
Research Article
Study of Keyword Extraction Techniques for Electric
Double-Layer Capacitor Domain Using Text Similarity
Indexes: An Experimental Analysis

M. Saef Ullah Miah ,1 Junaida Sulaiman,1,2 Talha Bin Sarwar ,3

Kamal Z. Zamli,1 and Rajan Jose 4

1Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Pekan 26600, Malaysia
2Center for Data Science and Artificial Intelligence (Data Science Center), Universiti Malaysia Pahang, Pekan 26600, Malaysia
3Department of Computer Science, Faculty of Science and Technology, American International University-Bangladesh (AIUB),
Dhaka, Bangladesh
4Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia

Correspondence should be addressed to Talha Bin Sarwar; talhasarwar40@gmail.com

Received 14 August 2021; Accepted 5 November 2021; Published 2 December 2021

Academic Editor: Lingzhong Guo

Copyright © 2021 M. Saef Ullah Miah et al. -is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Keywords perform a significant role in selecting various topic-related documents quite easily. Topics or keywords assigned by
humans or experts provide accurate information. However, this practice is quite expensive in terms of resources and time
management. Hence, it is more satisfying to utilize automated keyword extraction techniques. Nevertheless, before beginning the
automated process, it is necessary to check and confirm how similar expert-provided and algorithm-generated keywords are. -is
paper presents an experimental analysis of similarity scores of keywords generated by different supervised and unsupervised
automated keyword extraction algorithms with expert-provided keywords from the electric double layer capacitor (EDLC)
domain. -e paper also analyses which texts provide better keywords such as positive sentences or all sentences of the document.
From the unsupervised algorithms, YAKE, TopicRank, MultipartiteRank, and KPMiner are employed for keyword extraction.
From the supervised algorithms, KEA and WINGNUS are employed for keyword extraction. To assess the similarity of the
extracted keywords with expert-provided keywords, Jaccard, Cosine, and Cosine with word vector similarity indexes are employed
in this study. -e experiment shows that the MultipartiteRank keyword extraction technique measured with cosine with word
vector similarity index produces the best result with 92% similarity with expert-provided keywords. -is study can help the NLP
researchers working with the EDLC domain or recommender systems to select more suitable keyword extraction and similarity
index calculation techniques.

1. Introduction

Keywords are significant for automated document pro-
cessing. Keywords are the concise representation of the
contents of a document [1]. From keywords, the context of
the documents can be easily understood. When there is a
need to process lots of documents or classify any document
for any purpose, it is tedious to go through the whole
document one by one and classify them. Instead, going
through the keywords makes this process faster, even for a

human. However, it is also a time-consuming process to go
through the keywords for many documents by a human.
-is task can be automated by employing machines to look
for the keywords and classify the documents. Since the
process of keyword extraction is being automated, it should
also be assured that extracted keywords represent the actual
context of the document; else automated extraction will be a
complete loss of time and resources. -is assurance can be
done by comparing the extracted keywords with human or
expert assigned keywords. -erefore, this paper introduces

Hindawi
Complexity
Volume 2021, Article ID 8192320, 12 pages
https://doi.org/10.1155/2021/8192320

mailto:talhasarwar40@gmail.com
https://orcid.org/0000-0003-4587-4636
https://orcid.org/0000-0001-5974-1282
https://orcid.org/0000-0003-4540-321X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8192320


an experimental study to measure the similarity score be-
tween expert-provided keywords and keyword extraction
algorithms generated keywords to observe how similar the
machine-generated keywords’ values are to the expert-
provided keywords. In other words, this experiment can
guide if the machine-generated keywords are feasible to
utilize instead of expert-provided keywords for any specific
domain.

-ere are several different keyword extraction algo-
rithms available at present [2, 3]. -ese algorithms are
employed in different scenarios, such as recommender
systems, trend analysis, similar document identification, and
relevant document selection [4–6]. All these algorithms are
divided into three primary categories based on their ex-
traction technique: supervised, unsupervised, and semi-
supervised technique [7]. -is study compares the similarity
scores for supervised and unsupervised techniques with
three prominent similarity indexes, namely, Jaccard simi-
larity index [8], cosine similarity index [9, 10], and cosine
with Word vector similarity [11]. -e key contributions of
this work are

(i) Recommending a keyword extraction technique
that provides more similar machine-generated
keywords to the expert or human provided
keywords

(ii) Recommending type of texts (positive texts only or
whole text of a document) that provides more
similar keywords

(iii) Recommending a better similarity index for mea-
suring similarity score between documents

(iv) Finding the feasibility of utilizing machine-gener-
ated keywords instead of expert-curated keywords

-e rest of the paper is organized as follows. Employed
keyword extraction techniques and relevant works are
presented in Section 2 with their known shortcomings and
strengths. Employed methodologies for the experiment are
mentioned in Section 3. -en, the result analysis of the
experiment is discussed in Section 4, and concluding re-
marks in Section 5.

2. Background Study

In this paper, some notable and well-known similarity index
calculation algorithms and keyword extraction algorithms
are employed. All the text similarity and keyword extraction
algorithms with shortcomings and strengths are discussed in
this section.

2.1.KeywordExtraction. Keyword extraction from text is an
analysis technique that automatically extracts the most
used and most important words or phrases from text based
on different parameters [12]. In some techniques, these
parameters can be defined externally, and some techniques
do not support external definition [7]. Mainly there are
three classes of keyword extraction techniques. Among
them, supervised and unsupervised techniques are
employed in this study.

2.1.1. Unsupervised Keyword Extraction. Four unsupervised
keyword extraction techniques are employed in this paper.
Unsupervised techniques are prone to poor accuracy and re-
quire a larger corpus input and do not extrapolate well [13].
However, unsupervised techniques are utilized widely com-
pared to supervised techniques, as all sorts of domain-specific
training labeled data are not always available for all the domains.

