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Abstract: Criticism of the implementation of existing risk prediction models (RPMs) for cardiovas-
cular diseases (CVDs) in new populations motivates researchers to develop regional models. The
predominant usage of laboratory features in these RPMs is also causing reproducibility issues in
low–middle-income countries (LMICs). Further, conventional logistic regression analysis (LRA)
does not consider non-linear associations and interaction terms in developing these RPMs, which
might oversimplify the phenomenon. This study aims to develop alternative machine learning
(ML)-based RPMs that may perform better at predicting CVD status using nonlaboratory features
in comparison to conventional RPMs. The data was based on a case–control study conducted at
the Punjab Institute of Cardiology, Pakistan. Data from 460 subjects, aged between 30 and 76 years,
with (1:1) gender-based matching, was collected. We tested various ML models to identify the
best model/models considering LRA as a baseline RPM. An artificial neural network and a linear
support vector machine outperformed the conventional RPM in the majority of performance matrices.
The predictive accuracies of the best performed ML-based RPMs were between 80.86 and 81.09%
and were found to be higher than 79.56% for the baseline RPM. The discriminating capabilities of
the ML-based RPMs were also comparable to baseline RPMs. Further, ML-based RPMs identified
substantially different orders of features as compared to baseline RPM. This study concludes that
nonlaboratory feature-based RPMs can be a good choice for early risk assessment of CVDs in LMICs.
ML-based RPMs can identify better order of features as compared to the conventional approach,
which subsequently provided models with improved prognostic capabilities.

Keywords: nonlaboratory-based features; risk prediction models; machine learning models; LMICs;
features importance
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1. Introduction

The surge in cardiovascular diseases (CVDs) and cardiovascular mortality (CVM) has
become a real challenge for healthcare systems [1]. However, preventive health policies
in high-income countries (HICs) have created a substantial decline in CVDs and CVM in
the last two decades [2,3]. This reduction in cause-specific morbidity and mortality reflects
the success of preventive health policies, especially the usage of risk prediction models
(RPMs) [4]. Predominantly, existing RPMs have been developed, validated and imple-
mented in HICs, although the World Health Organization (WHO) states that almost 80% of
CVMs occur in low–middle-income countries (LMICs) [5]. This situation is threatening to
LMICs and literature suggests the development of locally customized but methodologically
efficient RPMs for CVDs by considering the limitations of existing RPMs.

Usually, RPMs originally established for HIC populations are implemented in LMICs
with a slight modification in the mean CVD risk of the model equation called recalibration.
However, regression coefficients (βs) of the source RPM are retained in the equation
which is originally estimated for the source population (derivation cohort). This trivial
modification cannot make this equation truly representative to estimate the risk of CVDs
in new populations [4]. Therefore, application of these RPMs in new populations can cause
over/underestimation of risk and subsequently misclassification of individuals into low-
and high-risk categories. In the literature, there is evidence of the failure of the Framingham
heart risk score (a well-established RPM) in the classification of individuals when used in
new populations [6–8]. Similarly, the QRISK score (another RPM) produced very different
CVD risk estimates as compared to the JBS2 score (an RPM) for the same population [9].
Therefore, various researchers suggest that each population has its own RPM to obtain
accurate risk estimates, which helps in the reduction in potential disease burden [4,10,11].
Further, existing RPMs are mostly based on laboratory measures which confine their scope
and reproducibility to LMICs [12]. The inclusion of laboratory-based measures can improve
the predictive accuracy of RPMs. However, it reduces their utility in LMICs due to limited
provision of health services and affordability issues. It stimulates researchers to develop
local and customized alternative RPMs.

Logistic regression analysis (LRA) is a conventional approach to estimation in RPMs
due to its flexible nature of interpretation and less computational complexity. However,
LRA assumes linear relationships between explanatory features and logit of the model,
which probably oversimplifies the relationships in these disease models [13,14]. This
oversimplification can affect the risk estimation process and lead to less-calibrated models.
Further, LRA-based existing RPMs do not consider the interaction terms between the
explanatory features and assume simple relationships to be estimated. However, in CVD
modeling, features are risk factors which are highly associated with each other and it is
hard to overlook their interactive effects. The literature has suggested using advanced
statistical classifiers which can overcome the limitations of LRA and subsequently increase
the predictive performance of the RPMs [5]. Further, the relative importance of features in
advanced classifiers can probably be different from the conventional approach. Hence, this
study used machine learning (ML) tools to develop and validate the RPMs for prediction
of CVD status, considering LRA as a conventional RPM and using nonlaboratory-based
features collected from Pakistani settings (which is one of the LMICs).

