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Abstract: Given the growth of scientific literature on the web, particularly material science, acquiring
data precisely from the literature has become more significant. Material information systems, or
chemical information systems, play an essential role in discovering data, materials, or synthesis
processes using the existing scientific literature. Processing and understanding the natural language
of scientific literature is the backbone of these systems, which depend heavily on appropriate textual
content. Appropriate textual content means a complete, meaningful sentence from a large chunk of
textual content. The process of detecting the beginning and end of a sentence and extracting them as
correct sentences is called sentence boundary extraction. The accurate extraction of sentence bound-
aries from PDF documents is essential for readability and natural language processing. Therefore,
this study provides a comparative analysis of different tools for extracting PDF documents into text,
which are available as Python libraries or packages and are widely used by the research community.
The main objective is to find the most suitable technique among the available techniques that can
correctly extract sentences from PDF files as text. The performance of the used techniques Pypdf2,
Pdfminer.six, Pymupdf, Pdftotext, Tika, and Grobid is presented in terms of precision, recall, f-1
score, run time, and memory consumption. NLTK, Spacy, and Gensim Natural Language Processing
(NLP) tools are used to identify sentence boundaries. Of all the techniques studied, the Grobid PDF
extraction package using the NLP tool Spacy achieved the highest f-1 score of 93% and consumed the
least amount of memory at 46.13 MegaBytes.

Keywords: sentence boundary extraction; PDF to text conversion; NLP in material science; material
information system; material informatics; Materials 4.0; gensim; NLTK; Spacy

1. Introduction

Natural Language Understanding (NLU) is a subfield of natural language processing
(NLP) that focuses on more specific NLP tasks, such as semantic parsing, relation extraction,
sentiment analysis, dialogue agents, paraphrasing, natural language interfaces, question
answering, and summarization [1]. Recently, material informatics has been applied in
various material science research areas. Among these researches are automatic material
discovery from scientific documents, automatic discovery of synthesis processes from
scientific documents, and extraction of material properties and values from scientific
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documents [2]. All these researches are based on NLP and NLU. The discovery of materials
and synthesis processes belongs to the Named Entity Recognition tasks, and the discovery
of relationships between properties and values belongs to the NLU tasks. In a broader
sense, all these tasks belong to the NLP domain, which requires clean and understandable
textual content [3].

Both NLU and NLP techniques are widely used in materials informatics with the
expansion of Materials 4.0 [4] implementation. Kim et al. [5] extracted synthesis parameters
of metal oxides from 12,000 scientific articles using ChemDataExtractor [6] and SpaCy [7]
tools. Both tools are natural language processing frameworks designed for materials science
and general NLP processing tasks, respectively. In addition, both tools are designed for use
with the Python programming language, which is popular among NLP, NLU, and materials
science researchers [8]. In another study by Kononova et al. [9] on recipes for the synthesis
of inorganic materials from the textual content, ChemDataExtractor and Spacy are also used.
There is further work by Friedrich et al. [10], Hiszpanski et al. [11] and Kuniyoshi et al. [12]
that use NLP-based approaches to identify materials, synthesis processes, and associated
structures of materials and synthesis parameters. These works in the field of materials
science indicate that there is a growing need for NLP- and NLU-based tools and techniques
in the field of materials science. Besides materials science, other systems such as the
recommendation system for scientific articles [13] and the recommendation system for
relevant documents [2] also benefit from NLP- and NLU-based tools. To make the best use
of these tools, a lot of textual data is required on which the performance and understanding
of these tools depend. Therefore, the noise-free textual content is very important for
building such a material information system. In order to generate noise and clutter-free
textual content from scientific documents, text processing is required. The first step of text
processing starts with converting documents of different formats, such as PDF documents
or Microsoft Word documents, into plain text. When building a material information
system, text processing is a very important task for the entire pipeline of any material
information system. A material information system can be any system that can process,
store, and visualize material related information. For example, a material information
system can provide lists of materials and synthesis processes used to produce a particular
product from various scientific documents from different years. To create such systems,
materials scientists and researchers must invest time and effort to find appropriate tools
and techniques. This study will help these researchers to reduce their burden in finding
suitable tools and techniques, starting with the extraction of sentence boundaries.

In natural language processing (NLP), working with text is one of the most important
tasks. In most cases, work related to text processing depends on correctly identified
sentences and words or tokens [14–17]. Text content exists in Portable Document Format
(PDF), as do web pages, plain text files, Microsoft Office Word format files, character
streams, Postscript files, and in many other forms [18]. Correctly recognizing complete
sentences or sentence boundaries from any text format can speed up workflow and reduce
the amount of text preprocessing tasks [19].

Correct and complete sentences are one of the prerequisites for both semantic and
syntactic analysis of any textual content [20]. As mentioned earlier, a significant part of
the text is found in PDF format, especially most of the scientific literature from different
journals of different publishers. PDF files differ from traditional plain text files, in which
text is structured in a semantic way like words or paragraphs. Instead, it is a layout-based
format based on the positions of characters [21]. Therefore, it is important to know which
tool is more efficient in extracting text in semantic format from PDF files, more specifically
in extracting text in the form of a complete sentence, so that researchers do not have to
invest more time to convert the extracted text into the semantic format.