(1) YAKE. YAKE was proposed by Campos et al. [14]. It is a
lightweight unsupervised keyword extraction technique
based on TF-IDF. YAKE extracts keywords by calculating
five features, namely, Word Casing (WC), Word position
(WP), Word Frequency (WF), Word Relatedness to Context
(WRC), and Word DifSentence (WF). -e relation between
five features can be expressed through equation (1), where
S(w) is the measure for each word. After calculating the
measure for each word, the final keyword is calculated
utilizing a 3-gram model [15]:

S(w) �
WR∗WP

WC + WF/WRC + WD/WR
. (1)

(2) TopicRank. Bougouin et al. proposed TopicRank [16] in
2013, which is a clustering-based model. It divides the
document into multiple topics employing the hierarchical
agglomerative clustering [17]. -en, utilizing the PageRank
[18], it scores each topic and selects each top-ranked can-
didate keyword from each topic. After that, it selects all the
top candidate words as final keywords.

(3) MultipartiteRank. MultipartiteRank is a topic-based
keyword extraction model. It encodes topical information of
a document in a multipartite graph structure.-is technique
represents candidate keywords and topics of a document in a
single graph, and utilizing the mutually reinforcing rela-
tionship of the candidate keywords and topics improves
candidate ranking. -is method has two steps of selecting
candidate words as keywords, (i) representing the whole
document in a graph and (ii) assigning relevance score to
each word. Between these two steps, position information is
captured utilizing edge weights’ adjustment. As a result,
most of the time, it outperforms different other key-phrase
extraction techniques [19].

(4) KPMiner. El-Beltagy and Rafea proposed the KPMiner
[20] in 2009. -is method also utilizes TF-IDF to calculate
words as keywords.-is calculation is done in three steps, (i)
selecting candidate words from the document utilizing least
allowable seen frequency (lasf ) factor and CutOff factor, (ii)
calculating candidate word’s score, and (iii) selecting the
candidate word with the highest score utilizing the candidate
word position and TF-IDF score as the final keyword.

2.1.2. Supervised Keyword Extraction. While unsupervised
algorithms do not need a large amount of labeled training
data, supervised algorithms need a large amount of that data
and perform poorly except in the training domain. However,
for any specific domain, supervised techniques are preferred

2 Complexity



over unsupervised techniques [15]. In this paper, two su-
pervised techniques are employed, KEA and WINGNUS.

(1) KEA. KEA is a supervised keyword extraction algorithm
proposed by Witten et al. in 1999 [21]. KEA classifies a
candidate keyword utilizing word frequency and position of
the word in the document. After that, it predicts which
candidate words are qualified as keywords utilizing the
Naive Bayes machine learning algorithm. -e machine
learning model builds a predictive model initially. -en,
keywords are extracted utilizing this predictive model [22].

(2) WINGNUS. -is supervised keyword extraction tech-
nique is developed focusing on keyword extraction from
scientific documents [23]. It utilizes inferred document
logical structure [24] in the candidate word identification
process to limit the phrase number in the candidate word
list. -is method utilizes regular expression rules to extract
candidate words, and instead of whole document text, it
utilizes input text in different levels such as title and headers
or abstract and introduction. Like KEA, it also utilizes the
Naive Bayes machine learning algorithm to select candidate
words.

2.2. Text Similarity Index. Determining how similar two
pieces of text are to each other is the simple idea of text
similarity index or text similarity calculation. In this study,
keywords from different documents extracted by keyword
extraction algorithms and expert-provided keywords’ sim-
ilarity are measured. In two ways, this similarity can be
measured: one is lexical similarity and another is semantic
similarity [25–30]. -is paper implemented both the simi-
larity measures utilizing Jaccard, Cosine, and Cosine with
word vector similarity indexes and presented the outcome
for EDLC-based scientific articles.

2.2.1. Jaccard Similarity. Jaccard similarity index is a lexical
similarity index method, which calculates the similarity
index at the word level. As lexical similarity is unaware of the
word’s actual meaning or the entire phrase, Jaccard simi-
larity takes two sets of text and calculates the similarity
between all pairs of sets. Jaccard provides a similarity score
with a range of 0% to 100%. -is algorithm is very sensitive
to sample size and may provide unexpected results for a
small sample size. Conversely, for larger sample sizes, it is
computationally costly [31, 32]. Jaccard similarity index is
calculated utilizing equation (2), where A and B are two
different sets of text or documents:

J(A, B) �
|A∩B|

|A| +|B| − |A∪B|
. (2)

2.2.2. Cosine Similarity. -e cosine similarity index mea-
sures the similarity between two documents utilizing the
cosine angle between two multidimensional vectors in a
multidimensional space regardless of their size. In this
technique, sentences are converted into vectors utilizing the

bag of words method and then employing equation (3),
where A and B are two documents converted into vectors.
-is algorithm is computationally expensive for larger data
sample [9, 10]:

cos(A, B) �
􏽐

n
i�1 AiBi���������

􏽐
n
i�1 Ai( 􏼁

2
􏽱 ���������

􏽐
n
i�1 Bi( 􏼁

2
􏽱 . (3)

2.2.3. Word Vector. Word vectors are a type of word em-
bedding, where similar meaningful words are arranged in a
similar representation, mostly with vectors. Each word is
mapped to a vector in a predefined vector space [33]. It is
different from Jaccard similarity in the way that Jaccard
measures lexical similarity, but in word vector, it is measured
for semantic similarity. Utilizing word vectors, similar
meaningful words can be measured rather than the exact
word, enabling better scores for similarity measures. In this
study, as a word vector model, Wod2vec [11] proposed by
Mikolov et el. is utilized. Word2vec is different from the
traditional tf-idf measure, where tf-idf sets one number per
word, but Word2vec sets one vector per word.