2. Materials and Methods
2.1. Study Population and Design

A case–control study was conducted at the Punjab Institute of Cardiology (PIC),
Lahore, which is the largest cardiovascular centre in Pakistan. Gender-based matching
with a 1:1 ratio was followed to select the subjects from hospital settings. It means male
and female cases were matched with male and female controls, respectively. Further, the
controls were selected within ±5 years of their corresponding cases. The patients who were
registered in the emergency department of the hospital with the first cardiovascular event
(except congenital and rheumatic heart diseases (RHD)) and certified by duty physicians
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were selected as cases for study. Hospital-based matched controls were selected and
assessed by duty physicians for any CVD-related signs and symptoms. These controls
were the attendants of patients who visited the hospital. This study was approved by the
ethical review committee of the PIC hospital and was conducted from September 2018 to
February 2019. A total sample of 460, 230 cases and 230 matched controls, were selected.
The subjects having an age < 30 years, any history of CVD events, presence of congenital
and RHD, or recently changed dietary habits were excluded from the study. Both cases
and controls, who followed the above-mentioned criteria in the pre-specified time frame
(September 2018 to February 2019), were selected for this study. Informed consent was
obtained from all subjects involved in the study. Further details of study design can be
seen in our previous works [15,16].

2.2. Description and Identification of Important Features

The data frame used in the development of RPMs consists of fifteen features that
were derived from the literature [12,17]. These features are purely self-reported infor-
mation such as age (f 1), gender (f 2), parental history of CVDs (f 3), diabetes mellitus (f 4),
hypertension (f 5), smoking history (f 6), physical inactivity (f 7), self-reported general stress
(f 8), abdominal obesity (f 9), consumption of high-salt foods (f 10), low fruit consumption
(f 11), low vegetable consumption (f 12), high fried foods/trans fats consumption (f 13), red
meat/poultry consumption (f 14) and second-hand smoke exposure (f 15). These features
were measured on the following scales. Parental history of CVDs (yes = 1, no = 0), dia-
betes mellitus (present = 1, absent = 0), hypertension (present = 1, absent = 0), smoking
history (smoker = 1, never smoker = 0), physical inactivity (moderate to high physical
activity = 1 and low profile physical activity = 0), self-reported general stress (not at all
to rarely stressful = 0, Sometimes to very stressful = 1) and abdominal obesity (obese = 1
and non-obese = 0) were binary features. Dietary features used following cut-off points,
consumption of high-salt foods or snacks ≥1 time a day, deep-fried foods/snacks/fast
foods ≥ 3 times a week, low fruit consumption: < 1-time fruit per day, low vegetables
consumption: <1-time vegetables daily, red meat and poultry consumption: ≥2 times daily,
are treated as yes = 1 otherwise no = 1. Age was originally measured in years and was used
in the development of RPMs. However, highly discriminating age groups were derived
using the quick, unbiased, efficient, statistical tree (QUEST) algorithm, which is a type of
decision tree. These age groups (≤45 years and >45 years) were used when relative feature
importance was extracted. The QUEST algorithm is generally used for univariate splits and
followed F-statistic for this purpose. It selects the split point for the selected feature and
used a stopping criterion for this split process. We used the purity of node as a stopping
criterion in determining the discriminating age groups in addition to a significant p-value.
The F-statistic (F-value = 28.174, d.f.1 = 1, d.f.2 = 458, p-value = 0.001) was highest at split
point of ≤45 years and >45 years.

For more precise measurements, an international physical activity questionnaire
(IPAQ) was used to assess the status of physical inactivity in the study participants [18].
Abdominal obesity was measured through waist circumference as suggested for the Asian
population and used in previous research [19,20]. Dietary features and their cut-off values
were the same as used in the literature [12,17]. Before developing the RPMs, the individual
association of selected features with CVD status was evaluated through bivariate odds
ratio analysis. The associations were tested at a 10% level of significance (α = 10%) and
significant features were considered for further process (see Figure 1). It is important to
mention here that age and gender are important confounders in such studies. However,
these are major risk factors for CVDs too. This study is mainly based on the lifestyle-related
risk factors of CVDs. Further, gender-wise disparities in lifestyle-related factors have also
been observed in the literature [21]. Therefore, only gender was considered as a confounder,
and age was used as an independent risk factor in the study. However, the controls were
selected within ±5 years of their cases to avoid the inclusion of very young or very old
adults in the study. Possible confounding effects of gender were controlled in two ways;
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using a matching strategy in the design stage and developing gender-adjusted RPMs at the
analysis stage.
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2.3. Development of Baseline Conventional RPM and Relative Feature Importance

