝐵)2 𝑜𝑟 𝑆(𝐵)3.

Each site now has a primary data file which is either

operational or failed, and the state (operational or failed)

of each site is statistically independent to the others.

When a site is operational, the copy at the site is

available; otherwise it is unavailable.

Recall the Binary Vote Assignment on Grid (BVAG)

technique [13]. However, BVAG only covers the voting

and a part of the replication process.

Definition 1: A site 𝑋 is a neighbour to site 𝑌, if 𝑋 is

logically located adjacent to 𝑌.

A data will replicate to the neighboring sites from its

primary site. The number of data replication, 𝑑, can be

calculated using Property 1, as described below.

Property 1: The number of data replication from each

site, 𝑑 ≤ 5.

Proof: Let 𝑛 be a set of all sites that are logically

organized in a two-dimensional grid structure form. Then

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 7

𝑛 sites are labelled 𝑚(𝑖, 𝑗), 1 ≤ 𝑖 ≤ √𝑛, 1 ≤ 𝑗 ≤ √𝑛 .

Two way links will connect sites 𝑚(𝑖, 𝑗) with its four

neighbours, sites 𝑚(𝑖 ± 1, 𝑗) and 𝑚 (𝑖, 𝑗 ± 1), as long as

there are sites in the grid. Note that, four sites on the

corners of the grid have only two adjacent sites, and other

sites on the boundaries have only three neighbours. Thus,

the number of neighbours of each site is less than or equal

to 4. Since the data will be replicated to neighbours, then

the possible number of data replication from each site, 𝑑,

is:

𝑑 ≤ 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

+ 𝑎 𝑑𝑎𝑡𝑎 𝑓𝑟𝑜𝑚 𝑖𝑡𝑠𝑒𝑙𝑓 ≤ 4 + 1 = 5

IV. EXPERIMENTAL RESULTS

In this section, the experiments for managing transaction

and replication are described. To demonstrate BVAGQ-AR

transaction, 9 servers that logically organized in 3 × 3 are

considered based on BVAGQ-AR two-dimensional logical

design. 9 servers have been used because the number of

replicated data, 𝑑, can be 3, 4 or 5. Hence, 9 servers are

chosen in order to get maximum replicated data, 𝑑 = 5 in

the experiment. The 5 replication servers have been

deployed as in Figure 3. Each server or node is connected

to one another through a fast Ethernet switch hub.

Theoretically, each of the neighbour replication servers and

the primary replication server should be connected each

other logically as shown in Figure 2. Each server has been

assigned with vote 0 or 1. Vote 0 means the server is free

locked and able to proceed with a new transaction. In

contrast, vote 1 means the server is busy which means it is

already locked. Hence, new transaction cannot be initiated

on that server.

FIGURE 3. Five replication servers connected to each other

The Binary Vote Grid Coordination depicted in Table

2. Replica B with IP 172.21.202.163, replica D with IP

172.21.202.162, replica E with IP 172.21.202.169, replica

F with IP 172.21.202.168 and replica H with IP

172.21.202.2167 locate instant 𝑒.

TABLE II

BVAGQ-AR GRID COORDINATION

Primary Neighbours

B: 172.21.202.163 D: 172.21.202.162 E: 172.21.202.169 F: 172.21.202.168 H: 172.21.202.167

D: 172.21.202.162 E: 172.21.202.169 F: 172.21.202.168 H: 172.21.202.167 B: 172.21.202.163

E: 172.21.202.169 F: 172.21.202.168 H: 172.21.202.167 B: 172.21.202.163 D: 172.21.202.162

F: 172.21.202.168 H: 172.21.202.167 B: 172.21.202.163 D: 172.21.202.162 E: 172.21.202.169

H: 172.21.202.167 B: 172.21.202.163 D: 172.21.202.162 E: 172.21.202.169 F: 172.21.202.168

In this experiment, a transaction, 𝑉𝜂 requests to

update instant e at site E. The aim of this experiment is to

record the job execution time for the replication process.

The result for this experiment is presented in Table 4.