3. Methodology

-is study diverges into three major components: (i) data
collection, (ii) data processing, and (iii) similarity score
calculation. In the data collection component, ground truth
data and test data are collected from respective sources.
Collected data are cleaned and processed for the similarity
calculation component which is done in the data processing
component. In the similarity score calculation component,
similarity scores for collected data are calculated with dif-
ferent similarity indexes employing different keyword ex-
traction techniques. -e conceptual overview of the
employed methodology can be found in Figure 1.

3.1. Data Collection. In this study, the electric double layer
capacitor (EDLC) domain is considered as the experiment’s use
case. Hence, from the domain experts, a set of 32 keywords of
the EDLC domain has been collected as ground truth key-
words, and ten scientific documents are collected from the
same domain, which satisfies the keywords and is suggested as
the relevant document to the domain.-e experiment is based
on the quest that, from these ten documents, keywords are
extracted through different keyword extraction techniques, and
then, extracted keywords are compared for the similarity score
with the domain expert-provided keywords. First column from
the left of Table 1 contains the domain expert-provided key-
words for the EDLC domain. All the scientific documents are
collected in portable document format (pdf), and keywords are
collected in the plain text.

3.2. Data Processing. In the data processing stage, collected
pdf files are initially converted to plain text format. To
convert the files, grobid [34] tool is utilized, which primarily
converts the pdf files to tei xml format, and then, with a
custom tei xml, parser xml contents are converted to a plain

Complexity 3



text file. -e custom xml parser is developed by the authors
utilizing the python programming language. After the
conversion, text contents are cleaned to remove extra spaces,
special characters, extra line breaks, parentheses, references,
figures, and tables employing a custom data cleaningmethod
also developed by the authors.

Text cleaning methods are dependent on the dataset and
desired output. However, apart from the dataset and output,
several steps are commonly performed to clean text data,
namely, removing punctuation, filtering out stop words,
stemming and lemmatisation, and converting text to upper
and lower case. For the dataset used in this study, some of the

common cleaning tasks are implemented, and some of them
are avoided. In addition to these tasks, some dataset-specific
cleanup tasks are also performed. Based on the cleanup
activities performed in the dataset, the cleaning process is
described as a custom text cleaning process. For example,
normalization of nonstandard words (NSW) is not per-
formed in the text cleaning process. NSW are words that are
not available in a dictionary, such as numbers, dates, ab-
breviations, chemical symbols of materials, currency
amounts, and acronyms [35]. Most scientific papers contain
these NSWs, and they refer to specific processes or opera-
tions of any domain which are not available on a dictionary,

Convert collected pdf files to tei xml file using grobid

Convert tei xml files to plain text file using custom parser

Clean plain text contents using custom text cleaning method

Store
separated text

contents

Collect ground truth
keywords list for EDLC
domain from domain

expert

Collect ten papers from EDLC
domain which contains the

ground truth keywords,
provided by the domain expert

Extract Keywords using,
YAKE, TopicRank,

MultipartiteRank, KPMiner,
KEA, WINGNUS

Store extracted
keywords for

each technique

Calculate similarity scores
for extracted keywords and
expert provided keywords
using, Jaccard, Cosine and
Cosine with word vector

Store
Similarity

scores

D
at

a C
ol

le
ct

io
n

D
at

a P
ro

ce
ss

in
g

Si
m

ila
rit

y 
Ca

lc
ul

at
io

n

Separate positive
texts

Separate all text
contents

2.

1.

Figure 1: Overview of the employed methodology.

4 Complexity



e.g., “MnO2,” a chemical symbol for a material called
manganese dioxide. Stemming and lemmatisation opera-
tions on the words are also discarded since most keywords
are a combination of several words, e.g., “Helmholtz double
layer,” which gives the same result when lemmatised and a
meaningless result when stemmed. Table 1 represents the
original keywords with the lemmatised and stemmed
version of the keywords. From Table 1, it can be observed
that the output of the lemmatised keywords is almost
similar to the original keywords, and the stemmed version
of the keywords produces unintelligible words. In the
dataset-specific cleaning process, all tabular data, refer-
ences, and images are removed from the articles. -en, the
text contents are decoded from the UTF8 encoding format.
In addition to normalizing these decoded text contents,
some special character substitution operations are
performed.

-en, from the cleaned text of each document, texts are
separated into positive sentences only and all text of the
document. For each document, these two types of texts are
stored for the similarity calculation component. Positive
sentences are identified utilizing negatives and negation-
grammar rules [36–38]. -ere are 2840 sentences in the
dataset utilized in this study. Among 2840 sentences, 2240
sentences are positive sentences. Figure 2 represents the
overview of the dataset stating the number of total positive
and negative sentences. -e dataset can be requested
through the GitHub repository (https://github.com/
ping543f/kwd-extraction-study).

3.3. Similarity Calculation. With two sets of text obtained
from the data processing component, all keyword extraction
algorithms are employed to extract keywords from each set
of each document. Firstly, texts are passed into all the
keyword extraction techniques, namely, YAKE, TopicRank,
MultipartiteRank, KPMiner, KEA, and WINGNUS. All
techniques return the extracted keywords of the provided
texts of a document. -en, those keywords and expert-
provided keywords are passed to the similarity index cal-
culator to calculate the similarity score between them. -ree
similarity indexes are utilized to calculate the similarity
score, namely, Jaccard, Cosine, and Cosine with word vector
similarity index. -is whole process is executed for all the
documents with positive and all texts of each document.
After processing each document, scores are stored with
appropriate labels to analyze the result. -e similarity cal-
culation component for the scenario described above can be
expressed through Algorithm 1.