Initially, a baseline RPM was formulated using the conventional approach for CVD
prediction as developed in the past [12,17]. Fifteen selected features as discussed in
the previous subsection were used and no interaction terms between parameters were
considered in the model. This model was formulated using a stepwise regression approach.
This approach has further two types; forward selection and backward elimination. The first
type starts from the null model and ends at the model with only significant features, while
backward elimination starts from a model that contains all features under consideration
(full model) and removes the least significant features in each step until a model is finalized
with only significant features. However, a forward stepwise selection method was used for
estimating the parameters through conventional binary LRA to highlight the significant
features (see Figure 1). The overall goodness of fit (GoF) of the model was evaluated
through the Hosmer and Lemeshow statistic (H) which hypothesizes that the model is fit
for prediction (H0). The significance of Omnibus model coefficients was also observed
for the significant contribution of included features in the model. In the end, to make a
comparison between baseline RPM and ML models, a confusion matrix was also formed to
compute other performance matrices (discussed in the next section). After the performance
assessment of the baseline RPM, relative feature importance was also evaluated. In a
forward stepwise selection method, features were ranked through the standard method as
suggested in the literature [22]. In this method, at every step, −2 log-likelihood of the model
was computed, which helped in computing the likelihood ratio (LR) test after the inclusion
of one variable in the model. The LR test is computed by subtracting the −2 log-likelihood
of the larger model from the −2 log-likelihood of the smaller model. Statistical significance
of the LR test (p < 0.05) at each step ensured the significance of added variables at the
specified step. This stepwise approach was continued until the LR test yielded significant
results. The order of the features was observed through the inclusion of each significant
feature in the model from the first step to the last step. The features included in the first
and last steps would be the most and least discriminating features in the prediction process,
respectively. The analysis related to conventional baseline RPM was performed using SPSS
version 21.0.

2.4. Development of ML-Based RPMs

Three famous supervised ML algorithms were used to train the models for the pre-
diction of CVD status. Artificial neural networks (ANN), support vector machines (SVM)
and decision trees (DT), were used to train and test the RPMs. Various configurations of
these selected algorithms were implemented to train the models (as presented in Figure 1).
As we tried multiple configurations with various combinations of hyperparameters to
obtain the most productive ML models, therefore, before the implementation of traditional
performance matrices, Cohen’s Kappa-statistic was used as screening criteria. This statistic
is used to measure the level of agreement between the observed and the estimated model.
It ranges from 0 to 1 and its higher coefficient (≥0.60) reflects the better prediction model.
In the initial screening, only those ML models were selected which had a Kappa-statistic (k)
close to 0.60 or ≥0.60 that showed moderate to a substantial agreement between observed
and estimated models. Thresholds of k are arbitrary. However, the selection of a threshold
depends on the domain of application [23]. The sensitive problems need a higher value of
(k). In this study, the outcome feature was the first incidence of CVDs which is a group of
fatal diseases. Therefore, at least a moderate level of agreement in models was required.
Considering this criterion, four ML models—ANN with a single hidden layer, SVM with
the linear and radial basis function kernels using sequential minimal optimization (SMO)
and random forest (RF)—were finalized with the best-performed combination of hyperpa-
rameters. The finalized schemes of these four ML models with their hyperparameters are
given as under.

1. ANN with single hidden layer model: The model consisted of a sigmoid activation
function with one hidden layer having 8 hidden nodes. The multilayer-perceptron
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(MLP) with the backpropagation method at 0.3 momentum and learning rate was
finalized. Further, weight decay as a regularization technique was also used to avoid
over-fitting.

2. The linear kernel SVM model: The SVM was given the entirety of the dataset and
mainly trained with two different kernels, which were linear and radial basis function
(RBF) kernels. These kernels identified relationships between features within the
dataset and tried to find optimal hyperplanes to model the binary outcome. However,
linear kernel SVM performed well in the training and testing phases. This SVM
model was optimized using the SMO method. Various cost function values (ct) were
implemented to optimize the linear SVM model and ct = 0.5 provided a good RPM.

3. Radial basis function SVM (RBF-SVM) model: We also tried SVM with an RBF kernel
to gauge the possible non-linear patterns within the dataset. The RBF-SVM had two
main parameters that needed adjustment: ct and gamma. Therefore, various cost
function values (ct) were implemented to optimize the model, and ct and gamma
were 1.0 and 0.01, respectively, providing a good RPM.

4. Random forest (RF) model: We have used various types of DT such as C4.5, J48 and RF.
However, from this pool of decision trees, the RF performed well and tested further
for the development of risk prediction models. RF as an ensemble method was used
to create several DT from a set of features selected using the without replacement
method. These DT divided the cases and controls into similar subgroups using the
most important features. The voting process was used to predict the outcome of
the features. A total of 300 DT with a depth of 6 and 3 randomly selected features
provided us with a relatively better RPM.