Nowadays, NLP researchers need to extract text from PDF files using various pro-
gramming languages and frameworks. There are many web-based services and PDF-to-text
converters. However, they are not suitable for batch processing, such as converting thou-
sands of files at once. This is one of the reasons why NLP researchers use programming
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languages other than web-based conversion services. The Python programming language
is one of the preferred languages, as it is ranked first in the PYPL programming language
rankings as of 14 November 2021. [8]. Therefore, in this study, different techniques for
extracting PDF in text using Python core packages and Python wrapper packages with exter-
nal services are considered to compare the correct detection of complete sentences/sentence
boundaries. The selection of Python PDF libraries or packages is based on the number
of downloads in the last 30 days from the top PyPI packages, updated on 1 November
2021 [22,23]. As far as we know, there is no work to date that compares the performance
of different techniques for extracting text from PDF files to recognize complete sentences
correctly. The three main contributions of this work are listed below:

• Recommend a better Python package for extracting text from PDF files;
• Recommend a better NLP framework for sentence boundary detection;
• Determine the most effective technique by comparing the performance of the tech-

niques used in terms of runtime and memory consumption.

The remainder of the paper is organized as follows: The Background Study section
discusses some related studies, the Methods section describes the methods used in this
study, then the Results and Discussion are presented, and the Conclusion section concludes
the paper.

2. Background Study

Various researches have been carried out for the extraction of PDF into text. One
of them deals only with the extraction of metadata from PDF files. In [24], the authors
propose a framework for extracting metadata from PDF files, developed using the Java
language, which they claim is 9 to 10 times faster than other available tools. In this work,
the authors focused on metadata extraction. However, they did not measure how much
text is extracted as a complete sentence. According to the study of [25], there are two
classifications for information extraction: one is metadata extraction, and another is key-
insights extraction. For the extraction of metadata and key insights, there are various
computational approaches such as Deep Learning, Naïve Bayes classification, Support
Vector Machine (SVM), Conditional Random Fields (CRF), Hidden Markov Models (HMM),
and rule-based approaches [25]. However, this study also does not suggest any specific
method or combination of methods or techniques to get text data from PDF documents
with proper sentence boundary.

Zelun et al. [26], proposed a novel system called pdf2latex that uses deep learning
methods to extract mathematical expressions and plain text into the latex format and achieves
81.1% accuracy. In [27], the authors conducted a comparison between four different com-
mercially available optical character recognition software in converting Hansard Malaysia
parliamentary reports. In this study, the author also focused on the correctly recognized
characters on each page of the PDF document, and no sentence boundaries were considered.
Bast et al. [21] proposed a rule-based PDF extraction tool called “Icicite”, which can detect
paragraph boundaries, word boundaries, reading order, and body-text paragraphs. However,
the authors did not mention sentence boundaries in their work and compared 14 PDF extrac-
tion tools. The 14 tools mentioned in this study, including the proposed “Icicite” tool, work to
detect paragraph boundaries, line breaks, and characters but not to detect proper sentences.
In addition, this study presents a comparative evaluation of several tools, including Pdftotext,
Pdfminer, and Grobid, which also appear in our study. Of these three tools, Grobid performed
better, which is also evident from our experimental results. The study by Duretec et al. [28]
presented the evaluation of Tika, DocToText, and Xpdf tools. Among these tools, Tika achieved
58% accuracy in extracting text from PDF documents, in orderly extraction, which is close
to our experimental result. The official benchmark for the Pymudf tool is included in the
official documentation [29] of this tool. Our experimental results also support the benchmark
in terms of the tool’s text extraction capabilities.
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Lipinski et al. [30] experimented with extracting metadata from scientific PDF doc-
uments using various tools and techniques. In this experiment, the authors used seven
different tools for extracting metadata from scientific PDF documents and provided the
comparative experimental results in terms of accuracy. In their experiment, the Grobid [31]
tool performed better than the tools used by pdftotext [32] tool to extract text from PDF
documents in extracting metadata than the other six tools, with 92% accuracy in title ex-
traction. Grobid also performed better than the other tools in extracting other metadata,
including authors, authors’ last names, abstract, and year.

Mayank et al. [33] proposed a tool called OCR++ that also extracts metadata from the
scientific literature. The authors made a comparison between grobid and the tool ocr++. In
many cases, including title, author’s first name, last name, and section heading extraction
grobid performed better than the proposed system in terms of f-1 score. However, this
study does not provide comparative results or suggest a technique for extracting sentence
boundaries from scientific PDF documents.

George Sanchez [34] conducted a study of sentence boundary detection in legal texts.
The author compared three techniques, including Punkt Model with user-defined abbrevia-
tions, Conditional Random Fields (CRF), and Deep Learning Neural Network (DNN). For
the Punkt model, the author adapted the NLTK punkt method and achieved an accuracy of
72% in recognizing sentence boundaries, which is significantly lower than the result of CRF
and DNN, which achieve 93% and 89%, respectively. The sentence boundary detection
experiment was conducted with plain-text corpora converted from json format and does
not include PDF extraction for corpora generation. Among the existing NLP tools, only
the NLTK tool is used in this study. The other tools are based on the machine learning
approach used in this study.