3.4. Experimental Setup. All experiment-related codes are
developed utilizing Python programming language version
3.7.3 [39] for this study. Jaccard and cosine similarity al-
gorithms are developed following the equation described in
[8, 40]. Cosine similarity with word vector algorithm is
implemented utilizing Spacy Python library [41]. All
keyword extraction algorithms are implemented utilizing
pke [42] Python package. -e experiment is done in a
MacBook with macOS Big Sur operating system version

11.5 with a 1.2 GHz dual-core Intel Core m5 processor and
8 gigabytes of RAM.

4. Results and Discussion

To begin with the result analysis, Tables 2 and 3 are generated
from the experiment. Both tables contain the similarity
scores of ten standard documents generated by different
keyword extraction techniques and similarity index algo-
rithms. Table 2 contains the results obtained from the un-
supervised keyword extraction techniques, and Table 3
contains the results generated by the supervised keyword
extraction techniques. For unsupervised techniques, the
MultipartiteRank algorithm performs better in all three
similarity indexes than other implemented keyword ex-
traction techniques. Furthermore, it gives the best result of
92% similarity score for positive sentences and 91% for all
sentences of the documents while employed with the cosine
with word vector similarity index. -e lowest performing
similarity index algorithm is the Jaccard similarity index for
the same keyword extraction technique with a score of 14%
similarity score for both positive and all sentences of the
documents. It is also observed from the experimental result
that cosine with word vector similarity index is consistently
performing better than Jaccard and cosine similarity index
for all the unsupervised keyword extraction techniques. -is
analysis can easily be understood from Figure 3(a). -is
figure presents the distribution of all the similarity scores of
all the unsupervised techniques employed in this study for
Jaccard, cosine, and cosine with word vector similarity
indexes.

On the contrary, for the supervised techniques, the
KEA keyword extraction algorithm performs the best with
91% of similarity score while calculating with the cosine
with word vector similarity index for both positive and all
sentences of the documents. However, the WINGNUS
supervised keyword extraction technique provides better
similarity scores for cosine and Jaccard similarity indexes
only for positive sentences, which are 22% and 12% sim-
ilarity scores. Nevertheless, KEA is performing better for all
sentences while measured with Jaccard and cosine simi-
larity indexes. However, KEA holds the best similarity
score utilizing the cosine with word vector similarity index,
which is around 70% more than those measured with
Jaccard and cosine similarity index. -is analysis can be
more clear with a visual representation. Figure 3(b) rep-
resents the distribution of all the similarity scores for all the
supervised keyword extraction techniques with all three
similarity indexes.

Among supervised and unsupervised keyword extrac-
tion techniques, the unsupervised technique, namely,
MultipartiteRank, exhibits better performance in achieving a
higher similarity score for positive sentences while measured
with cosine with word vector similarity index. Furthermore,
for all sentences, unsupervised technique, MultipartiteRank,
and supervised technique, KEA produces the same score of
91% in cosine with word vector similarity index. Similarity
score comparisons for both supervised and unsupervised
methods are projected in Figure 4.

Complexity 5

https://github.com/ping543f/kwd-extraction-study
https://github.com/ping543f/kwd-extraction-study


Since there are two sets of textual data, data with positive
sentences and data with all sentences, they have implications
for the experimental results seen in Tables 2 and 3.-e initial

hypothesis of having two separate text datasets from the
same articles is to observe how positive and negative sen-
tences affect the similarity score of the extracted keywords

Table 1: Domain expert-curated keywords for EDLC domain with lemmatised and stemmed version. From left, keywords’ column contains
the original keywords provided by the domain experts. Lemmatised keyword and stemmed keyword columns contain lemmatised and
stemmed version of the original keywords.

Keyword Lemmatised keyword Stemmed keyword
Supercapacitors Supercapacitors Supercapacitors
scs sc sc
Electrochemical capacitors Electrochemical capacitors Electrochemical capacitor
Energy storage device Energy storage device Energy storage device
Electric double-layer capacitor Electric double-layer capacitor Electric double-layer capacitor
edlc edlc edlc
Pseudocapacitance Pseudocapacitance Pseudocapacitance
Electrostatic adsorption Electrostatic adsorption Electrostatic adsorption
Electrosorption Electrosorption Electrosorption
Faradaic redox reactions Faradaic redox reactions Faradaic redox react
Stern layer Stern layer Stern lay
Helmholtz double layer Helmholtz double layer Helmholtz double lay
Double-layer formation Double-layer formation Double-layer formation
Activated carbon Activated carbon Activated carbon
Porous carbon Porous carbon Porous carbon
Carbon nanotubes Carbon nanotubes Carbon nanotubes
Graphene Graphene Graphene
Graphite oxide Graphite oxide Graphite oxide
go go go
Reduced graphite oxide Reduced graphite oxide Reduced graphite oxide
rgo rgo rgo
Surface charge accumulation Surface charge accumulation Surface charge accumulation
High power applications High power applications High power applications
Charge separation at electrode interface Charge separation at electrode interface Charge separation at electrode interface
Charge separation at electrolyte interface Charge separation at electrolyte interface Charge separation at electrolyte interface
Nonfaradaic process Nonfaradaic process Nonfaradaic process
Specific surface area Specific surface area Specific surface area
Pore size distribution Pore size distribution Pore size distribution
Electrochemical interface Electrochemical interface Electrochemical interface
edlc characteristics edlc characteristics edlc characteristics
Diffuse double layer Diffuse double layer Diffuse double lay
Polarizable capacitor electrode Polarizable capacitor electrode Polarizable capacitor electrode

Positive sentences
2240

Negative sentences
600

Total sentences
2840

Positive sentences
Negative sentences

Total sentences

Figure 2: Positive and negative sentence distribution of the dataset utilized in this study.