2.5. Cross-Validation of ML-Based RPMs and Relative Feature Importance

To develop training and testing samples within the total sample, 10-fold cross-validation
was used in the study for ML-based RPMs. Each model was trained ten times by con-
sidering each fold as a testing dataset. After the initial screening of ML models through
the Kappa-statistic, multiple traditional matrices such as accuracy, root mean square error
(RMSE), net reclassification improvement (NRI), sensitivity and specificity were used to
evaluate their performance [24,25]. Accuracy is a good choice in a balanced dataset as we
had in this 1:1 matched case–control study [26]. Sensitivity and specificity were used to
assess the predictive strength of the models in terms of identification of true positive and
true negative instances, respectively. In the theory of RPM development, the area under the
curve (AUC) and Brier score (BS) are the most preferred measures to assess the discrimina-
tion and calibration strength of models, respectively [27]. The value of BS can be calculated
through the square of RMSE [28]. Generally, RMSE is used to evaluate the performance of
models having continuous outcomes. However, to compute the BS, we have used RMSE in
this study. ANN, SVM, and DT-based predictive outputs were evaluated by using these
comparative performance matrices, which helped to determine the best RPM/RPMs for
future predictions. However, these ML-based models have to face the problem of less
interpretability due to their complex black-box nature. Therefore, additional visualization
such as partial dependency plots (PDPs) have also been performed to overcome this pos-
sible issue. Further, the model which performed better than baseline RPM was used to
extract the relative feature importance. In ML-based RPMs, the learner-based approach
was followed to determine the relative importance of each feature (see Figure 1). The SVM
uses orthogonal vector coordinates orthogonal to the hyperplane to figure out the relative
weights of features in the trained model [29]. The input-hidden-output connection weights
methodology was used to compute the relative features importance in the ANN model
as suggested in the literature [30,31]. The relative feature weights are derived from the
Gini index (GI) in RF models [29]. All analyses related to ML models were performed
using Weka version 3.8. However, Python 3.9.0 was also used to extract relative feature
importance.
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3. Results

Based on descriptive findings, the average age of the subjects was 48.0 ± 11.31 years.
The study sample included 32.2% women in both groups (cases and controls by follow-
ing the matching strategy). The frequency distribution of all binary features have been
presented in Table 1. Consumption of high-salt foods, low fruit consumption, high fried
foods consumption, low profile physical activity and smoking are the most prevalent
risk features in the studied sample. Further, an association between all binary features
and CVDs status was also computed through odds ratio analysis. The bivariate odds
ratio analysis found that gender was an insignificant feature with an estimate of 1.00
(0.676–1.479) and a p-value = 1.00. However, it was used to formulate the gender-adjusted
model. Hypertension was the most significant feature in this bivariate analysis, having
an odds ratio of 3.428 (2.163–5.434) and a p-value < 0.001. Interestingly, the low vegetable
consumption was insignificant at the 5% level of significance. However, at a higher level
of significance, i.e., 10%, it was significant (1.383 (0.942–2.029, p-value = 0.097)). The find-
ings for other features are; Age in years (1.046 (1.028–1.065, p-value = 0.001)), parental
history of CVDs (2.292 (1.374–3.824, p-value = 0.001)), diabetes mellitus (2.543 (1.633–3.959,
p-value = 0.001)), smoking history (2.866 (1.890–4.344, p-value = 0.001)), physical inactiv-
ity (3.030 (2.025–4.52, p-value = 0.001)), self-reported general stress (1.921 (1.278–2.889,
p-value = 0.002)), abdominal obesity (1.768 (1.125–2.778, p-value = 0.013)), consumption
of high-salt foods (1.843 (1.267–2.680, p-value = 0.001)), low fruit consumption, (1.847
(1.237–2.757, p-value = 0.003)) high fried foods/trans fats consumption (1.802 (1.233–2.633,
p-value = 0.002)), red meat/poultry consumption (1.908 (1.080–3.374, p-value = 0.025)) and
second-hand smoke exposure (1.729 (1.186–2.520, p-value = 0.004)). Therefore, all features
were considered for further processing.

Table 1. General characteristics of binary features of the study.

Sr. No Features Frequency (%)

1 Gender (f 2)
Male 312 (67.8)
Female 148 (32.2)

2 Parental history of CVDs (f 3)
Yes 78 (17.0)
No 382 (83.0)

3 Diabetes mellitus (f 4)
Present 115 (25%)
Absent 345(75%)

4 Hypertension (f 5)
Present 114 (24.8)
Absent 346 (75.2)

5 Smoking history (f 6)
Smoker 142 (30.9)
Never smoker 318 (69.1)

6 Physical inactivity (f 7)
Low profile physical activity 160 (34.8)
Moderate to high physical activity 300 (65.2)

7 Self-reported general stress (f 8)
Sometimes to very stressful 137 (29.8)
Not at all to rarely stressful 323 (70.2)

8 Abdominal obesity (f 9)
Obese 100 (21.7)
Non-obese 360 (78.3)

9 Consumption of high-salt foods (f 10)
Consumption of high-salt foods or snacks ≥ 1 time a day 194 (42.2)
Consumption of high-salt foods or snacks < 1 time a day 266 (57.8)
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Table 1. Cont.