Pree Thiengburanathum [35] compared two machine learning-based methods, namely
CRF and BiLSTM-CRF, for sentence boundary detection in Thai sentences. In this study, a
plain text corpus from Thai web forums consisting of online product review data was used.
This study used plain text data rather than data extracted from a PDF file. In addition, this
study did not use existing sentence boundary detection tools, but the author developed
his own tool based on machine learning. In this study, the CRF-based approach provided
better results than the BiLSTM-CRF approach.

Most studies found on PDF-to-text extraction focus on extracting metadata and text
content from scientific literature in PDF format. The extraction is done while preserving
the structure of the paper, e.g., extracting text content from the introduction section of a
paper and labeling or identifying the extracted text as an introduction or just the metadata
including author names, title, year, and abstract. However, very few studies mentioned
techniques or tools for extracting sentence boundaries. The studies that do mention sentence
boundary extraction use custom tools based on machine learning approaches and use plain
text datasets from fields other than materials science, especially EDLC, which do not involve
text extraction from PDF documents. In this scenario, two questions need to be answered:

• Is the extracted textual content in a complete sentence form?
• Is a single sentence treated as multiple sentences?

Therefore, answering these two questions provided the opportunity for this research
to discover the appropriate tools and techniques for extracting sentence boundaries from
scientific PDF documents, using a combination of existing PDF-to-text conversion tools
and NLP frameworks, in an attempt to reduce the time required by researchers to find
the appropriate combinations. Complete sentence recognition plays an important role in
an automatic text processing system because a complete sentence contains both syntactic
and semantic information. Different studies have used different tools and techniques for
PDF extraction and sentence boundary detection in the creation of different chemical or
material information systems, without providing a rationale for their choice of tools and
the performance of the tools for PDF extraction and sentence boundary detection [36–38].
Therefore, a comparison between the existing PDF and text extraction tools is required
to find a suitable one. Therefore, this study will be useful to EDLC researchers in their
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decisions about PDF extraction tools and NLP packages. As far as we know, there is no
formal analysis to date that compares various existing PDF-to-text conversion tools in
conjunction with sentence boundary detection tools. More precisely, there is no work that
deals with sentence boundary extraction from scientific literature in the EDLC domain.
Thus, the novelty of this study lies in the comparative analysis of different tools and
techniques for PDF-to-text conversion and sentence boundary extraction for the EDLC
domain.

3. Methods

Since different PDF extraction tools are utilized for the sentence boundary identifi-
cation, this section is split into two subsections; namely, (i) overview of the employed
techniques and (ii) experimental procedure.

3.1. Overview of the Employed Techniques

Since Python packages are used in this study to extract text from PDF documents, var-
ious techniques are employed using Python core packages and Python wrapper packages
with external services. This section gives a brief overview of the techniques used to extract
PDF-to-text.

3.1.1. Core Python Packages

This section gives an insight into four techniques used for text extraction from PDF
documents, namely Pypdf2 [39], Pdfminer.six [40], Pymupdf [41], and Pdftotext [32].

Pypdf2

Pypdf2 is a Python toolkit or package for working with PDF files in the Python
programming language. It evolved from the package Pypdf [42], which is no longer
maintained by its original creator. Pydpf2 can extract data from PDF files and split, merge,
or manipulate PDF files. This package must be used in the Python programming language,
and there is no single executable script available for this package. This package converts
all text from each PDF file as a page; the section selection option is not available in this
package. The Pypdf2 tool uses StringIO instead of FileStreams and is thus more memory
efficient. To extract text with this tool, the PDF file must be loaded as a binary object using
the tool’s pdfFileObj. Then this object is parsed using the PdfFileReader method. The text
is extracted from this object using the extractText method. This extractText method checks
whether the binary object is a TextStringObject or not. If it is a TextStringObject, the tool
saves the object as text and returns the text to the user. Algorithm 1 describes the steps to
extract the text using the Pypdf2 tool.

Algorithm 1 Text extraction using Pypdf2 tool
Input: pdf file
Output: text file

1: Get the pdf file as binary object pd f FileObj
2: Assign the pd f FileObj to pd f Reader object
3: Get the page number count from the pd f Reader object
4: for each page do
5: extract text using extractText
6: append extractedtext in memory
7: end for
8: return extracted_text

Pdfminer.six

Pdfminer-six is a fork of the original Pdfminer [43] package. This version is maintained
by the community, as the original Pdfminer package is no longer supported. The Pdfminer-
six package is focused on text extraction and analysis. It extracts data directly from PDF
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files. This package can be used with the Python programming language as well as with a
single executable script. In addition to direct text conversion from PDF files, this package
also provides functions for extracting tables, interactive forms in Acroform, images, and
tagged content. This tool extracts text from PDF files using a layout analysis algorithm
(LA) [44]. The LA works in three phases. First, it groups characters into words and lines,
then it arranges lines into boxes, and finally, it arranges the boxes hierarchically and returns
the text content. To extract text from PDF documents using the pdfmniner.six tool, the
target PDF file is loaded as a binary object, and this binary object is then parsed using the
PDFParser method. After parsing the document using the PDFResourceManager, it is split
into different page objects from which the texts are extracted as StringIO objects. Finally,
the texts are extracted from the StringIO object and saved as a plain text file. Algorithm 2
presents the flow for extracting text using Pdfminer.six package.

