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Abstract Heat transfer is an important process in many engineering, industrial, residential, and

commercial buildings. Thus, this study aims to analyse the effect of MHD and viscous dissipation

on radiative heat transfer of Reiner–Philippoff fluid flow over a nonlinearly shrinking sheet. By

adopting appropriate similarity transformations, the partial derivatives of multivariable differential

equations are transformed into the similarity equations of a particular form. The resulting mathe-

matical model is elucidated in MATLAB software using the bvp4c technique. To determine the

impact of physical parameters supplied into the problem, the results are shown in the form of tables

and graphs. The findings reveal that the heat transfer rate reduces as the Eckert number and radi-

ation parameter are introduced in the operating fluid. However, increasing the magnetic parameter

raises both the skin friction coefficient and the local Nusselt number, which impulsively improves

the heat transfer performance. The suction effect has a noticeable influence on the Reiner–Philip-

poff fluid, since increasing the suction parameter’s value is seen to enhance the skin friction

coefficient and the heat transfer performance. The dual solutions are established, leading to the sta-

bility analysis that supports the first solution’s validity.
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Nomenclature

a constant

B0 constant magnetic strength (T)
BðxÞ magnetic field (T)
Cf skin friction coefficient
Cp specific heat at constant pressure (Jkg�1K�1)

ðqCpÞ heat capacitance of the fluid (JK�1m�3)
Ec Eckert number
f dimensionless stream function

g dimensionless shear stress
F;G;H arbitrary functions
k thermal conductivity of the fluid (Wm�1K�1)

k� Rosseland mean absorption coefficient (m�1)
M magnetic parameter
Nux local Nusselt number
Pr Prandtl number

qw surface heat flux (Wm�2)
qr radiative heat flux (Wm�2)
R thermal radiation parameter

Rex local Reynolds number
S mass flux parameter
t time (s)

T fluid temperature (K)
T1 ambient temperature (K)
T0 reference temperature (K)

u; v velocity component in the x- and y- directions
(ms�1)

uw velocity of the surface (ms�1)

vw velocity of the mass flux (ms�1)
x; y Cartesian coordinates (m)

Greek symbols
a eigenvalue

e stretching/shrinking parameter
c Bingham number
g similarity variable

h dimensionless temperature
s shear stress (kgm�1s�2)
sw wall shear stress (kgm�1s�2)
ss reference skin friction (kgm�1s�2)

k Reiner–Philippoff fluid parameter
l0 dynamic viscosity at zero shear stress (kgm�1s�1)
l1 dynamic viscosity as the shear stress becomes large

(kgm�1s�1)
m kinematic viscosity of the fluid (m2s�1)
q density of the fluid (kgm�3)

r electric conductivity (S=m)
r� Stefan-Boltzmann constant (Wm�2K�4)
C dimensionless time variable
w stream function

Superscript
0 differentiation with respect to g
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1. Introduction

The progress in the research of fluid flow is rapid growth due

to the robust development in industrial applications. This sit-
uation happened due to the demand in getting the best output
in certain processes where the fluid motions are having the

ability for most of the transport and mixing of materials. Such
a situation is frequently established in food industries, bever-
ages making, the oil industry, gasoline engineering, pharma-
ceuticals, chemicals manufacturing, and plastics sectors. In

the process of excavating the best method to develop the best
end product, the classical fluid like water which is also classi-
fied under Newtonian type is no more valid in fulfilling the

industrial demands due to indecisiveness in describing the
properties of fluid’s material. Hence, the various subclass of
non-Newtonian fluids with different features like shear rate-

dependent viscosity and normal stress, are widely used to
counter the limitation. Unlike the Newtonian fluid model
which is based on the linear relationship between strain and
stress tensors, the non-Newtonian fluid models are observed

based on their behavior either shear thickening (dilatant) or
shear thinning (pseudo-plasticity). The shear-thickening
implies the increasing viscosity with increasing shear rate,