Sr. No Features Frequency (%)

10 Low fruit consumption (f 11)
<1-time fruit per day 316 (68.7)
≥1-time fruit per day 144 (31.3)

11 Low vegetable consumption (f 12)
<1-time vegetables daily 163 (35.4)
≥1-time vegetables daily 297 (64.4)

12 High fried foods/trans fats consumption(f 13)
Deep-fried foods/snacks/fast foods ≥ 3 times a week 180 (39.1)
Deep-fried foods/snacks/fast foods < 3 times a week 280 (60.9)

13 Red meat/poultry consumption (f 14)
≥2 times daily 58 (12.6)
<2 times daily 402 (87.4)

14 Second-hand smoke exposure (f 15)
More than 1 h of passive smoke exposure per week 226 (49.0)
Less than 1 h of passive smoke exposure per week 234 (51.0)

3.1. Baseline Conventional RPM and Relative Feature Importance

A gender-adjusted baseline RPM was formulated. All features used in the baseline
RPM were significant (p < 0.05) except second hand smoke exposure (p-value = 0.102). In
addition to its insignificance, its inclusion in the multivariate model also caused two
more issues. First, its inclusion in the multivariate model caused a severe multicollinearity
problem with the main feature of smoking history. Second, the H-statistic was also significant
(p > 0.05), reflecting the lack of GoF in the model. Therefore, second-hand smoke exposure was
dropped from the finalized baseline RPM equation and also from further analysis of the
study. The omnibus test for model coefficients was also significant (χ2 = 235, degree of
freedom = 14, p < 0.05) which highlighted the significant contribution of included features
in the model. H statistic was 14.728 (p = 0.065) and shows the overall model fitness for
prediction. The finalized model equation is provided in the given equation below.

Z = −7.69 + 0.05( f1) + 0.52( f2) + 0.75( f3) + 1.25( f4) + 1.91( f5) + 1.15( f6) + 1.64( f7) + 0.95( f8)

+1.46( f9) + 1.39( f10) + 1.21( f11) + 1.09( f12) + 1.21( f13) + 1.39( f14)
(1)

Here, Z is the logit and f 1 to f 14 are the features which have been discussed in
Section 2.2. The confusion matrix of the saturated model was used to compute the perfor-
mance matrices of the baseline RPM. The overall accuracy (79.56%) and AUC (0.859) of the
model reflect it as an acceptable prediction model for computing heart risk scores. Further,
the computed sensitivity, specificity, Kappa-statistic and RMSE through the confusion
matrix were 0.804, 0.787, 0.592 and 0.389, respectively (see Table 2). In the end, the LR
statistic and −2 log-likelihood were used to rank the features. The order of features in the
stepwise RPM with their corresponding −2 log-likelihood of the model was; physical inactiv-
ity (606.06, p-value = 0.001), smoking history (570.11, p-value = 0.001), hypertension (545.50,
p-value = 0.001), diabetes mellitus (519.22, p-value = 0.001), abdominal obesity (499.10,
p-value = 0.001), consumption of high-salt foods (476.90, p-value = 0.001), low fruit con-
sumption (465.00, p-value = 0.001), red meat/poultry consumption (453.90, p-value = 0.001),
low vegetable consumption (444.21, p-value = 0.002), high fried foods/trans fats consump-
tion (433.32, p-value = 0.001), age groups (418.94, p-value = 0.001), self-reported general
stress (406.61, p-value = 0.001), parental history of CVDs (402.06, p-value = 0.033).
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Table 2. Performance of baseline and ML-based RPMs.

Models ANN Linear SVM RBF-SVM RF Baseline RPM

Confusion Matrix Case Control Case Control Case Control Case Control Case Control

Case 178 52 186 44 185 45 185 45 185 45
Control 35 195 44 186 54 176 55 175 49 181

Sensitivity 0.780 0.809 0.804 0.804 0.804
Specificity 0.848 0.809 0.765 0.761 0.787
Accuracy 81.09 80.86 78.50 78.30 79.56