Algorithm 2 Text extraction using Pdfminer.six tool
Input: pdf file
Output: text file

1: Define output_string as StringIO
2: Get the pdf file as binary object by PDFParser
3: Initialize PDFResourceManager
4: Define device = TextConverter(rsrcmgr, outputstring, laparams = LAParams())
5: Generate PDFPageInterpreter with device and resource manager
6: for each page do
7: process page
8: append extracted text to output_string
9: end for

10: Get extracted text from output_string and store as a plain text file
11: return text file

Pymupdf

It is a Python wrapper for mupdf [45], a lightweight toolkit for rendering PDF, xps,
and ebooks. It provides various features for rendering PDF files with high quality and high
processing speed. This package must be used in the Python programming language and
does not provide a single executable script. Pymupdf extracts text from PDF documents
using the tool’s TextPage class. A TextPage consists of blocks, such as paragraphs. A block
contains lines and their characters or an image. A line contains spans, and spans contain
characters with identical font properties for all adjacent characters. To extract text with the
Pymupdf tool, the target PDF file is loaded with the document object. Then, PageCount is
initialized to split the document into pages. After that, the getText method is used for each
page found to extract the text content and save it in a plain text file. Algorithm 3 shows the
workflow of text extraction using this tool.

Algorithm 3 Text extraction using the Pymupdf tool
Input: pdf file
Output: text file

1: Load the pdf file as document object
2: Initialize PageCount from the document object
3: for each page do
4: extract text using getText
5: append extracted_text in memory
6: end for
7: return extracted_text

Pdftotext

Pdftotext is a simple Python package for extracting PDF-to-text. Although it is a
Python package, Poppler [46] must be installed on the system before installing it via pip
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in Python. Poppler is a free PDF rendering library compliant with ISO 32000-1, and a
fork of Xpdf-3.0 [47], developed by Derek Noonburg. This package must be used inside
Python programs and has no single executable script. The Pdftotext package uses poppler
to convert PDF-to-text. After loading the target PDF file as a binary object file, this tool uses
poppler’s PDF method to convert the PDF file to a plain text file. The poppler library is
written in C++ language, so it takes less time than other tools. This tool first determines the
layout of the PDF file, then converts the file into different pages and decodes the content
into UTF-8 format. After that, it returns the PDF file as a plain text document for all pages.
Algorithm 4 presents the workflow for converting text using the Pdftotext tool.

Algorithm 4 Text extraction using Pdftotext tool
Input: pdf file
Output: text file

1: Load the pdf file as binary object
2: Initialize Poppler PDF method and return page
3: Decode page to UTF-8 format
4: Return text contents as plain text file

3.1.2. External Services with Python Wrapper

In addition to these Python packages, another popular PDF extraction tool from the
Apache Software Foundation, Tika [48], and Grobid [31], are also used for comparison.

Tika

Developed by the Apache Software Foundation, Tika is a content discovery and
analysis framework written in the Java programming language. Tika is used for parsing
text and metadata from various file types, including PDF, Microsoft PowerPoint, and Excel
format. It provides a server for text extraction and has command-line tools. Since it has a
server feature, it can be used with any programming language. It also provides a Python
package that can be easily integrated with Python. Moreover, it has command-line tools
that can be used as an executable script to convert PDF-to-text without integrating any
programming language. The Java Runtime must be installed in the system to use tika in
Python. Before using tika to extract text from PDF files, the Python script utilizing the tika
tool initializes the tika virtual machine and then loads the PDF file into the parser object of
the tika tool. After loading the document, tika automatically determines the file’s language
and data types, known as Multipurpose Internet Mail Extensions (MIME). Then, based on
the language and data type, the parser module extracts the text content and metadata of the
document and returns it as a text stream. Then the text stream is saved as a plain text file.
Algorithm 5 shows the steps for extracting text from PDF documents using the tika tool.

Algorithm 5 Text extraction using Tika tool
Input: pdf file
Output: text file

1: Initialize the tika Virtual Machine
2: Load the pdf file into the parser
3: Detect Language and Data Type
4: Extract text content and metdata content
5: Store text content in plain text file

Grobid

It is an open-source machine learning-based library for extracting and parsing PDF
documents. This library was developed with a focus on the extraction of scientific publica-
tions. Grobid has a very flexible content parsing capability. It has functions for extracting
headers, references, citation context, name and affiliation, full-text extraction, and patent
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and non-patent reference extraction. Grobid was developed in the Java programming lan-
guage and provided a service structure so that it can be integrated with any programming
language. It also has a batch processing mode with an application programming interface.
Grobid first converts the PDF content into a structured XML/TEI encoded format; then, a
custom parser can convert the required texts into a plain text format. To parse a document,
Grobid employs a series of sequence labeling models. This modular method allows the
training data, features, text representations, and models to be tailored to the document’s
various hierarchical structures. Individual models keep a modest number of labels, but
the complete cascade produces very comprehensive end-result structures when used to-
gether. To convert PDF documents to text files, the Grobid server must first be initialized.
Then, the PDF documents are loaded via the application programming interface (API),
and a parameter is specified depending on the extraction model, e.g., full-text processing,
metadata processing, or bibliography processing. In response to the request, a restructured
tei-xml file is returned from the Grobid server. Subsequently, the tei-xml file is parsed with
a specially developed XML parser based on the required text content, and the parsed text
content is stored in a plain text file. Algorithm 6 shows the steps for extracting text from
PDF documents using the Grobid tool.