From the result from Table 4, at time equivalent to 1

(𝑡1), instant 𝑒 at all servers are unlocked. At (𝑡2), the

transaction begins. At (𝑡3), there is a transaction, 𝑉𝜂𝑒

request to update instant 𝑒 at server E. The transaction

initiates lock. Hence, write counter for server E now is

equal to 1. At (𝑡4), 𝑉𝜂𝑒
 propagate lock at its neighbour

replica B at server B, 𝑉𝜂𝑒
lock (e) from E. Thus at (𝑡6),

the transaction achieved in getting locked from the B then

write quorum is equal to 2. Next, 𝑉𝜂𝑒
 propagates lock at

server D at (𝑡7) and at (𝑡8), 𝑉𝜂𝑒
lock (e) from E. Thus at

(𝑡9), the transaction achieved in getting locked from the

D then write quorum is equivalent to 3. After that, 𝑉𝜂𝑒

propagate lock at server F at (𝑡10)and at (𝑡11), 𝑉𝜂𝑒
lock

(𝑒) from F. Thus, at (𝑡12), the transaction achieved in

getting locked from the F then write quorum is equivalent

to 4. Then, 𝑉𝜂𝑒
propagate lock at server H at (𝑡13) and at

(𝑡14), 𝑉𝜂𝑒
lock ((𝑒)) from H. Thus at (𝑡15), the

transaction achieved in getting locked from the H then

write quorum is equal to 5. At (𝑡16), 𝑉𝜂𝑒
obtain all

quorums and then instant e is updated at (𝑡17.) At (𝑡18),

the relation S is fragmented into S1 and S2 using vertical

fragmentation. At (𝑡19), the relation S1 is fragmented

again using horizontal fragmentation into 𝑆1(𝑃𝑘,𝑥)

and 𝑆1(𝑃𝑘,𝑦)
. Finally, at (𝑡20), �̂�𝜆𝑒

∈ 𝑉𝜂 is commit and

at (𝑡21), instant e at all replica servers will unlock and

ready for the next transaction to take place.

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 8

TABLE III

EXPERIMENTAL RESULT FOR ONE TRANSACTION AT ONE SITE

REPLICA/

E

B

D

F

H TIME TAKEN

(ms)

t1 unlock(e) unlock(e) unlock(e) unlock(e) unlock(e)

t2 begin_transaction begin_transaction begin_transaction begin_transaction begin_transaction

t3 𝑉𝜂𝑒
 write lock(e),

counter_w(e)=1

t4 𝑉𝜂𝑒
 propagate

lock: B

t5 𝑉𝜂𝑒
lock(e) from E

t6 𝑉𝜂𝑒
 get lock: B,

counter_w(e)=2

t7 𝑉𝜂𝑒
 propagate

lock: D

t8 𝑉𝜂𝑒
lock(e) from E

t9 𝑉𝜂𝑒
 get lock: D,

counter_w(e)=3

t10 𝑉𝜂𝑒
 propagate

lock: F

t11 𝑉𝜂𝑒
lock(e) from E

t12 𝑉𝜂𝑒
 get lock: F,

counter_w(e)=4

t13 𝑉𝜂𝑒
 propagate

lock: H

t14 𝑉𝜂𝑒
 lock(e) from E

t15 𝑉𝜂𝑒
 get lock: H,

counter_w(e)=5

t16 𝑉𝜂𝑒
 obtain

quorum

t17 𝑉𝜂𝑒
update e

t18 S is fragmented

into S1 and S2

t19 S1 is fragmented

into 𝑆1(𝑃𝑘,𝑥)
 and

 𝑆1(𝑃𝑘,𝑦)

t20 commit �̂�𝜆𝑒
 𝑉𝜂 commit �̂�𝜆𝑒

 𝑉𝜂 commit �̂�𝜆𝑒
 𝑉𝜂 commit �̂�𝜆𝑒

 𝑉𝜂 commit �̂�𝜆𝑒
 𝑉𝜂

t21 unlock(e) unlock(e) unlock(e) unlock(e) unlock(e)

V. DISCUSSION

The proposed BVAGQ-AR has been compared with other

replication techniques in terms of the total job execution

time for a transaction. In this section, the total job

execution time to update data between five existing

techniques namely Dynamic Replication based on the

Correlation of the File Strategy in Multi-Tier Data Grid

Algorithm (BSCA) [5], A Prefetching-Based Replication

Algorithm (PRA) [6], Hierarchical Replication Scheme

(HRS) [7], Branch Replication Scheme (BRS) [7] and

Read-One-Write-All (ROWA) [8, 9] have been compared

with the proposed technique.