AUC 0.871 0.864 0.853 0.856 0.859
Kappa-statistic 0.622 0.617 0.570 0.565 0.592

RMSE 0.378 0.382 0.392 0.386 0.389
NRI 3.7% 2.7% −2.2% −2.6%

3.2. ML-Based RPMs and Their Performance

Similar to baseline RPM, ML-based RPMs also used the same fourteen features which
were used in the finalized baseline RPM as reported in Equation (1). After the initial
screening of ML models through the Kappa-statistic, four models were finalized for further
processing. The performance assessment of finalized ML models is presented in Table 2.
The first finalized model (ANN with 1 hidden layer) provided an RPM with 81.09% accuracy
and 0.871 AUC. The sensitivity (0.780) and specificity (0.848) values of the ANN-based
model showed consistency in predicting the true positive (TP) and true negative (TN)
values of the dataset. The linear SVM reported the best hyperplanes with an accuracy of the
model of 80.86%. Further, these two ML models provide 3.7% and 2.7% net reclassification
improvement (NRI) than the baseline model. The positive NRI values indicate that these
two ML models reclassify the subjects in a more appropriate risk category than the baseline
model and improve the classification. The other two models are RBF-SVM and RF. The
closeness of RBF-SVM indicates the presence of possible interactions between given features
of the dataset. In terms of performance matrices, ANN is the best model among the four
selected ML models. The RF model was excellent at yielding sensitivity. However, its
other matrices were not better than other ML-based RPMs. The rank order of performance
of RPMs was different between performance measures, as given in Table 2, especially in
terms of AUC and RMSE. However, it is not compulsory to have improved findings for
a particular algorithm on all performance measures, because according to the “No Free
Lunch Theorem”, there is no single best optimization algorithm. It implies that there is no
single best ML algorithm for predictive modeling problems. Therefore, the best algorithm
is that which fulfils the majority of the performance measures. We also prepared five-fold
cross-validation results which have been provided as a supplementary table. The pattern
of findings was similar in 5- and 10-fold cross-validation.

3.3. Performance Comparison between Baseline RPM and ML-Based RPMs

ANN and linear SVM-based RPMs outperform other ML and baseline RPMs in terms
of the majority of performance matrices except sensitivity (see Tables 2 and 3). These
two models fulfilled five and six criteria for performance out of six (see Table 3). The RF
model showed a slight improvement in RMSE. Overall, ANN and linear SVM-based RPMs
outperformed RBF-SVM, RF and baseline RPMs. Therefore, these two better performers
proved themselves as good choices for early risk assessment of CVDs as compared to
conventional baseline RPM. However, linear SVM-based RPM fulfilled all performance
criteria and was found more consistent than ANN and LRA-based RPMs. For more
easiness of users, weights assigned by linear SVM can be used for future interpretations
and predictions.
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Table 3. Percentage change in performance matrices of ML-based RPMs to conventional baseline RPM.

Models * Sensitivity Specificity Accuracy AUC Kappa-Statistic RMSE BS Number of Criteria Fulfilled

ANN −2.40% 6.10% 1.53% 1.20% 2.97% 0.378 0.143 5/6
Linear SVM 0.50% 2.20% 1.30% 0.50% 2.50% 0.382 0.146 6/6
RBF-SVM 0.00% −2.20% −1.06% −0.60% −2.20% 0.392 0.154 0/6

RF 0.00% −2.60% −1.26% −0.30% −2.68% 0.386 0.149 1/6
0.389 0.151

* LRA is a baseline model.

3.4. Partial Dependency Plots for Identification of Marginal Effects of Features

The above-mentioned performance comparison between conventional RPM and ML-
based RPMs have shown the advantage of ML-based models in terms of performance.
However, unlike the conventional model, the role and nature of the relationship between
explanatory features with outcome features are unknown due to the black-box nature of
ML-based models. Initially, we developed partial dependency plots (PDPs) to explore the
nature of relationships. In this study, except age, all features were binary. Therefore, these
features have a linear marginal relationship with the outcome feature. Age was measured
at a continuous scale and has depicted its non-linear effects and need to be presented (see
Figure 2). The subjects having age under 40 years have shown an inconsistent pattern of
risk of CVDs. It is possibly due to multiple types of risk profiles (combinations of risk
features) under the age of 40 years. Further, many unexplained biological factors can
cause CVDs in this age bracket (30–40 years). However, in higher ages, the prevalence of
established classical risk factors is higher that lead to a comprehensible increase in the risk
of CVDs.
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3.5. Relative Feature Importance through Best-Performed ML RPMs

The selected significant thirteen features (excluding gender due to its insignificance)
were ranked in order of importance and computed through a learner-based approach as
discussed in the methodology section. Here, we presented a horizontal bar chart which
is formulated using relative feature importance extracted through best performed ANN
and linear SVM-based RPMs (see Figure 3). In the ANN model, age groups, hypertension,
low fruit consumption, smoking history and low vegetable consumption were the top five
predictive features. On the other hand, linear SVM-based RPM identified hypertension,
physical inactivity, age groups, abdominal obesity and consumption of high-salt foods as
the top five predictors. The relative feature importance of baseline RPM can also be seen in
the same figure.
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4. Discussion

Accuracy in the prediction of early risk assessment is fundamental in community-
centred care. Nonlaboratory features are usually under-appreciated in clinical practice
and risk estimation of fatal diseases such as CVDs. This study extends the usage of
nonlaboratory-based features (as an alternative to laboratory features in limited resources)
to predict CVD events in Pakistani settings. In addition to the conventional baseline RPM,
this study provided two alternative but efficient ML-based RPMs which outperformed
in the majority of performance matrices. Overall, linear SVM and ANN models were
better in overall accuracy, discrimination, and calibration. These ML-based RPMs form the
foundations for testing new RPMs in other LMICs which are lacking in their customized
models, especially using nonlaboratory features and ML algorithms.