Algorithm 6 Text extraction using Grobid tool
Input: pdf file
Output: text file

1: Initialize the Grobid server
2: Load the pdf file via API
3: Specify the parameter depending on the extraction model
4: Extract text as a structured XML/TEI format file
5: Parse the file as per the requirement with custom developed tei-xml parser

Table 1 provides a comparison of the features of all PDF-to-text extraction packages
used in this study. Features include executable script, section-by-section extraction, API
service, web service, and third-party dependency for all packages.

Table 1. Comparison of the various features provided by the PDF-to-text extraction packages used in
this study.

Package Name Executable Script Section-Wise Extraction API Service Web Service Third Party Dependency

Pypdf2 7 7 7 7 7
Pymupdf 7 7 7 7 7
Pdfminer.six 3 7 7 7 7
Pdftotext 7 7 7 7 3
Tika 3 7 7 3 7
Grobid 3 3 3 3 7

3.1.3. NLP Packages

In this study, three well-known Python NLP packages are used to identify sentence
boundaries. They all have their advantages and limitations in identifying sentence bound-
aries. Therefore, three packages are used and compared to find the package with the best
performance in sentence boundary identification.

NLTK

NLTK stands for natural language toolkit. It is an open-source, free, and community-
driven framework designed to work with human language data. NLTK provides a very rich
interface to over 50 corpora and lexical resources [49]. For sentence boundary detection,
NLTK uses a sentence tokenizer that relies on PunkSentenceTokenizer. This PunkSen-
tenceTokenizer has been trained on many speech corpora [50] to provide better sentence
tokenization. This tokenizer separates a text into a list of sentences by building a model for
abbreviated words, collocations, and words that begin sentences using an unsupervised
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method. It is built to learn unsupervised parameters (a list of abbreviations, for example)
from a corpus that is similar to the target domain. In this paper, the pre-trained standard
model for English is used to tokenize the sentences and to study the sentence boundaries.
To study the sentence boundary with NLTK, each extracted text document is tokenized
with this sentence tokenizer, and the sentences are stored. Then the sentences are matched
with the ground truth sentences for each document.

Gensim

Gensim is a free, open-source Python library that processes plain text using unsu-
pervised machine learning algorithms [51]. Gensim stands for Generate Similar, which
was originally developed for topic modeling. Gensim’s sentence tokenizer is based on
unsupervised machine learning techniques [52], which is used to identify the sentence
boundary. This tokenizer is implemented with the split_sentences method from the gen-
sim.summerization.texttcleaner class. Gensim’s sentence tokenizer is strict with punctu-
ation marks. When it encounters a punctuation mark, it splits it and marks it as another
sentence. In addition, the tokenizer counts each new line it finds as a new sentence. These
properties have a significant impact on identifying sentence boundaries and are evident
from the experimental results.

Spacy

Spacy is an industrial-strength natural language processing framework in Python. It
uses pre-trained transformer models and word vector models such as BERT and Word2Vec.
It supports more than 64 languages. It also supports custom models based on PyTorch and
TensorFlow. Sentencizer is a pipeline component of Spacy [53] for sentence boundary de-
tection. Sentencizer uses a rule-based detection model instead of the statistical dependency
parser model. To detect sentence boundaries with this Sentencizer component, it must be
added to spacy’s default NLP pipeline with a custom punctuation marker configuration.
In this study, we do not provide a custom configuration but use the default configuration
of the Sentencizer component. To identify the sentence boundary, converted text files are
processed with this component. Then, the sentences obtained by the Sentencizer component
are stored and matched with the ground truth sentences for each document.

3.2. Experimental Procedure

To begin the experiment, 10 papers are selected from the field of electric double layer
capacitors (EDLC). All 10 documents are manually examined to determine the exact number
of sentences they contain. This number of sentences per document or paper is utilized as
the basis for the evaluation. In addition to the count, all sentences are stored in a plain text
file for all 10 documents. After selecting the documents, the Python PDF libraries discussed
in Section 3.1 are used to extract text from the PDF documents. After text extraction, various
sentence tokenizers from different NLP frameworks such as NLTK [54], Gensim [55], and
Spacy [56] are used to determine the number of correctly extracted sentences. Then, each
sentence identified by the NLP frameworks is compared with the manually extracted
correct sentences to confirm the identification process. Figure 1 shows the overview of the
applied methodology.
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Figure 1. Overview of the methodology employed in this study to examine sentence boundary
utilizing different PDF-to-text extraction Python tools.