6 Complexity



with the keywords provided by the experts for the specific
domain, and based on this impact, we recommend the
relevant text data to be used. From the experimental results,
the positive sentences have a minimal impact on the sim-
ilarity scores for all three similarity indices compared to the
scores for all sentences. -is is because the negative

sentences contain very few to no keywords that could match
the keywords given by the experts. -erefore, there is no or
minimal effect of the similarity indices between the positive
sentences and the dataset with all sentences, as shown in the
experimental result. -e similarity values between the
positive sentences and all sentences vary from 1% to 4%. For
example, in the MultipartiteRank algorithm, the Jaccard and
cosine similarity values are the same for both texts, 14% and
25%, respectively. However, for the cosine with word vector
similarity index, the text of the positive sentence achieves
92% similarity, and the text of all sentences achieves 91%
similarity, which is a minimal difference of 1%. On the other
hand, in the algorithm KEA, the similarity value of cosine
with word vector is the same for both text data, i.e., 91% of

Input: Whole text String A string
Input: Positive sentence String P string
Input: Domain expert-curated keywords list’s string KW string
Output: String containing filename, algorithm and score

(1) Def get_score(Sim algo,KPalgo name, text content, KW string):
(2) score� 0
(3) algo list� [“yake”, “topicrank”, “multipartiterank”,
(4) “kpminer”, “kea”, “wingnus”]
(5) if KPalgo name in algo list then
(6) algo name�KPalgo name keyWords�Extract Keywords using algo name algorithm from text content
(7) SimScore�Calculate similarity of keyWords with KW string using Sim algo
(8) score� SimScore
(9) return score
(10) end
(11) else
(12) return error msg
(13) end
(14) Def main(Kw args):
(15) sim algo� [jaccard, cosine, coswv]
(16) algorithm list� [“yake”, “topicrank”, “multipartiterank”, “kpminer”, “kea”, “wingnus”]
(17) for algo in sim algo do
(18) for algorithm in algorithm list do
(19) score a � get_score (algo, algorithm, A string, KW string)
(20) score p � get_score (algo, algorithm, P string, KW string)
(21) r string� algo + algorithm+ score a+ score p

(22) end
(23) return r string
(24) end

ALGORITHM 1: Similarity score calculation.

Table 3: Similarity scores calculated for different supervised
keyword extraction techniques.

KEA
Jaccard Cosine Cosine with word vector

Positive sentence 0.11 0.20 0.91
All sentence 0.11 0.21 0.91

Wingnus
Jaccard Cosine Cosine with word vector

Positive sentence 0.12 0.22 0.87
All sentence 0.11 0.20 0.88

Table 2: Similarity scores calculated for different unsupervised
keyword extraction techniques.

YAKE
Jaccard Cosine Cosine with word vector

Positive sentence 0.10 0.20 0.83
All sentence 0.10 0.21 0.87

TopicRank
Jaccard Cosine Cosine with word vector

Positive sentence 0.13 0.23 0.91
All sentence 0.11 0.19 0.90

MultipartiteRank
Jaccard Cosine Cosine with word vector

Positive sentence 0.14 0.25 0.92
All sentence 0.14 0.25 0.91

KPMiner
Jaccard Cosine Cosine with word vector

Positive sentence 0.10 0.19 0.88
All sentence 0.11 0.21 0.89

Complexity 7



the similarity value. -e maximum difference of 4% in
similarity score is observed for the YAKE algorithm in
similarity index cosine with Word vector. Hence, it can be
said that positive sentences and all sentences have a similar
effect on the similarity index with very little difference from
1% to 4%.

Although the positive sentences have a negligible effect
on the similarity computation, they have a more significant
impact on the running time of the similarity computation
process. From the experiment results, the unsupervised
algorithms MultipartiteRank and the supervised algorithms
KEA perform better than the other algorithms used in terms
of similarity index. -erefore, a runtime comparison is
performed for both algorithms to study the runtime for both
positive and all text sets for computing all similarity indices.
Table 4 presents the runtime comparison result for the two
better-performing keyword extraction techniques

MultipartiteRank and KEA for Jaccard, cosine, and cosine
similarity with Word vector indices. -e runtimes reported
in Table 4 are the average of 5 runtimes of the experiment,
which includes only the similarity computation. From the
runtime table, it can be seen that positive texts have a great
impact on the duration of the similarity calculation. When
computing the similarity of the texts with the keywords
given by the experts, the positive sentences take significantly
less time than computing the similarity of all sentences. For
example, in the unsupervised MultipartiteRank algorithm,
the computation of all sentences takes 232.4, 225.1, and 230.2
seconds for the Jaccard, cosine, and cosine withWord vector
similarity indices, respectively. On the contrary, the com-
putation of positive sentences takes only 143.6, 140.86, and
142.7 seconds for Jaccard, cosine, and cosine with Word
vector similarity indices, respectively, which is 88.8, 84.24,
and 87.5 seconds less for the aforementioned similarity

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Jaccard Cosine Cosine
with

Word
Vector

Jaccard Cosine Cosine
with

Word
Vector

Jaccard Cosine Cosine
with

Word
Vector

Jaccard Cosine Cosine
with

Word
Vector

YAKE TopicRank KPMiner

Positive Sentence
All Sentence

MultipartiteRank

(a)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Jaccard Cosine Cosine with
WordVector

Jaccard Cosine Cosine with
WordVector

KEA Wingnus

Positive Sentence
All Sentence

(b)

Figure 3: Distribution of similarity scores of supervised and unsupervised keyword extraction techniques employed in positive and all
sentences for Jaccard, cosine, and cosine with Word vector similarity indexes. (a) Similarity score distribution of positive and all sentences
for unsupervised YAKE, TopicRank, MultipartiteRank and KPMiner keyword extraction algorithms for all the similarity indexes. (b)
Similarity score distribution of positive and all sentences for supervised KEA and Wingnus keyword extraction algorithms for all the
similarity indexes.