Optimization in risk assessment of CVDs through RPMs is the main dimension of the
current study. We found that ML-based RPMs are capable of optimizing the predictive
strength of models through the exploration of unobserved patterns and interaction terms
in the data sets. In this study, ML-based RPMs expressed their efficiency in predicting the
first incidence of CVDs in two ways; improved performance matrices and exploration of
new orders of features. These characteristics of ML models augmented our proposition
that ML models may perform better as compared to conventional LRA in the estimation of
CVD risk. Reflecting on the findings, several observations can be elaborated in the context
of published literature. This study found that ML models from the class of ANN and
SVM outperformed LRA in performance matrices. The difference between LRA and ML
models in terms of predictive strength ranges from 1.30% to 1.53%. The ANN model is
specifically used to capture the non-linear and interaction effects of features and provided
the highest difference of 1.53%. Indirectly, it indicates the presence of non-linear effects
and interaction terms in the selected features which were probably overlooked by the
conventional LRA approach [32]. The literature also highlighted that ANN models could
improve the prognostic capability of RPMs [33,34]. However, the majority of published
literature develops their RPMs using laboratory-based features. RBF-SVM and RF, which
are specifically used to gauge the non-linear effects within the dataset, did not outperform
the baseline RPM and other ML models. However, the closeness of RBF-SVM and RF
performance matrices to linear SVM and baseline LRA models still indicates the presence
of slight non-linear effects in the features and CVD status. Despite linear or non-linear
relationships between features and CVD status, the better performance of ANN showed
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its capability to perform equally well in the linear and non-linear dataset. Evidence of the
flexible behavior of ANN can be found in the vast body of relevant literature [32,35,36].
The marginal effects of age as highlighted in PDPs has also augmented the presence of
non-linear effects in the studied models.

Apparently, the difference in accuracy and discrimination was not substantial between
conventional RPM and ML-based RPMs. There could be two main reasons behind this
marginal difference in performance. First, the sample size is optimistically adequate for
both types of models; LRA- and ML-based RPMs. However, a vast literature is available and
reports that the ML models perform better when the sample size is sufficiently large [29,34].
The overall large sample size and proportionally large samples in the training dataset
can enhance the capability of ML models to capture the complex (non-linear) patterns
of data sets. It subsequently increases the predictive and discriminative strength of ML
models. Secondly, there might be chances that the number of features used in this study
is not enough for ML models, because ML models perform well in complex data sets in
terms of higher dimensionality [37,38]. However, the inclusion of new features such as
biomarkers or indicators in disease prediction models needs theoretical knowledge of the
domain and adequacy of literature. This limitation restricted the current study to using
the same nonlaboratory-based features as used in recent literature for the development of
RPMs [12,17]. Irrespective of this limitation, the usage of fewer features in risk prediction
is also an advantage and provides strength to current research. The development of
parsimonious models is always appreciated in the literature. Therefore, the current study
provides models with the good prognostic ability and with minimum nonlaboratory-based
features. In the end, in addition to these possible justifications, the literature also reported
an apparently marginal difference (1% and above) as a significant contribution to the
CVD-related RPMs due to the fatality of this disease [34]. The development of RPMs is
purely a classification problem. Therefore, high accuracy is not the only interest for good
RPM. In this study, linear SVM and ANN models yielded better discrimination and overall
calibration than the baseline RPM.

Most interestingly, we found certain disparities regarding the relative feature im-
portance and their significance from existing RPMs in the literature. This study found
that physical inactivity, smoking history, hypertension, diabetes mellitus, and abdominal
obesity were the top five predictors of the baseline RPM. In contrast, the PURE study
concluded that age groups, hypertension, smoking history, diabetes mellitus, and red meat
consumption were the top predictors in the RPM [12]. Further, the current study baseline
RPM ranked dietary features after these classical features of CVDs and is supported by
a recent study that reported that 60% of CVD-related deaths in Pakistan are associated
with diet and its patterns [39]. The current study explored a significant positive role of
high-salt foods and low vegetable consumption and found consistent with Pakistani litera-
ture [40,41]. Surprisingly, the PURE study found that usage of salty foods (≥1 time/day)
and low vegetable consumption (<1 time/day) were insignificant features in the study,
with logistic regression coefficients of −0.16 and −0.24, respectively. However, the similar
work of the INTERHEART study found that the regression coefficient of these features
were 0.12 and 0.21, which indicates their positive role in causing CVDs [17]. In the current
study, high fried food consumption was found to have significant importance in baseline
RPM, which is aligned with Pakistani literature [42]. In contrast, the existing RPM of the
PURE study found that high fried food consumption was an insignificant feature in their
study. We observed that the current studies, PURE and INTERHEART, differed in terms of
the dietary habits which are associated with regional needs. These differences in findings
strengthen the argument for having regional RPMs instead of using a general model to
assess CVD risk for all populations.