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

A. VALIDITY THREATS

Several validity threats can be associated with these

experimental studies. Few threats have been identifies

and their effects on the results are elaborated.

First, the benchmark choice represents an essential

threat. The experimental benchmarks from other studies

in literature have been adopted. However, we cannot

guarantee these benchmarks represent the actual software

and hardware configurations in real world. Nevertheless,

the benchmarks are derived from configurations of

different software programs.

Second, a comparison with other techniques is another

threat. Other replication techniques with data mining such

as BSCA and PRA are tested using simulation tools. This

research focus on testing the replication technique in real

time DDS because simulation cannot capture the

problems that arise in real time environment.

Nevertheless, the comparison is valid because all the

techniques that we compared we have tested them using

the same software and hardware in real time environment.

B. REPLICATION JOB EXECUTION TIME
COMPARISON

Two series of experiments has been done in order to

compare the job execution time for each technique. The

first experiment is executed using the minimum number of

replication servers of each replication technique. Table 4

shows the time comparison for the first experiment.

TABLE IV

COMPARISON OF JOB EXECUTION TIME FOR THE MINIMUM NUMBER OF REPLICATION SERVERS

Replication

Techniques

Min.

number

of servers

Initiate

Lock

(ms)

Propagate

Lock (ms)

Obtain

Majority

Quorum

(ms)

Database

Fragmentation &

Commit (ms)

Total

time

taken:

BSCA 3 4.044 48.481 3.864 39.743 88.404

PRA 3 4.136 46.998 3.882 41.695 96.711

ROWA 9 4.275 144.522 8.187 105.259 262.243

HRS 9 3.956 147.227 7.870 98.875 257.928

BRS 8 4.523 64.268 8.112 60.254 137.157

BVAGQ-AR 3 3.905 16.369 3.890 42.384 66.548

Table 4 shows the execution time comparison

between BSCA, PRA, ROWA, HRS, BRS and BVAGQ-

AR in their minimum replication servers. From the Table

4, it is proved that BVAGQ-AR requires the lowest time

to complete a transaction. It took only 66.548

milliseconds to complete a transaction. The second lowest

execution time is BCSA with 88.404 milliseconds

followed by PRA with total time taken is 96.711

milliseconds. PRA takes longer time due to user

prefetching data from other servers. Next is BRS which

takes 137.157 milliseconds to complete the replication

process. ROWA and HRS takes the longest execution

times which are more than 250 milliseconds. As it shown

in the Table 4, there are big differences of total job

execution time between BSCA and PRA with ROWA,

BRS and HRS. This is because the data in ROWA, BRS

and HRS is not mined since the original techniques do not

consider the data correlation.

For the second experiment, it is executed using the

maximum number of replication servers for each method.

Table 5 shows the time comparison for the second

experiment.

TABLE V

COMPARISON OF JOB EXECUTION TIME FOR THE MAXIMUM NUMBER OF REPLICATION SERVERS

Replication

Techniques

Min.

number

of servers

Initiate

Lock

(ms)

Propagate

Lock (ms)

Obtain

Majority

Quorum

(ms)

Database

Fragmentation &

Commit (ms)

Total

time

taken:

BSCA 9 4.097 75.272 8.433 105.172 192.974

PRA 9 3.974 81.250 9.214 97.170 191.608

ROWA 9 4.275 147.498 8.002 107.912 267.687

HRS 9 4.152 146.136 9.107 107.536 266.931

BRS 9 4.480 64.864 8.835 93.993 172.172

BVAGQ-AR 5 4.280 23.808 3.950 51.830 83.868

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 10

Table 5 shows the execution time comparison

between BSCA, PRA, ROWA, HRS, BRS and BVAGQ-

AR for maximum replication servers. From the Table 6,

again, it is proved that BVAGQ-AR requires the lowest

time to complete a transaction as the maximum

replication servers in this technique is only five. It took

only 83.868 milliseconds for BVAGQ-AR to complete a

transaction. The second lowest execution time is PRA

with 191.608 milliseconds. This is followed by BSCA

with total time taken is 192.974 milliseconds. Next is

BRS which took 185.172 milliseconds to complete the

replication process. ROWA and HRS took the longest

execution times which are more than 250 milliseconds.