3.2.1. Data Collection

For the experiment, the electric double layer capacitor (EDLC) field is considered.
Therefore, a set of 10 scientific documents is collected in PDF format with different for-
matting styles and journal publishers, e.g., Journal of Power Sources, Carbon, and Elec-
trochimica Acta. Then, each file is renamed chronologically from P1 to P10. After that,
all the files are manually checked to find out the number of sentences in each file. In
addition to recording the number of sentences, all sentences are stored in individual text
files for all 10 documents. In this step, figures, tables, and references are excluded while
collecting and counting the sentences. Table 2 contains the number of sentences for the
collected documents.

Table 2. Document-wise sentence count for all the collected PDF documents.

Document Sentence Count

P1 143
P2 119
P3 119
P4 350
P5 178
P6 81
P7 121
P8 153
P9 141
P10 86
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3.2.2. Text Extraction from PDF Documents

Plain text is extracted from all collected PDF documents using the PDF-to-text extrac-
tion packages. All six Python packages are used in a single experimental setup developed
as a Python program. In the program, all packages are defined as methods and are used to
extract text from all documents. After extracting the text, they are saved as individual text
files and stored in different folders for different packages. Then, these extracted text files
are used to analyze the sentence boundaries and measure the performance of each package
and tool.

3.2.3. Sentence Boundary Examination from Extracted Text

To analyze how many sentences can be recognized as complete sentences, three
popular NLP packages for Python are used. The packages used are The Natural Language
Toolkit (NLTK) [54], Gensim [55], and Spacy [56]. Each of these NLP frameworks has
its own method for tokenizing sentences, which can be used to identify sentences from
provided plaintexts. For this experiment, each package-specific sentence tokenization
method is used to identify sentences from each converted text document. From the NLTK
tokenize module, the sent_tokenize method, the sentencizer method from Spacy, and the
split_sentences method from Gensim are used to test sentence boundaries. After applying
the sentence tokenization methods from each of the NLP frameworks, all the sentences
identified by the tokenizers are stored along with the total number of sentences identified.
After obtaining the sentences identified by the tokenizers from each NLP framework, all
sentences are matched against the ground truth sentences file for each paper using the
Python difflib [57] package. For the sentence matching result, the matching ratio (R) is
considered. If the R value is above 90%, it is considered as a match. The ratio is calculated
using the Equation (1). All experimental codes with the dataset are available in the following
public GitHub repository: https://github.com/ping543f/pdf-extraction-tool-comparison.
Resources are provided upon request to the corresponding author.

R = 2 ∗ M/T (1)

where R is the matching ratio value of two sentences, M are the matches found among two
sentences and T is the total number of elements in both sentences.

3.3. Experimental Setup

Python version 3.7.3 64 bit conda base is used for the development of the experimental
program. The operating system used is macOS Big Sur version 11.5. The hardware
configuration used is a 1.2 GHz dual core Intel Core m5 processor with 8 GB RAM.

4. Results and Discussion

As mentioned earlier, this study has three distinct goals: to find a better Python
package for extracting text from PDF files, to find a better NLP framework for sentence
boundary detection, and to evaluate the performance of PDF extraction packages in terms
of memory footprint and runtime.

For this experiment, a dataset consisting of 10 scientific articles on the topic of Electric
Double Layer Capacitors from different journal publishers is used. All the articles are
downloaded in PDF format and converted into text using various popular Python PDF
packages, namely Pypdf2, Pymupdf, Pdfminer.six, Pdftotext, Tika, and Grobid. Then,
sentence boundary identification is applied to the extracted PDF documents using three
different NLP packages, namely NLTK, Spacy, and Gensim. Then, the correctly identified
sentences are matched with the ground truth file using the difflib package.

For the sentence boundary identification experiment, precision, recall and f-1 values
are used as performance measures. The precision, recall and f-1 values are calculated using
Equations (2)–(4), respectively.

https://github.com/ping543f/pdf-extraction-tool-comparison
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Precision =
Sentencecorrect

Sentenceextract
(2)

Recall =
Sentencecorrect

Sentencestandard
(3)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

Here, Sentencecorrect stands for the correctly identified sentences from the extracted
sentences extracted from the documents. On the other hand, Sentenceextract stands for the
total extracted sentences from the documents. Sentencestandard stands for the total number
of sentences in the ground truth file. Table 3 represents the comparison results of precision,
recall, and f-1 values obtained in the experiment.

Table 3. Comparison score of precision, recall, and f-1 scores of different PDF-to-text extraction
Python packages for different NLP frameworks.

Package
Precision Recall F-1

NLTK Spacy Gensim NLTK Spacy Gensim NLTK Spacy Gensim

Pypdf2 0.61 0.86 0.23 0.61 0.86 1.00 0.61 0.86 0.37
Pymupdf 0.63 0.70 0.18 1.00 1.00 1.00 0.75 0.82 0.30
Pdfminer.six 0.63 0.70 0.19 1.00 1.00 1.00 0.75 0.82 0.31
Pdftotext 0.62 0.69 0.27 1.00 1.00 1.00 0.74 0.81 0.42
Tika 0.63 0.70 0.20 1.00 1.00 1.00 0.75 0.82 0.75
Grobid 0.88 0.91 0.86 0.93 0.96 0.94 0.90 0.93 0.89
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0.50

0.60

0.70

0.80

0.90

1.00
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Pypdf2 Pymupdf Pdfminer.six Pd�otext Tika Grobid

Figure 2. Precision, recall, and F-1 scores of different PDF-to-text extraction Python packages for
different NLP frameworks.