The argument for developing regional RPMs also got evidence in this study. PURE
and INTERHEART studies-based RPMs included gender-adjusted age groups and found
males ≥ 55 years or females ≥ 65 years as a significant age group for CVDs [12,17]. The
age categories reflect that males are at more risk of having CVDs at early ages than females.
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In contrast, multiple Pakistani studies have shown that females have a similar risk of CVDs
to their male populations [43–45]. Furthermore, since the study dataset was based on a
Pakistani sample, and it was quite difficult to find uniform categories of age for scoring
purposes in the local context of Pakistan. Therefore, data-driven categories were preferred
and found that age > 45 years was significantly associated with CVDs. These newly derived
age groups are consistent with local Pakistani studies. For example, a recent cross-sectional
study reported that, unlike developed countries, the Pakistani population had a greater risk
of CVDs over the age of 40 years [46]. Another study showed that South Asian countries
(including Pakistan) reported the onset of CVDs 10 years earlier than other countries [47].

The relative feature importance assigned by the ANN and linear SVM-based RPMs
were different from each other. In the ANN, dietary features gained more weight than the
classical features of CVDs such as diabetes mellitus and abdominal obesity. In contrast,
linear SVM assigned higher weights to classical features such as hypertension, physical
inactivity, abdominal obesity and diabetes mellitus, etc. Theoretically, both types of RPMs
and their extracted relative feature importance can be explained. More weights to dietary
habits and their related features reflect that these features are more pronounced in Pakistani
settings and are leading agents for high risk of CVDs. This is consistent with the existing
literature [39]. The high prevalence of these features helps in the allocation of more weights
in the training process of the ANN algorithm. On contrary, the allocation of higher weights
to classical features by linear SVM is due to their established intense effects in causing CVDs.
Further, SVM-based models do not require independence of features, which might create a
certain combination of features, which leads to better classification and allocation of higher
weights to these features. Methodologically, this difference in the allocation of weights
in both ML models is simply due to their algorithmic computations and identification of
decision boundaries. ANN uses various hyperparameters tuning during the training phase
to optimize the performance of the network [37]. ANN uses gradient descent to optimize
its parameters. Further, the backpropagation method was used in ANN, which tried to
optimize the findings using different weights at certain learning rates and momentum.
Furthermore, the regularization technique was also used to avoid over-fitting as discussed
in the literature [36]. However, linear SVM searches for linear vectors to separate the
classes and generally uses sequential minimal optimization to optimize the findings [29].
In contrast to ANN, linear SVM uses few hyperparameters for its configuration. More
importantly, ANN needs a large sample size to train the model [29,48] and SVM can also
perform in the range of moderate to large sample sizes [49,50]. Therefore, it is possible to
have differences in performance and relative feature importance.

The different role of features in the development of current study RPMs in contrast
to existing models would help to strengthen the argument for the need of local RPMs for
each population. Further, it would help communities that have low access to laboratory
facilities and need intervention for the measurement of risk. In the larger scope, these
nonlaboratory-based features can be part of health surveys that are conducted regularly
in various countries around the world. These features would help in devising RPMs and
act as an initial screening of the population for CVDs and identify potential cases who
further confirmed in hospital settings. This screening can lead to need-based community
care strategies for the possible reduction in CVDs. Methodologically, this study provides
evidence of using advanced data analytics techniques to optimize the risk prediction
process.

This study needs to be interpreted within the context of its strengths and limitations.
Firstly, in this study, we followed a matched case–control methodology as used in the
literature as discussed in followed Section 2. Therefore, we had to adopt the same model
development strategy for the baseline RPM which ultimately limited our data analysis
techniques and raised possible questions as well. Secondly, the models use baseline data
without the follow-up of the participants of the study, which could not capture the effects
of time-varying values. The superiority of follow-up designs is not questionable. However,
the non-availability of such data sets advocates adopting alternative research designs.
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Thirdly, there may be additional nonlaboratory features (socio-economic and demographic)
that could further improve the performance of RPMs. The inclusion of new features by
future researchers can help in the further improvement of ML-based RPMs. Lastly, a large
sample size can also be an important factor in improving the findings of ML-based RPMs.

5. Conclusions

This study concludes that by using advanced but more flexible ML models, we can
optimize the performance of existing models and identify hidden behaviour of features.
However, large and multidimensional data sets are recommended for substantial improve-
ment in performance matrices. The different roles and order of features in models of
current and existing studies argue that local and customized RPMs should be preferred in
the precise estimation of CVD risk. Further, nonlaboratory features are a good alternative
for LMICs to develop low-cost RPMs, which can be augmented through the inclusion of
background features of participants.
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