8 Complexity



0.10

0.20

0.83

0.13

0.23

0.91

0.14

0.25

0.92

0.10

0.19

0.88

0.11

0.20

0.91

0.12

0.22

0.87

0.10
0.21

0.87

0.11
0.19

0.90

0.14
0.25

0.91

0.11
0.21

0.89

0.11
0.21

0.91

0.11
0.20

0.88

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Jaccard Cosine Cosine
with

Word
Vector

Jaccard Cosine Cosine
with

Word
Vector

Jaccard Cosine Cosine
with

Word
Vector

Jaccard Cosine Cosine
with

Word
Vector

Jaccard Cosine Cosine
with

Word
Vector

Jaccard Cosine Cosine
with

Word
Vector

YAKE TopicRank MultipartiteRank KPMiner KEA Wingnus
Unsupervised Keyphrase Extraction Supervised Keyphrase Extraction

Positive Sentence
All Sentence

Figure 4: Similarity scores of different supervised and unsupervised keyword extraction techniques for Jaccard, cosine, and cosine with
Word vector similarity indexes.

Table 4: Runtime comparison in seconds (s) of positive and all sentences’ texts for MultipartiteRank and KEA keyword extraction al-
gorithms in terms of Jaccard, cosine, and cosine with Word vector similarity indexes.

Jaccard Cosine Cosine with word vector
MultipartiteRank all sentences 232.4 s 225.1 s 230.2 s
MultipartiteRank positive sentences 143.6 s 140.86 s 142.7 s
KEA all sentences 97.1 s 96.28 s 96.65 s
KEA positive sentences 93.5 s 92 s 91.72 s

0

50

100

150

200

250

Jaccard Cosine Cosine with Word Vector

MultipartiteRank All Sentences
MultipartiteRank Positive Sentences

KEA All Sentences
KEA Positive Sentences

Figure 5: Comparative scores of similarity calculation run times for positive and all sentences employing MultipartiteRank and KEA
keyword extraction algorithms.

Complexity 9



Table 5: Sample keywords extracted by MultipartiteRank, KEA keyword extraction techniques, and domain expert-curated keywords.

Domain expert-curated keywords MultipartiteRank extracted keywords KEA extracted keywords
Supercapacitors, scs,electrochemical
capacitors, energy storage device, electric
double-layer capacitor, edlc,
pseudocapacitance, electrostatic adsorption,
electrosorption, faradaic redox reactions,
stern layer, Helmholtz double layer, double-
layer formation, activated carbon, porous
carbon, carbon nanotubes, graphene, graphite
oxide, go, reduced graphite oxide, rgo, surface
charge accumulation, high-power
applications, charge separation at electrode
interface, charge separation at electrolyte
interface, nonfaradaic process, specific surface
area, pore size distribution, electrochemical
interface, edlc characteristics, diffuse double
layer, and polarizable capacitor electrode

Layer, power, scs, charge, formation, high
energy, chemical, graphene, surface area,
porous carbon, ions, electrolyte, rgo,
graphite, energy storage, carbon,
electrochemical, surface, pore size

distribution, electrode, edlc, supercapacitor,
adsorption, supercapacitors, device, and

capacitance

scs, charge, pore, energy, redox, size,
chemical, graphene, ion, surface area,

porous carbon, ions, electrolyte, pore size,
rgo, graphite, energy storage, carbon,

electrochemical, surface, electrode, edlc,
specific surface, supercapacitor, porous,

specific surface area, oxide, supercapacitors,
electric, double, tic, and capacitance

(a) (b)

(c)

Figure 6: Word cloud representation of the keywords extracted by the top-performing keyword extraction techniques achieved with cosine
with Word vector similarity index. (a) Word cloud of the keywords extracted by supervised. (b) Word cloud of the keywords extracted by
unsupervised technique MultipartiteRank. (c) Word cloud of the keywords provided by EDLC domain.

10 Complexity



indices. A similar pattern is also observed for the supervised
KEA algorithm, i.e., computing the similarity of positive
sentences takes less time than computing all sentences.
Figure 5 shows the comparison results in a more under-
standable form.

Table 5 provides the set of keywords extracted by the top-
performing keyword extraction techniques employing the
cosine with Word vector similarity index and expert-pro-
vided keywords.-is table also provides a visual comparison
of the similarity between all the keywords. Word cloud
representation is also provided in Figure 6. Word cloud is
utilized to represent the words emphasized according to
their frequency, rank, or similarity. -is word cloud is
generated based on the frequency scores of keywords among
all the documents. From the word clouds of top-performing
two methods, it is also visible that there are similar keywords
of the same scores among all machine-generated and expert-
provided keywords.

-e study of the experimental results suggests that, for
extracting keywords and checking the similarity of the
extracted keywords from scientific documents, especially for
the EDLC-related documents, the unsupervised keyword
extraction technique MultipartiteRank algorithm can be
considered in addition to the expert-curated keywords.
Although this algorithm requires slightly more computation
time than the supervised keyword extraction technique
KEA, it gives better results than KEA. If computation time is
considered or required over better similarity score, then it is
recommended to employ the supervised keyword extraction
technique KEA for 1% of similarity score drop over Mul-
tipartiteRank algorithm. When choosing between the pos-
itive and the whole article text content, it is recommended to
choose the positive text as it has a very small impact on the
similarity score but a larger impact on the computation time.
Positive texts have no or very little impact on the similarity
scores, but require less computation time than all the texts of
the scientific articles.