while the shear-thinning fluid exhibits the Newtonian fluid’s
behavior when the shear rate is very low/high values. There
are many proposed models exhibit with both shear thickening

and thinning behaviors like the Reiner–Philippoff fluid, the
Sisko fluid, Powell–Eyring fluid, Carreau–Yasuda fluid, the
Carreau viscosity fluid [1].
The ability in unveiling the Newtonian fluid (shear stress
approaches zero) or non-Newtonian fluid (other values of

shear stress) has made the Reiner–Philippoff fluid model be
the center of attraction among the investigators. The contribu-
tion on the Reiner–Philippoff’s model has been endorsed by

Kapur and Gupta [2] and Cavatorta and Tonini [3] in the
report under topic; the flow of Reiner-Philippoff fluid inside
a channel using Karman-Pohlhausen’s method and computa-

tion of the velocity profiles for non-Newtonian Reiner–Philip-
poff, Ellis, Ostwald de Waele, generalized Bingham and
Prandtl Eyring fluids respectively. Besides, the investigation
was also conducted on the flow over a stretching surface in

non-Newtonian fluids owing to their significance in many engi-
neering and industrial processes. Prior analysis has been per-
formed by Hansen and Na [4] which discovered the

similarity solutions only exist when the non-Newtonian fluids
(any model) flow over a 90� wedge. Advanced, Na [5] extended
this study by considering two cases which are the non-similar

solution for the Blasius flow and the similarity solution for
the flow over a 90� wedge. The report on similarity solutions
for the boundary layer flow in a three-dimensional system
using a general non-Newtonian fluid model was found in a

document by Timol and Kalthia [6], Patel and Timol [7], and
Patil et al. [8]. The exploration on boundary layer flow of
Reiner–Philippoff fluids induced by a stretching 90� wedge

was dedicated by Yam et al. [9] where the stability analysis
was highlighted and the final conclusion revealed there were
no multiple solutions exist. Another attempt on investigating

Reiner–Philippoff fluids has been accomplished by Reddy



Fig. 1 Flow configuration.
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et al. [10,11], Ahmad [12], Ahmad et al. [13], Kumar et al. [14],
Xiong et al. [15], and Sajid et al. [16,17]. On the other hand,
other non-Newtonian fluid models subject to various geome-

tries have been investigated and analyzed by Kefayati [18–
20], Kefayati and Huilgol [21], Kefayati and Tang [22,23],
Nandi and Kumbhakar [24], Sharma et al. [25], Kumar et al.

[26] and Abegunrin et al. [27].
The progress in discovering the model of fluid that can

contribute to enhancing the flow properties has always been

the main focus. The endeavors do not limit to proposing the
new model’s formulation but also considering the existing
ideas and studying their appropriateness to the proposed
model. Among the available additional extension on the

fluid flow problem, the MHD and viscous dissipation effects
are among the applicable elements that should be deliber-
ated. It is acknowledged the fluid with MHD has the capa-

bility to regulate the flow separation and become the agent
of manipulating the heat transfer of certain fluids. Mean-
while, the viscous dissipation is attributed during the move-

ment of fluid particles where the viscosity of fluid converted
the kinetic energy into thermal energy. These two effects are
independent of each other and can be considered separately.

As reported in the literature, the term MHD was happened
to be in the momentum equation while viscous dissipation in
the energy equation. The simultaneous effects of MHD and
heat source/sink were numerically studied by Seth et al. [28]

for a viscous flow. Further, Seth and Mandal [29] analyzed
the electromagnetohydrodynamic (EMHD) flow subject to a
nonlinearly stretching sheet with variable thickness. Mishra

et al. [30] observed the existence of multiple solutions when
considering MHD flow with thermal radiation and viscous
dissipation effects over a stretching/shrinking sheet. Babu

and Sandeep [31] found that the magnetic and radiation
parameters could enhance the thermal boundary layer. The
discovery of MHD towards the flow field is once carried