Since three NLP frameworks are used to identify the sentence boundary, the experi-
ment shows that the Spacy NLP framework always has higher precision and a higher f-1
score for each PDF-to-text extraction package than the other two frameworks, namely NLTK
and Gensim. The PDF-to-text extraction package that achieved the highest precision and
f-1 score is Grobid, which achieves 91% and 93% with the Spacy framework, respectively,
while the NLTK and Gensim frameworks achieve 88% and 86% precision scores and 90%
and 89% f-1 scores, respectively. This experimental result shows that the Grobid package
performs better with Spacy in identifying complete sentences from the extracted plain text.
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The precision and f-1 values of Grobid are also higher than the other five packages in all
NLP frameworks.

Table 4 shows the match ratio results for all documents for all PDF-to-text conversion
tools. The match ratio value is calculated using the Equation (1). The match ratio is calculated
by comparing the documents converted by all the tools with the base documents, one by one.
From the results, it can be seen that the Grobid tool has achieved the best average match ratio,
81%, when extracting text from PDF documents. This means that, on average, 81% of the
text extracted by Grobid matched the original text created manually by the authors for the
10 documents used in this study. After Grobid, Pymupdf achieved a 57% match, which is
significantly lower than the score achieved by Grobid. The performance of text extraction
by the Grobid tool is also evident from the individual results for all documents. For each
document, Grobid achieved a much better match rate than the other tools with which it was
compared. In addition to sentence boundary extraction in conjunction with NLP frameworks,
Grobid also performs better in pure PDF- to-text conversion.

Table 4. Match ratio values for different PDF extraction tools.

Document Grobid Pdfminer.six Pdftotext Pymupdf Pypdf2 Tika

P1 0.92 0.76 0.19 0.84 0.19 0.79
P2 0.72 0.21 0.10 0.22 0.10 0.22
P3 0.87 0.64 0.23 0.69 0.13 0.66
P4 0.88 0.66 0.30 0.79 0.24 0.75
P5 0.61 0.11 0.05 0.12 0.04 0.14
P6 0.90 0.63 0.21 0.74 0.23 0.78
P7 0.63 0.12 0.05 0.12 0.07 0.18
P8 0.92 0.76 0.26 0.84 0.22 0.62
P9 0.89 0.71 0.21 0.81 0.26 0.74
P10 0.81 0.44 0.23 0.53 0.08 0.55
Average score 0.81 0.50 0.18 0.57 0.16 0.54

In [27], the authors compared four industrial optical character recognition programs
for text content extraction with the character recognition-based measure, but they did
not experiment with sentence boundary identification. This study showed good perfor-
mance in character recognition, but was not promising in sentence boundary identification.
Bast et al. [21] compared 14 PDF tools for text extraction and measured their performance
on paragraph boundaries, distinguishing body text from non-body text, word boundaries,
and reading sequences. They did not perform the sentence boundary extraction task. How-
ever, Grobid performed better than the other tools in identifying paragraph boundaries.
This trend is also reflected in our study, where Grobid performed better than other tools in
converting PDF-to-text and extracting sentence boundaries using the spacy nlp framework.
The PDF2LaTex [26] tool proposed by Zelun et al. achieved 81% accuracy in converting
mathematical expressions and text. However, from our experimental results, the Grobid
tool performs better than PDF2LaTex in terms of accuracy, and the results with the NLTK,
Spacy, and Gensim frameworks are 88%, 91%, and 86%, respectively. In [30,33], the authors
experimented with extracting metadata, including titles and section headings. In both
studies, Grobid was found to perform better in converting PDF-to-text compared to other
tools. In addition, the f-1 values from these studies are almost identical to our experimental
results, suggesting that Grobid performs better than other tools in other studies for different
domains’ data.

Considering the discussions, it can be deduced that the Grobid package can be used for
better text extraction from scientific PDF documents than the other five packages and that
the NLP package Spacy can be used for better identification of complete sentences from the
extracted text than NLTK and Gensim. Figure 2 shows the comparison results for different
performance metrics obtained for different PDF text extraction packages by NLP packages.
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Another goal of this study is to determine the memory requirements and runtime
of all packages used to extract PDF-to-text. Tables 5 and 6 show the memory usage and
runtime results for all packages used in this study for the 10 ground truth documents.

Table 5. Memory space usage in Mega Bytes of different PDF-to-text extraction packages (a lower
score is better).

Package Memory Usage (MB)

Tika 159.46
Pypdf2 158.91
Pymupdf 156.37
Pdfminer.six 151.34
Pdftotext 150.75
Grobid 46.13

Table 6. Runtimes in second of different PDF-to-text extraction packages (a lower score is better).

