EFFECTS OF COAGULATION MEDIUM ON ASYMMETRIC POLYETHERSULFONE MEMBRANE FOR CABON DIOXIDE AND METHANE SEPARATION

JESSICO BIN MUTUN

A thesis submitted in fulfillment of the requirements for the award of degree of Bachelor of Chemical Engineering (Gas Technology)

FACULTY OF CHEMICAL & NATURAL RESOURCES ENGINEERING UNIVERSITI MALAYSIA PAHANG

DECEMBER 2010

ABSTRACT

This study is concentrated on the ability and the performance of the asymmetric polyethersulfone membrane in gas separation process. Asymmetric flat sheet membranes were prepared by using a simple dry/wet phase inversion method. Experimental investigations were conducted focusing on the effect of the different coagulation medium during the phase inversion toward the permeability and the selectivity of the membrane to the carbon dioxide and methane gases. Three different coagulants medium were used which were water, methanol and water/methanol (50:50). The flats sheet asymmetric membrane then being characterized by using the scanning electron microscopy (SEM) and the Fourier transform infrared spectroscopic (FTIR). Gas permeation tests then run to examine the effect of the different coagulants toward the time of the gases pass through the membrane. From the result of the gas permeability unit calculation, membrane which immersed in water solution has shown the highest permeability. Different coagulant medium will affect the performance of the membrane toward its permeability and selectivity of gases. The water medium solution is the best coagulation medium for the asymmetric polyethersulfone membrane during the phase inversion method with the GPU value of 3.23. As for the conclusion, water is identified as the best coagulation medium for asymmetric polyethersulfone membrane.

ABSTRAK

Kajian ini tertumpu kepada kebolehan dan prestasi membrane poliethersulfone asimetrik dalam proses pengasingan gas. Membrane asimetrik datar lembar disediakan melalui proses pegeringan dan pembasahan. Kajian dijalankan memfokuskan tentang kesan-kesan koagulasi medium yang berbeza-beza terhadap ketelapan dan selektivitas karbon dioksida dan gas metana. Tiga jenis koagulasi medium yang berbeza digunakan iaitu air, metanol, dan campuran air/metanol (50:50). Membrane asimetrik datar lembar kemudiannya ditandakan mengunakan scanning electron microscopy (SEM) dan fourier transform infrared spectroscopic (FTIR). Perngujian ketelapan gas kemudianya dijalankan untuk megetahui kesan koagulasi medium yang berbeza terhadap masa yang melalui membrane. Daripada keputusan pengiraan unit ketelapan gas, membrane yang direndam ke dalam air menunjukkan ketelapan yang tertinggi. Koagulasi medium yang berbeza akan mempengaruhi prestasi ketelapan dan selektivitas membrane tehadap gas-gas yang diuji. Air merupakan koagulasi medium yang terbaik untuk membrane poliethersulfone asimetrik semasa proses fasa inversi dengan nilai GPU ialah 3.23. Konklusinya, air telah dikenalpasti sebagai koagulasi medium terbaik untuk membrane poliethersulfone asimetrik.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF EQUATION	XV
	LIST OF SYMBOLS	xvi
	LIST OF APPENDICES	xviii

Ι	INTRODUCTION	1
	1.1 Background of Study	1
	1.2 Problem Statement	2
	1.3 Objective of Study	3
	1.4 Scope of Research	3
	1.5 Rational and Significant	3

II	LITERATURE REVIEW	5
	2.1 History of Membrane	5
	2.2 Membrane Classifications	7
	2.3 Membrane Modules	10
	2.4 Membrane Applications	11
	2.5 Gas Membrane Separation	14
	2.6 Advantages of Membrane Gas Separation	18
	2.7 Asymmetric Membrane Formation	19

2.8 Dry/Wet Phase Inversion Process	21
2.9 Polyethersulfone Polymer	21
2.10 Polymeric Dope Solution	22

III	METHODOLOGY	25
	3.1 Introduction	25
	3.2 Experimental Procedures	26
	3.3 Polymeric Dope Solution Preparation	27
	3.4 Membrane Casting	29
	3.5 Membrane Coating	30
	3.6 SEM and FTIR	30
	3.7 Gas Permeation Test	31

IV	RESULT AND DISCUSSION	32
	4.1 Morphology of Asymmetric PES Membranes	32
	4.2 Gas Permeation Test Result	37