Compare to other methods, BRS need less time to do a

transaction because the data in this technique are

fragmented and allocated at several different sites while

other methods replicate all data to all sites.

TABLE VI

CBVAGQ - AR IMPROVEMENT IN TERMS OF JOB EXECUTION TIME (%)

REPLICA

SERVERS

BSCA PRA ROWA HRS BRS

Minimum 31.19 24.72 74.62 74.20 51.48

Maximum 56.54 56.23 68.67 68.58 51.23

From Table 6, it is shown that, BVAGQ-AR has

31.19% improvement from BCSA when experiment is

executed in minimum number of replication servers and

56.54% improvement in maximum number of replication

servers. This is followed by PRA where BVAGQ-AR has

24.72% improvement from it in minimum number of

replication servers and 56.23% improvement in maximum

number of replication servers. The improvement in BSCA

and PRA has a big different since in BVAGQ-AR, the

minimum and maximum number of replication servers

are 3 and 5 while in BSCA and PRA are 3 and 9.

BVAGQ-AR had improved 74.62% from ROWA and

74.20% from HRS in minimum number of servers,

68.67% and 68.58% in maximum number of replication

servers. There are not much different in the results since

ROWA and HRS use 9 replication servers in both

experiments. Last but not least is BRS, where BVAGQ-

AR has 51.48% improvement from it in minimum

number of replication servers and 51.23% improvement

in maximum number of replication servers. The

percentages are much higher in ROWA, HRS and BRS

compare to BSCA, PRA and BVAGQ-AR because they

do not take correlations between data into consideration.

Hence, the processing times for these techniques are

longer. In conclusion, BVAGQ-AR has the lowest job

execution time to complete a transaction compare to

BSCA, PRA, ROWA, HRS and BRS.

VI. CONCLUSION

In order to preserve data consistency and reliability of the

systems, managing transactions is very important.

BVAGQ-AR resolves this by setting the lock with small

quorum size before update and commits transaction

synchronously to the sites that has the same fragmented

data. Since this technique using small size of quorum, less

computational time is needed to send and receive

messages from its neighbours’ replicas. BVAGQ-AR

only took only 66.548 milliseconds to complete a

transaction while the second lowest execution time is

BCSA with 88.404 milliseconds followed by PRA with

total time taken is 96.711 milliseconds. PRA takes longer

time due to user prefetching data from other servers. BRS

takes 137.157 milliseconds to complete the replication

process and ROWA and HRS takes the longest execution

times which are more than 250 milliseconds. In addition,

maintaining data consistency also easier compare to other

techniques because it has low communication cost. This

is because less computational time required for the

locking of the small quorum size in synchronization

process. From the experiment result, we can say that

managing replication and transaction through proposed

BVAGQ-AR able to preserve data consistency. It also

increases the degrees of parallelism because by using

fragmentation, replication and transaction can be divided

into several subqueries that operate on the fragments.

BVAGQ-AR can be improved in many different ways. As

we know, server failure can happen anytime. Currently,

BVAGQ-AR does not support handling fragmented

database replication transaction management by

considering failure cases. In future, BVAGQ-AR will

take this challenge to handle fragmented database failure

case and fault tolerance such as system crashes, statement

failure, application software errors, network failure and

media failure in real time distributed database system in

real time environment.

ACKNOWLEDGMENT

The authors appreciate the Ministry of Higher Education

Malaysia for additional supporting under Fundamental

Research Grant Scheme, RDU190185 with Reference no:

FRGS/1/2018/ICT03/UMP/02/3, and UMP Short Term

Grant RDU1903122 and UMP PGRS RDU170329 for

financing this research.

REFERENCES

[1] B. A. Milani and N. J. Navimipour, "A

comprehensive review of the data replication

techniques in the cloud environments: Major trends

and future directions," Journal of Network and

Computer Applications, vol. 64, pp. 229-238, 2016.

 [2] J. Wang, H. Wu, R. Wang, “A new reliability model

in replication-based big data storage systems,”

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 11

Journal of Parallel and Distributed Computing, vol.

108, pp. 14 – 27, 2017.

[3] S. A. U. Sharifah Hafizah, A. Noraziah, J. B, Odili,

“Fragmentation Techniques for Ideal Performance in

Distributed Database – A Survey,” International

Journal of Software Engineering and Computer

Systems, vol. 6 (1), pp. 18 – 24, 2020.