out by Asimoni et al. [32] where the focus is under the
two-dimensional laminar flow of non-Newtonian power-law
nanofluid, while Zokri et al. [33] examined the problem of
MHD embedded in Jeffrey fluid. Very recent findings on this

topic are led by Waini et al. [34] and Pop et al. [35] where
the hybrid nanofluid is the main focus and the flow is
assumed to stream over a shrinking sheet. Some other doc-

uments on the MHD discovery are acknowledged in the
reports by Aurangzaib et al. [36,37], Ariffin et al. [38,39],
Nandi et al. [40], Ghiasi et al. [41], and Gajjela et al. [42].

A recent topic of interest is the analysis of the dual solution
with its stability for the boundary layer flow in various fluids
and surfaces. The concern is to choose the physical solution
(s) among the potential available solutions. The dual solutions

frequently exist for the case of fluid motion induced by a
shrinking sheet as early studied by Miklavčič and Wang [43]
for a Newtonian fluid model. The generation of shrinking flow

with an appropriate suction strength contributed to the exis-
tence of dual similarity solutions. In certain cases, there are
possibilities that multiple solutions (more than two) exist

which have been explored by Turkyilmazoglu [44], Lund
et al. [45], and Yahaya et al. [46]. Moreover, the flow analysis
due to the shrinking surfaces have been conducted and dis-

cussed by Yahaya et al. [47,48] for non-Newtonian fluids and
Waini et al. [49–51], Naramgari and Sulochana [52], Anuar
et al. [53], Zainal et al. [54,55], Wahid et al. [56–58] and Bhat-
tacharyya et al. [59] for other fluids.
Motivated from the existing studies while fulfilling the
research gap, the main strength of this numerical study is the
contribution of dual solutions and stability analysis for non-

Newtonian radiative Reiner–Philippoff fluid flow past a non-
linearly shrinking sheet with the inclusion of MHD and vis-
cous dissipation. A previous paper by Yam et al. [9] only

considered the unique solution of Reiner–Philippoff fluid flow
subject to a wedge geometry. Meanwhile, this present paper
focuses on the observation of dual solutions including the con-

duct of stability analysis for the nonlinear shrinking sheet with
several physical factors. To the best of the authors’ knowledge,
the study on the non-Newtonian radiative Reiner–Philippoff
fluid flow past a nonlinearly shrinking sheet embedded with

the MHD and viscous dissipation has not been considered
and therefore, this endeavor is significant as a future reference
for the selected topic. For the methodology, the efficient bvp4c

solver in the Matlab software is used to solve the reduced ordi-
nary differential equations. The similarity solutions are graph-
ically displayed and discussed for the skin friction coefficient

and thermal distribution including the velocity and tempera-
ture profiles. We strongly believe that this numerical study
can attract other researchers from various backgrounds.

2. Mathematical formulation

Consider the flow of Reiner–Philippoff fluid past a shrinking

sheet as shown in Fig. 1. Here, the surface velocity is

uwðxÞ ¼ ax1=3 with a > 0. In addition, the mass flux velocity
vwðxÞ is considered to represent the surface permeability.

Besides, the surface temperature is TwðxÞ ¼ T1 þ T0x
2=3 with

the ambient T1 and the reference T0 temperatures are constant

[60]. The magnetic field BðxÞ is transversely applied along the

y-axis with BðxÞ ¼ B0x
�1=3 where B0 is constant magnetic

strength [14]. Furthermore, the radiative heat flux

qr ¼ �ð4r�=3k�Þð@T4=@yÞ is also considered. Here, k� and r�

signifies the Rosseland mean absorption coefficient and the

Stefan-Boltzmann constant and given that T4 ffi 4T3
1T� 3T4

1
[61]. In addition, the viscous dissipation and the Joule heating
effects are employed [62]. Therefore, the governing equations
can be written as [10,14,62]:

@u

@x
þ @v

@y
¼ 0 ð1Þ

@u

@y
¼ s

l1 þ l0�l1
1þ s

ssð Þ2
ð2Þ
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u
@u

@x
þ v

@u

@y
¼ 1

q
@s
@y

� r
q
B2u ð3Þ

u
@T

@x
þ v

@T

@y
¼ k

qCp

þ 16r�T3
1

3ðqCpÞk�
� �

@2T

@y2
þ l
qCp

@u

@y

� �2

þ r
qCp

B2u2 ð4Þ

subject to:

u ¼ euwðxÞ; v ¼ vwðxÞ; T ¼ TwðxÞ at y ¼ 0;

u ! 0; T ! T1 as y ! 1 ð5Þ

where q is the fluid density, r is the electric conductivity, qCp is

the heat capacity, k is the thermal conductivity, T is the tem-
perature, and ðu; vÞ be the velocity components in the ðx; yÞ
direction. Besides, s is the shear stress of the Reiner–Philippoff

fluid model with the reference shear stress ss, the limiting
dynamic viscosity l1, and the zero-shear dynamic viscosity
l0 [9].

The similarity solutions are only existed by employing the

similarity transformation as follows [9]:

w ¼ ffiffiffiffiffi
am

p
x2=3fðgÞ; s ¼ q

ffiffiffiffiffiffiffi
a3m

p
gðgÞ; hðgÞ ¼ T� T1

Tw � T1
;

g ¼ y

x1=3

ffiffiffi
a

m

r
ð6Þ

where the stream function w is defined by u ¼ @w=@y and

v ¼ �@w=@x. Then:

u ¼ ax1=3f0ðgÞ; v ¼ � ffiffiffiffiffi
am

p
x�1=3 2

3
fðgÞ � 1

3
gf0ðgÞ

� �
ð7Þ

By setting g ¼ 0, the wall mass flux velocity becomes:

vwðxÞ ¼ � 2

3

ffiffiffiffiffi
am

p
x�1=3S ð8Þ

where fð0Þ ¼ S signify the constant mass flux parameter with
S < 0 and S > 0 are for injection and suction, respectively,
while S ¼ 0 denote the impermeable surface, and m ¼ l1=q is

the fluid kinematic viscosity. Then, on using Eqs. (6) and (7),
the similarity equations are obtained as follows:

g ¼ f00
kc2 þ g2

c2 þ g2

� �
ð9Þ

g
0 þ 2

3
ff}� 1

3
f
02 �Mf

0 ¼ 0 ð10Þ

1

Pr
ð1þ 4

3
RÞh}þ 2

3
ðfh0 � f

0
hÞ þ Ecf}2 þ EcMf

02 ¼ 0 ð11Þ

subject to:

fð0Þ ¼ S; f
0 ð0Þ ¼ e; hð0Þ ¼ 1;

f
0 ðgÞ ! 0; hðgÞ ! 0 as g ! 1

ð12Þ

with the Reiner–Philippoff fluid parameter k, the Bingham

number c, the magnetic parameter M, the Eckert number Ec,
the Prandtl number Pr, and the thermal radiation parameter
R, defined by:
k ¼ l0

l1
; c ¼ ss

q
ffiffiffiffiffiffiffi
a3m

p ; M ¼ r
qa

B2
0; Ec ¼ a2

T0Cp

;

Pr ¼ lCp

k
; R ¼ 4r�T3

1
kk�

ð13Þ

Note that, k ¼ 1 is for the Newtonian (viscous) fluid case,
while k < 1 and k > 1 represent the shear thickening (dilatant)
fluid and the shear-thinning (pseudoplastic) fluid cases.

Besides,e ¼ 0 denotes the static sheet, while e > 0 and e < 0
signify the stretching and shrinking sheet, respectively.