V	CONCLUSION AND RECOMMENDATIONS	44
	5.1 Conclusion	44
	5.2 Recommendation	45

REFERENCES

46

х

LIST OF TABLE

TABLE NO	TITLE	PAGE
2.1	Membrane Type and Characteristic	8
2.2	Configuration of Membrane Module	10
2.3	Materials for Gas Separating Membrane	17
2.4	Gas Separation and Its Application	18
3.1	Basic Properties of Water and DMAc	28
3.2	Basic Properties of PES	28
3.3	Basic Properties of Water, and Methanol	
	for Coagulation Medium	29
4.1	Result of Permeation Test of CO ₂ at 1 bar on membranes	S
	immersed in different coagulation medium	38
4.2	Result of Permeation Test of CH ₄ at 1 bar on membrane	S
	immersed in different coagulation medium	39

4.3	Permeation Properties of Asymmetric PES membrane	
	immersed in water	39
4.4	Permeation Properties of Asymmetric PES membrane	
	immersed in Methanol medium solution	40
4.5	Permeation Properties of Asymmetric PES membrane	
	immersed in water/methanol medium solution	40

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Membrane Classification	7
2.2	General Membrane Process	14
2.3	Schematic Diagram of the Basic Membrane	
	Gas Separation Process	15
2.4	Asymmetric Membrane Structure	19
2.5	Repeating Chemical Structural of PES	22
3.1	General steps of study of effects of asymmetric	
	polyethersulfone membrane on different	
	coagulation medium	26
3.2	Dope Solution Preparation System	27
3.3	Asymmetric Membrane with Silicone Coating	30
3.4	Gas Permeation System	31
4.1	Scanning electron photomicrograph of flat sheet	

	asymmetric PES membrane at magnification of 400	34
4.2	Surface layer of coated membrane micrographs	
	at different coagulation medium	
	at 100X magnification	36
4.3	The normalized difference spectrum of asymmetric	
	PES membrane	37
4.4	Comparison between the means selectivity on each	
	membranes that immersed in different	
	coagulation medium	41
4.5	Permeability of CO ₂ in water, methanol, and	
	water methanol medium solution	41
4.6	Permeability of CH ₄ in water, methanol,	
	and water/methanol medium solution	42

LIST OF EQUATION

EQUATION NO	TITLE	PAGE
2.1	Fick's Law Solution-Diffusion	15
2.2	Pressure-Normalized Flux	16
2.3	Gas Permeation Unit	16
2.4	Pure Gas Selectivity	16

LIST OF SYMBOLS

ABBREVATIONS

PES	-	Polyethersulfone polymer
DMAc	-	N, N – Dimethylacetamide
CO ₂	-	Carbon dioxide
CH ₄	-	Methane
GPU	-	Gas Permeation Unit
C_2H_6	-	Ethane
СО	-	Carbon monoxide
N ₂	-	Nitrogen
H_2	-	Helium

PARAMETERS/SYMBOL

J	-	Membrane flux
k	-	Solubility of gas in Membrane
D	-	Diffusion Coeffient of Gas Through Membrane
Δp	-	Partial Pressure Different
l	-	Membrane thicknes
Qi/j	-	Volumetric flow rate of gas in standard temperature and
		Pressure
А	-	Membrane active surface area
$lpha_{i/j}$	-	Pure gas selectivity

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Gas Permeation Unit Calculation	48

CHAPTER 1

INTRODUCTION

1.1 Background of Study

A separation process is used to separate a mixture to two or more difference products. The separation processes deal mainly with the transfer and change of energy and the transfer and change of materials, primarily by physical means but also by physical-chemical means (Christie, 2003). Separation process can be classified into process like evaporation, distillation, absorption, adsorption, membrane separation, mechanical-physical separations, and many more.

Uses of membrane have been rapidly growing in the application of gas separation process. This study is concentrated on the ability and the performance of the membrane to separate the carbon dioxide (CO_2) from methane (CH_4). It is because in the gas stream, CO_2 which fall into category of acid gases (as does hydrogen sulfide (H₂S)) will bring harm to the equipment and the pipeline itself because with the combination with water, it is highly corrosive and rapidly destroy pipeline and equipment. Membranes have been widely used in two main CO_2 removal applications which are in natural gas sweetening, and enhanced oil recovery, where CO_2 is removed from an associated natural gas stream and reinjected into the oil well to enhanced oil recovery (David, 1999)

1.2 Problem Statement

In membrane separation the most important part is the permeability and selectivity of the membrane toward the gases that need to be removed to get better separation result. This study is performed to study and review the selectivity and permeability of the membrane which immersed into three different coagulations medium. Beside that the structures of each membrane need to be viewed and characterized by using the Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopic (FTIR).