[4] H. Mohamadi, P. V. Benjamin, A. Raymond, S. D.

Jackman, J. Chu, C. P. Breshears, I. Birol, “DIDA:

Distributed Indexing Dispatched Alignment,” PLOS

ONE, https://doi.org/10.1371/journal.pone.0126409

\, 2015.

[5] Z. Cui, D. Zuo, Z. Zhang, “Based on Support and

Confidence Dynamic Replication Algorithm in

Multi-Tier Data Grid,” International Journal of

Computational Information Systems, vol. 10, pp.

3909 – 3918, 2013.

[6] T. Tian, J. Luo, Z. Wu, A. Song, “A Pre-Fetching-

Based Replication Algorithm in Data Grid,”

Proceedings of the 3rd International Conference on

Pervasive Computing and Applications. vol. 1, pp.

526–531, 2008.

[7] J. M. Pérez, F. G. Carballeira, J. Carretero, A.

Calderón, and J. Fernández, “Branch replication

scheme: a new model for data replication in large

scale data grids,” Future Generation Computer

Systems, vol. 26, pp. 12-20, 2010.

[8] S. Budiarto, N. M. Tsukamoto, “Data Management

Issues in Mobile and Peer-to-Peer

Environment,” Data and Knowledge Engineering,

vol. 41, 183-204, 2002.

[9] A. Noraziah, A. N. Abdalla, and M. S. Roslina, “Data

Replication Using Read-One-Write-All Monitoring

Synchronization Transaction Systems in Distributed

Environment,” Journal of Computer Science, vol. 6

(10), pp. 1033-1036, 2010.

[10] H.A. Abdulwahab, A. Noraziah, A. A. Alsewari, and

S. Q. Salih, “An enhanced version of black hole

algorithm via levy flight for optimization and data

clustering problems,” IEEE Access, vol. 7,

pp.142085-142096, 2019.

[11] J. Han, M. Kamber, J. Pei, “Data Mining: Concepts

and Techniques,” Morgan Kaufmann Publishers,

2010.

[12] M. J. Zaki and W. Jr. Meira, “Data Mining and

Analysis: Fundamental Concepts and Algorithms,”

Cambridge University Press.

[13] A. Sánchez, J. Montes, W. Dubitzky, J. J. Valdés, M.

S. Pérez, P. D. Miguel, “Data Mining Meets Grid

Computing: Time to Dance. In: Data Mining

Techniques in Grid Computing Environments,”

John Wiley & Sons, pp. 1–16, 2008.

[14] T. Hamrouni, S. Slimani, F. B. Charrada, “A Critical

Survey of Data Grid Replication Strategies Based on

Data Mining Techniques,” Procedia Computer

Science, vol. 51, pp. 2779–2788, 2015a.

[15] T. Hamrouni, S. Slimani, F. B. Charrada, “A Survey

of Dynamic Replication and Replica Selection

Strategies Based on Data Mining Techniques in

Data Grids,” Engineering Applications of Artificial

Intelligence, vol. 48, pp. 140–158, 2015b.

[16] R. Agrawal, J. C. Shafer, “Parallel mining of

association rules,” IEEE Tran. Knowledge and Data

Engineering, vol. 8 (6), pp. 962 -969, 1996.

[17] M. Tu, A data management framework for secure

and dependable data grid. University of Texas at

Dallas, 2006.

[18] S. Doraimani, "Filecules: A new granularity for

resource management in grids," 2007.

[19] S. Y. Ko, R. Morales, I. Gupta, “New Worker-

Centric Scheduling Strategies for Data-Intensive

Grid Applications,” Proceedings of the International

Conference on Middleware, pp. 121–142, 2007.

[20] A. Noraziah, A., C. F. Ainul Azila, M. S. Roslina,

M. Z. Noriyani, and A. H. Beg, “Lowest Data

Replication Storage of Binary Vote Assignment

Data Grid,” Proceedings of International

Conference on Networked Digital Technologies, pp.

466 – 473, 2010.

[21] M. M. Deris, D. J. Evans, M. Y. Saman, A.

Noraziah, “Binary Vote Assignment on Grid for

Efficient Access of Replicated Data,” International

Journal of Computer Mathematics, vol. 80 (12), pp.

1489 – 1498, 2003.