The coefficient of the skin friction Cf and the local Nusselt

number Nux are given as:

Cf ¼ sw
q u2w

; Nux ¼ xqw
k Tw � T1ð Þ ð14Þ

where

sw ¼ q
ffiffiffiffiffiffiffi
a3m

p
gðgÞð Þy¼0; qw ¼ � k

@T

@y

� �
y¼0

þ ðqrÞy¼0 ð15Þ

Here, sw denotes the value of s on y ¼ 0 and qw is the sur-

face heat flux. On using Eqs. (14) and (15), one gets:

Re1=2x Cf ¼ gð0Þ; Re�1=2
x Nux ¼ � 1þ 4

3
R

� �
h0ð0Þ ð16Þ

where Rex ¼ uwðxÞx=m is the local Reynolds number.

3. Stability analysis

The dual solutions are examined to test their stability by
employing stability analysis [63,64]. First, consider the semi-
similar variables as follows [9]:

w ¼ ffiffiffiffiffi
am

p
x2=3fðg;CÞ; s ¼ q

ffiffiffiffiffiffiffi
a3m

p
gðg;CÞ; hðg;CÞ

¼ T� T1
Tw � T1

; g ¼ y

x1=3

ffiffiffi
a

m

r
; C ¼ a

x2=3
t ð17Þ

where C is the dimensionless time variable, and given that:

u ¼ ax1=3 @f
@g ðg;CÞ;

v ¼ � ffiffiffiffiffi
am

p
x�1=3 2

3
fðg;CÞ � 1

3
g @f

@g ðg;CÞ � 2
3
C @f

@C ðg;CÞ
� � ð18Þ

Next, based on Eqs. (3) and (4), consider the following
unsteady flow:

@u

@t
þ u

@u

@x
þ v

@u

@y
¼ 1

q
@s
@y

� r
q
B2u ð19Þ

@T

@t
þ u

@T

@x
þ v

@T

@y
¼ k

qCp

þ 16r�T3
1

3ðqCpÞk�
� �

@2T

@y2

þ l
qCp

@u

@y

� �2

þ r
qCp

B2u2 ð20Þ

while Eqs. (1) and (2) remain unchanged. Then, on using Eqs.

(17) and (18), one obtains:

g ¼ @2f

@g2
kc2 þ g2

c2 þ g2

� �
ð21Þ



Table 2 Values of �h0ð0Þ for different Ec and Pr when

e ¼ k ¼ c ¼ R ¼ 1 and S ¼ M ¼ 0.

Ec Pr Bataller [60] Present Result

0 3 0.97887 0.978932

0.2 0.91586 0.915936

1 0.66393 0.663954

1.5 0.50639 0.506466

0.2 0.71 0.35480 0.354736

2 0.71646 0.716577

3 0.91586 0.915936

10 1.79029 1.790431
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@g

@g
þ 2

3
f
@2f

@g2
� 1

3

@f

@g

� �2

�M
@f

@g
� @2f

@g@C

� 2

3
C

@f

@C
@2f

@g2
� @f

@g
@2f

@g@C

� �
¼ 0 ð22Þ

1

Pr
1þ 4

3
R

� �
@2h
@g2

þ 2

3
f
@h
@g

� @f

@g
h

� �
þ Ec

@2f

@g2

� �2

þ EcM
@f

@g

� �2

� @h
@C

� 2

3
C

@f

@C
@h
@g

� @f

@g
@h
@C

� �
¼ 0

ð23Þ
subject to:

fð0;CÞ � 2
3
C @f

@C ð0;CÞ ¼ S; @f
@g ð0;CÞ ¼ e; hð0;CÞ ¼ 1;

@f
@g ðg;CÞ ! 0; hðg;CÞ ! 0 as g ! 1 ð24Þ

Then, consider the perturbation function [64]:

fðg;CÞ ¼ f0ðgÞ þ e�aCFðg;CÞ;
gðg;CÞ ¼ g0ðgÞ þ e�aCGðg;CÞ;
hðg;CÞ ¼ h0ðgÞ þ e�aCHðg;CÞ