It is important to know what the best coagulation medium for PES asymmetric membrane is in order to get the best performance of the membrane. Ideal asymmetric membranes for gas separation must meet the following requirements for better performance. First is the skin layer must be defect free to assure that the permeation is exclusively controlled by a solution/diffusion mechanism to achieve maximum selectivity. Secondly is the skin layer should be as thin as possible to maximize the membrane productivity. Thirdly is to the substructure should provide sufficient mechanical strength to support the delicate skin layer during high-pressure operation.

1.3 Objective of Study

The main objective of this study is to investigate the effect of coagulation medium towards the permeability and selectivity of the membrane for the separation of the CO_2 and CH_4 .

1.4 Scope of Research

Based on the objective, this study mainly conducted to develop membrane for gas separation by study the effect of the different coagulation medium toward the membrane. To achieve the objective of the study, few scopes of study are conducted as below:

- i. Fabrication of membrane for gas separation base on asymmetric flat sheet membrane.
- ii. Various permeability tests conducted for CO₂ and CH₄.
- iii. Membrane characterized by using SEM and FTIR.

1.5 Rationale and Significant

Lots of fact and information in gas separation process using membrane can be studied by doing this project. Furthermore, by doing the analysis of the gas permeation, the selectivity and permeability of the membrane can be further review and studied to get better result of gas separation. Besides that, this opportunity can be used to learn how to fabricate and preparing the asymmetric flat sheet membrane to separate gases.

CHAPTER 2

LITERATURE REVIEW

2.1 History of Membrane

A membrane can be defined as semi-permeable barrier, which separates a fluid and restricts transport of various chemicals in selective manner. A membrane can be homogenous or heterogeneous, symmetric or asymmetric in structure, solid or liquid, can carry a positive or negative charge or be neutral or bipolar (Srikant, 2008). Transport trough a membrane can be affected by convection or by diffusion of individual molecules, induced by an electric field or concentration, pressure or temperature gradient. The membrane thickness may vary from as small as 100 microns to several millimeters (mm).

The membrane studies already started in the early eighteenth century when Abbe Nolet used the word 'osmosis' to describe permeation of water through a diaphragm in 1748 (Baker, 2004). Through the nineteenth and early twentieth century's, membranes had no industrial or commercial uses, but were used as laboratory tools to develop physical and chemical theories. This can be proved with the measurements of solution osmotic pressure made with membranes by Traube and pfrffer were used by Van't Hoof in 1887 to develop his limit law, which explains the behavior of ideal dilute solution (Baker, 2004). The concept of a perfectly selective semipermeable membrane was used by Maxwell and others in developing the kinetic theory of gases.

In 1907, Bechold devised a technique to prepare nitrocellulose membranes of graded pore size, which determined by bubble test. Others efforts by Elford, Zsigmondy and Bachmann and Ferry improved on the Bechold's technique and by the early 1930s microporous collodion membranes were commercially available. Then the next 20 years after that, the early microfiltration membrane technology was expanded to other polymers, notably cellulose acetate. The transformation of membrane separation from a laboratory to an industrial process came first in the 1960 with the development of the asymmetric porous membranes by Loeb and Sourirajan (Nutes, 2001). The membranes consist of an ultrathin, selective surface film on a much thicker but much more permeable microporous support, which provides the mechanical strength (Baker, 2004).

The period from 1960 to 1980 produced a significant change in the status of membrane technology. Building the original Loeb-Sourirajan technique, other membrane formation processes, including interfacial polymerization and multilayer composite casting and coating, were developed for making high performance membranes. Using these processes, membranes with selective layers as thin as 0.1 μ m or less are now being produced by a number of companies. Method of producing of membranes into large-membrane-area spiral-wound, hollow-fine-fiber, capillary, and plate and frame modules were also developed, and advances were made in improving membrane stability.

By 1980, microfiltration, ultrafiltration, reverse osmosis and electrodialysis were all established processes with large plants installed worldwide (Baker, 2004). Today, membranes are used on a large scale to produce portable water from sea and brackish water (desalination), to clean industrial effluents and recover valuable constituents, to concentrate, purify, or fractionate macromolecular mixtures in the food and drug industries, and in this project consideration which is to separate gases and vapors in petrochemical processes.

2.2 Membrane Classifications

Membrane can be classified into few types and can be determined by the specific application objective which includes the particulate or dissolve solids removal, hardness reduction or ultra pure water production, removal of specific gases or chemical and many more. The classification of membrane can help to improve the membrane application by knowing to the membrane morphology. Membranes classified according to their morphology are shown in figure 2.1 and the details about the membrane types are discussed in table 2.1.