5. Conclusion

-e aim of this study is to find out which keyword extraction
technique provides more similar keywords to the expert-
provided keywords, which text types have more similarity,
which similarity index provides more similarity scores, and
whether the use of machine-generated keywords is feasible
with respect to the expert-provided keywords. -e experi-
ment shows that the unsupervised keyword extraction
technique MultipartiteRank provides 92% similarity with the
expert-provided keywords in cosine with the Word vector
similarity index for positive sentences of the documents from
EDLC domain. -is study can be further extended with
keywords for other domains with a larger dataset in other
environments, including author-supplied keywords.

Data Availability

-e dataset used in this study is available from the corre-
sponding author upon request and the request repository is
mentioned in Section 3.2.

Conflicts of Interest

-e authors declare no conflicts of interest.

References

[1] S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic
keyword extraction from individual documents,” Text Mining,
vol. 1, pp. 1–20, 2010.

[2] K. S. Hasan and V. Ng, “Automatic keyphrase extraction: a
survey of the state of the art,” in Proceedings of the 52nd
Annual Meeting of the Association for Computational Lin-
guistics, pp. 1262–1273, Baltimore, MA, USA, June 2014.

[3] M. Saef Ullah Miah, M. Sadid Tahsin, S. Azad et al., “A
geofencing-based recent trends identification from twitter
data,” IOP Conference Series: Materials Science and Engi-
neering, vol. 769, no. 1, Article ID 012008, 2020.

[4] T. B. Sarwar and N. M. Noor, “An experimental comparison
of unsupervised keyphrase extraction techniques for
extracting significant information from scientific research
articles,” in Proceedings of the 2021 International Conference
on Software Engineering & Computer Systems and 4th In-
ternational Conference on Computational Science and Infor-
mation Management (ICSECS-ICOCSIM), pp. 130–135, IEEE,
Pekan, Malaysia, August 2021.

[5] M. S. U. Miah, M. S. Tahsin, S. Azad et al., “A geofencing-
based recent trends identification from twitter data,” in
Proceedings of the IOP Conference Series: Materials Science
and Engineering, IOP Publishing, Chennai, India, September
2020.

[6] M. S. U. Miah, J. Sulaiman, S. Azad, K. Z. Zamli, and R. Jose,
“Comparison of document similarity algorithms in extracting
document keywords from an academic paper,” in Proceedings
of the 2021 International Conference on Software Engineering
& Computer Systems and 4th International Conference on
Computational Science and Information Management
(ICSECS-ICOCSIM), pp. 631–636, IEEE, Pekan, Malaysia,
August 2021.

[7] S. Beliga, Keyword Extraction: A Review of Methods and
Approaches, University of Rijeka, Department of Informatics,
Rijeka, Croatia, 2014.

[8] P. Jaccard, “-e distribution of the flora in the alpine zone.1,”
New Phytologist, vol. 11, no. 2, pp. 37–50, 1912.

[9] “Cosine Similarity-understanding the math and how it works?
(with python),” https://www.machinelearningplus.com/nlp/
cosine-similarity/.

[10] 9.5.2. -e Cosine Similarity Algorithm-9.5. Similarity
Algorithms, https://neo4j.com/docs/graph-algorithms/
current/labs-algorithms/cosine/.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” 2013,
https://arxiv.org/abs/1301.3781.

[12] N. Firoozeh, A. Nazarenko, F. Alizon, and B. Daille, “Keyword
extraction: issues and methods,” Natural Language Engi-
neering, vol. 26, no. 3, pp. 259–291, 2020.

[13] K. Bennani-Smires, C. Musat, A. Hossmann, M. Baeriswyl,
and M. Jaggi, “Simple unsupervised keyphrase extraction
using sentence embeddings,” in Proceedings of the 22nd
Conference on Computational Natural Language Learning,
pp. 221–229, Association for Computational Linguistics,
Brussels, Belgium, October 2018.

[14] R. Campos, V. Mangaravite, A. Pasquali, A. Jorge, C. Nunes,
and A. Jatowt, “Yake! Keyword extraction from single

Complexity 11

https://www.machinelearningplus.com/nlp/cosine-similarity/
https://www.machinelearningplus.com/nlp/cosine-similarity/
https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/cosine/
https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/cosine/
https://arxiv.org/abs/1301.3781


documents using multiple local features,” Information Sci-
ences, vol. 509, pp. 257–289, 2020.

[15] C. Sun, L. Hu, S. Li, T. Li, H. Li, and L. Chi, “A review of
unsupervised keyphrase extraction methods using within-
collection resources,” Symmetry, vol. 12, no. 11, pp. 1–20, 2020.

[16] A. Bougouin, F. Boudin, and B. Daille, “Topicrank: graph-
based topic ranking for keyphrase extraction,” in Proceedings
of the International joint conference on natural language
processing (IJCNLP), pp. 543–551, Nagoya, Japan, October
2013.

[17] O. Medelyan, E. Frank, and I. H. Witten, “Human-com-
petitive tagging using automatic keyphrase extraction,” in
Proceedings of the 2009 conference on empirical methods in
natural language processing, pp. 1318–1327, Singapore,
August 2009.

[18] L. Page, “Method for node ranking in a linked database,”
Google Patents, 1997.

[19] F. Boudin, “Unsupervised keyphrase extraction with multipartite
graphs,” in Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp. 667–672, Association
for Computational Linguistics, NewOrleans, LA,USA, June 2018.