Package Runtime (Second)

Tika 3.35
Pypdf2 10.9
Pymupdf 1.23
Pdfminer.six 26.1
Pdftotext 1.96
Grobid 36.5

From Table 6, it can be seen that among all the PDF-to-text extraction packages,
Pymupdf takes the least runtime of 1.23 s to extract text from 10 PDF documents, while
Grobid has the highest runtime of all the compared packages at 36.5 s. On the other hand,
Grobid requires the least memory with 46.13 megabytes, and Tika requires the highest
memory with 159.46 megabytes among all the compared packages as shown in Table 5.
Figures 3 and 4 show the visual representation of the memory usage and runtime of all
compared packages. The runtime result is also supported by the work described in [21].
From the result presented in [21], Grobid took 42 s on average to convert a single file, and
Pdftotext took 0.3 s per file. From our experimental result, we also find that Grobid takes
the most time to convert 10 files, 3.65 s on average for a single file, and Pdftotext takes
0.196 s on average per file.
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Figure 3. Comparison results of memory usage in Mega Bytes of different PDF-to-text extraction
packages (a lower score is better).



Appl. Sci. 2022, 12, 1352 15 of 19

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

R
u

n
�

m
e 

(s
ec

o
n

d
)

Tika pypdf2 pymupdf pdfminer.six pd�otext grobid

Figure 4. Comparison results of run times in seconds of different PDF-to-text extraction packages (a
lower score is better).

To analyze the trend of memory usage and runtime of the PDF-to-text extraction
packages, runtime and memory usage are calculated for 50 and 100 documents. The results
are shown in Tables 7 and 8 for runtime and memory usage, respectively. The calculation
results show that runtime and memory consumption for 50 and 100 documents follow a
similar trend as for 10 documents. The Pymupdf package requires the least runtime while
Pdfminer.six requires the highest runtime for converting text from PDF documents for 50
and 100 documents. Figure 5 presents the runtime comparison for all packages. On the
other hand, Grobid consumes the least memory, while Tika requires the highest memory
for converting text from PDF documents for both 50 and 100 documents, as shown in
Figure 6. The experiment with 50 and 100 documents is performed in the same hardware
and software setup mentioned in Section 3.3.

Table 7. Memory usage comparison for 10, 50, and 100 documents while converting them to text
using different PDF-to-text extraction packages (a lower score is better).

Package Memory Usage (MB)
10 Documents

Memory Usage (MB)
50 Documents

Memory Usage (MB)
100 Documents

Tika 159.46 200.52 232.43
Pypdf2 158.91 198.23 225.67
Pymupdf 156.37 200.01 220.45
Pdfminer.six 151.34 175.54 198.23
Pdftotext 150.75 180.07 222.97
Grobid 46.13 68.16 75.05

Table 8. Runtime comparison for 10, 50, and 100 documents while converting them to text using
different PDF-to-text extraction packages (a lower score is better).

Package Runtime (Seconds)
10 Documents

Runtime (Seconds)
50 Documents

Runtime (Seconds)
100 Documents

Tika 3.35 13.6 30.16
pypdf2 10.9 28.5 60.6
pymupdf 1.23 10.5 22.7
pdfminer.six 26.1 58.1 70.9
pdftotext 1.96 6.8 18.2
grobid 36.5 46.7 62.9
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Figure 5. Comparison results of run times in seconds of different PDF-to-text extraction packages for
10, 50, and 100 documents (a lower score is better).
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Figure 6. Comparison results of memory usage in Mega Bytes of different PDF-to-text extraction
packages for 10, 50, and 100 documents (a lower score is better).

Following this analysis, and given the precision and f-1 values obtained, it is proposed
to use Grobid for text extraction from scientific PDF documents. Moreover, the memory
consumption of Grobid in converting text content from PDF documents is the lowest among
all the compared packages, and Grobid also takes less time in converting a larger number
of documents. This is evident from Table 8 and Figure 5. For converting 10 documents,
Grobid takes the highest runtime of 36.5 s. However, when the number of documents is
increased to 50 and 100, the Pdfminer.six package takes the highest runtime to complete
the conversion process, and Grobid falls behind the Pdfminer.six package.

5. Conclusions

This article contains a detailed comparison of different Python packages for PDF-
to-text extraction with their runtime and memory requirements for documents from the
EDLC domain. It also presents the precision measure of correctly identified sentences from
the extracted texts using three widely used natural language frameworks, namely NLTK,
Spacy, and Gensim. The Grobid PDF-to-text extraction package achieved the highest f-1
score of 93% using NLP framework Spacy, while NLTK and Gensim achieved 88% and
86% precision values, respectively. Grobid also requires the least amount of memory to
convert PDF documents to text. This study makes it easy for researchers working with text
processing from the EDLC domain to choose the best combination of tools and techniques
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for extracting text with correct sentence boundaries from PDF documents. With the help
of this work, EDLC researchers would waste less time in selecting appropriate tools and
techniques for extracting sentence-level text from PDF documents. This study is also
of great help in developing automated EDLC related information systems that need to
extract text from PDF documents and use sequence labels, for example, an automated
chemical information system that features automatic entity extraction elated to EDLC from
the scientific literature. For this type of system, the text data needs to be as accurate as
possible, and in this scenario, the current work can be very useful in extracting and creating
clean text inputs from PDF documents. This study has been carried out using documents
related to Electric Double Layer Capacitors. However, this study can also be carried out
using scientific documents from other fields. The results can be analyzed for new insights,
including domain-specific precision, recall, and f1 values, as well as differences in runtime,
memory usage, and usage of other computational resources, including CPU utilization,
thermal impact, and power consumption.
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