Figure 2.1 Membrane classification

Table 2.1: Membrane type and characteristics.

Membrane type	Characteristics	References
Microporous membranes	The membrane behaves almost like a fibre filter and separates by a sieving mechanism determined by the pore diameter and particle size. Materials such as ceramics, graphite, metal oxides, and polymers are used in making this type of membrane. The pores in the membrane may vary between 1 nm to 20 microns.	Srikant, 2004
Homogeneous Membranes	This is a dense film through which a mixture of molecules is transported by pressure, concentration or electrical potential gradient. Using these membranes, chemical species of similar size and diffusivity can be separated efficiently when their concentrations differ significantly.	Srikant, 2004
Asymmetric membranes	An asymmetric comprises a very thin (0.1 to 1.0 micron) skin layer on a highly porous (100 – 200 microns) thick substructure. The thin skin acts as the selective membrane. Its separation characteristics are determined by the nature of membrane material or pores size, and the mass transport rate is determined mainly by the skin thickness. Porous sub-layer acts as a support for the thin, fragile skin and has little effect on the separation characteristics.	Srikant, 2004
Nonporous, dense	Nonporous, dense membranes consist of a dense film through which permeants are transported by	Baker, 2004

membranes	diffusion under the driving force of a pressure,	
	concentration, or electrical potential gradient. The	
	separation of mixture relate to the relative	
	transport rate within membrane materials which	
	is determined by the diffusivity and solubility in	
	the membrane material. Most gas separation,	
	pervaporation, and reverse osmosis membranes	
	use dense membranes to perform the separation.	
Electrically	Electrically charged membranes can be dense or	Srikant, and
charged	microporous, but are most commonly very finely	Baker, 2004
Membranes	microporous, with the pore walls carrying fixed	
	positively or negatively charged ions. A	
	membrane with fixed positively charged ions is	
	referred to as an anion-exchange membrane	
	because it binds anions in the surrounding fluid.	
	Similarly, a membrane containing fixed	
	negatively charged ions is called a cation-	
	exchange membrane. Separation achieved mainly	
	by exclusion of ions of the same charge as the	
	fixed ions of the membrane structure, and to a	
	much lesser extent by the pore size. The	
	separation is affected by the charge and	
	concentration of the ions in solution. Electrically	
	charged membranes are used for processing	
	electrolyte solutions in electrodialysis.	

2.3 Membrane Modules

Nowadays with the advance technology in membranes separation, the materials to form a membrane have been formulated to get the best separation result. For that reason, different types of membrane module are designed and available in the market. The configurations of membrane module have been discussed in table 2.2. According to Srikant, 2004, the following membrane modules are largely used for industrial applications:

- I. Plate and frame module
- II. Spiral wound module
- III. Tubular membrane module
- IV. Capillary membrane module
- V. Hollow fiber membrane module

Table 2.2: Configuration of Membrane module (Philip, 1988)

Membrane modules	Details
Hollow Fiber -	• Very small in diameter membrane (< 1mm)
Capillary	• Consist large number of membranes in a module and
	self supporting
	• Density is about 600 to 1200 m^2/m^3 (for capillary
	membrane). Up to $30000 \text{ m}^2/\text{m}^3$ (hollow fiber).
	• Size is smaller than other module for given
	performance capacity.
	• Process is inside-out. Permeate is collected outside of
	membrane.
Plate and Frame	• Structure is simple and the membrane replacement is
	easy.

	Similar to filter press
	• Density is about 100 to $400 \text{ m}^2/\text{m}^3$.
	• Membrane is placed with feed sides' facing each other.
	• Feed flows from its sides and permeate comes out
	from the top and the bottom of the frame.
	• Membranes are held apart by a corrugated spacer.
Spiral Wound	• Formed from a plate and frame sheet wrapped around
	a center collection pipe.
	• Density is about 300 to m^2/m^3 .
	• Its diameter can up to 40cm.
	• Feed flow axial on cylindrical module and permeate
	flow into the central pipe.
Tubular	• Not self supporting and normally are inserted in other
	materials tube with diameter more than 10mm.
	• Density is not more than $300 \text{ m}^2/\text{m}^3$.
	• Membranes replacement is easy.

2.4 Membrane Applications

Membranes are becoming popular in separation process industries in recent day. There are various types of membrane separation have been developed the specific industrial applications. The following are the some of the widely used processes that use membrane.