[20] S. R. El-Beltagy and A. Rafea, “Kp-miner: a keyphrase ex-
traction system for English and Arabic documents,” Infor-
mation Systems, vol. 34, no. 1, pp. 132–144, 2009.

[21] I. Witten, G. Paynter, E. Frank, C. Gutwin, and
C. nevillmanning, “kea: practical automatic keyphrase ex-
traction,” in Proceedings of the Fourth ACM Conference on
Digital, Libraries, pp. 254-255, ACM, Berkeley, CA, USA,
August 1999.

[22] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin, and
C. G. Nevill-Manning, “Kea,” in Design and Usability of
Digital Libraries: Case Studies in the Asia Pacific, pp. 129–152,
IGI global, Hershey, PA, USA, 2005.

[23] T. D. Nguyen and M.-T. Luong, “Wingnus: keyphrase ex-
traction utilizing document logical structure,” in Proceedings
of the 5th international workshop on semantic evaluation,
pp. 166–169, ACM, Los Angeles CA, USA, July 2010.

[24] S. Mao, A. Rosenfeld, and T. Kanungo, “Document structure
analysis algorithms: a literature survey,” in Document Recog-
nition and Retrieval X, vol. 5010, pp. 197–207, International
Society for Optics and Photonics, Bellingham, WA, USA, 2003.

[25] G. Maheshwari, P. Trivedi, H. Sahijwani, K. Jha, S. Dasgupta,
and J. Lehmann, “Simdoc: topic sequence alignment based
document similarity framework,” in Proceedings of the
Knowledge Capture Conference, pp. 1–8, ACM, Austin, TX,
USA, December 2017.

[26] C. Yang, B. He, and Y. Ran, “Utilizing embeddings for ad-hoc
retrieval by document-to-document similarity,” 2017, https://
arxiv.org/abs/1708.03181.

[27] S. Aryal, K. M. Ting, T.Washio, and G. Haffari, “A new simple
and effective measure for bag-of-word inter-document sim-
ilarity measurement,” 2019, https://arxiv.org/abs/1902.03402.

[28] P. Sitikhu, K. Pahi, P. -apa, and S. Shakya, “A comparison of
semantic similarity methods for maximum human inter-
pretability,” in Proceedings of the International Conference on
Artificial Intelligence for Transforming Business and Society,
AITB 2019, Kathmandu, Nepal, November 2019.

[29] V. -ada and V. Jaglan, “Comparison of jaccard, dice, cosine
similarity coefficient to find best fitness value for web retrieved
documents using genetic algorithm,” International Journal of
Innovations in Engineering and Technology, vol. 2, no. 4,
pp. 202–205, 2013.

[30] R. Steinberger, B. Pouliquen, and J. Hagman, “Cross-lingual
document similarity calculation using the multilingual the-
saurus EUROVOC,” Computational Linguistics and Intelli-
gent Text Processing, vol. 2276, pp. 415–424, 2002.

[31] I. Neo4j, “9.5.1.-e Jaccard Similarity Algorithm-9.5.Simi-
larity Algorithms, https://neo4j.com/docs/graph-algorithms/
current/labs-algorithms/jaccard/.

[32] S. Glen, ““Jaccard index/similarity coefficient” from Statis-
ticsHowTo.com: elementary statistics for the rest of us!“,”
https://www.statisticshowto.com/jaccard-index/.

[33] J. Brownlee, What Are Word Embeddings For Text?, https://
machinelearningmastery.com/what-are-word-embeddings/.

[34] Grobid, pp. 2008–2021, https://github.com/kermitt2/grobid.
[35] R. Sproat, A. W. Black, S. Chen, S. Kumar, M. Ostendorf, and

C. Richards, “Normalization of non-standard words,” Com-
puter Speech & Language, vol. 15, no. 3, pp. 287–333, 2001.

[36] Grammarly, “Negatives and negation–grammar rules gram-
marly,” 2021, https://www.grammarly.com/blog/negatives/.

[37] J. Col, “Negative vocabulary word list-enchanted learning,”
1998, https://www.enchantedlearning.com/wordlist/
negativewords.shtml.

[38] Y. HaCohen-Kerner and H. Badash, “Positive and negative
sentiment words in a blog corpus written in Hebrew,” Pro-
cedia Computer Science, vol. 96, pp. 733–743, 2016.

[39] G. Van Rossum and F. L. Drake, Python 3 Reference Manual,
CreateSpace, Scotts Valley, CA, USA, 2009.

[40] G. Salton and C. Buckley, “Term-weighting approaches in
automatic text retrieval,” Information Processing & Man-
agement, vol. 24, no. 5, pp. 513–523, 1988.

[41] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd,
SpaCy: Industrial-Strength Natural Language Processing in
Python, Zenodo, Honolulu, HI, USA, 2020.

[42] F. Boudin, “pke: an open source python-based keyphrase
extraction toolkit,” in Proceedings of the COLING 2016, the
26th International Conference on Computational Linguistics:
System Demonstrations, pp. 69–73, Osaka, Japan, December
2016.

12 Complexity

https://arxiv.org/abs/1708.03181
https://arxiv.org/abs/1708.03181
https://arxiv.org/abs/1902.03402
https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/jaccard/
https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/jaccard/
https://www.statisticshowto.com/jaccard-index/
https://machinelearningmastery.com/what-are-word-embeddings/
https://machinelearningmastery.com/what-are-word-embeddings/
https://github.com/kermitt2/grobid
https://www.grammarly.com/blog/negatives/
https://www.enchantedlearning.com/wordlist/negativewords.shtml
https://www.enchantedlearning.com/wordlist/negativewords.shtml