ð25Þ

where Fðg;CÞ, Gðg;CÞ, and Hðg;CÞ are arbitrary functions and
relatively small than f0ðgÞ, g0ðgÞ, and h0ðgÞ, and a denotes the

eigenvalue. Here, Eq. (25) is employed to obtain the eigenvalue
problems of Eqs. (21)–(23). By setting C ¼ 0, then
Fðg;CÞ ¼ F0ðgÞ, Gðg;CÞ ¼ G0ðgÞ, and Hðg;CÞ ¼ H0ðgÞ. There-
fore, after linearization, the eigenvalue problems are:

G0 ¼ F00
0

kc2 þ g20
c2 � 2f000 g0 þ 3g20

� �
ð26Þ

G0
0 þ

2

3
f0F

00
0 þ f000 F0

� �� 2

3
f00 F

0
0 �MF0

0 þ aF0
0 ¼ 0 ð27Þ

1

Pr
1þ 4

3
R

� �
H00

0 þ
2

3
f0H

0
0 þ h00F0

� �� 2

3
f00H0 þ h0F

0
0

� �

þ 2Ecf000F
00
0 þ 2EcMf00F

0
0 þ aH0

¼ 0 ð28Þ
subject to:

F0ð0Þ ¼ 0; F0
0ð0Þ ¼ 0; H0ð0Þ ¼ 0;

F0
0ðgÞ ! 0; H0ðgÞ ! 0 as g ! 1 ð29Þ

Here, to obtain a from Eqs. (26)–(28),

F0
0ðgÞ ! 0 as g ! 1 in Eq. (29) is replaced by F00ð0Þ ¼ 1 [65].

4. Results and discussion

This section provides a discussion of the results obtained from

the numerical computation. Eqs. (9)–(12) are solved by
employing a bvp4c package in the MATLAB software [66].
Table 1 Values of f00ð0Þ for different S when e ¼ k ¼ c ¼ 1 and M

S Cortell [67] Ferdows et al. [68]

�0.5 �0.518869 �0.518869

0 �0.677647 �0.677648

0.5 �0.873627 �0.873643
The analysis involved discussions on the effect of several phys-

ical parameters that arise in the proposed model where the out-
puts of the computation are presented in graphical and tabular
forms. To validate the reliability of the present model, a direct

comparative study is performed with the skin friction values

f00ð0Þ obtained by Cortell [67], Ferdows et al. [68], and Waini
et al. [69] where the present model can be reduced to the equa-

tions that once presented in their investigations. Further vali-

dation of the temperature gradient �h0ð0Þ is made in Table 2

between present values and those by Bataller [60] for different
Ec and Pr. The results of comparison as presented in Tables 1
and 2 show an excellent agreement. This gives confidence to
the validity and accuracy of the present mathematical formula-

tion and the numerical results.
Figs. 2 and 3 are presented to get an insight into the effect

of k and c towards the variations of Re1=2x Cf and Re�1=2
x Nux

when e ¼ 1; S ¼ M ¼ Ec ¼ R ¼ 0 and Pr ¼ 10. An upsurge

of k contributed to the declining of Re1=2x Cf and increasing of

Re�1=2
x Nux: At k ¼ 1 (Newtonian fluid), the values of Re1=2x Cf

and Re�1=2
x Nux when c ¼ 0:3; 0:5; 2 remain unchanged such

that Re1=2x Cf ¼ �0:677648 and Re�1=2
x Nux ¼ 3:067894 (see

Table 3). Further, with the rising values of c, it is obviously

shown that the quantity of Re1=2x Cf increases when k < 1

(shear-thickening fluid) and decreases when k > 1 (shear-
thinning fluid) while the contradict results are obtained for

the thermal rate. In addition, the computed values of Re1=2x Cf

and Re�1=2
x Nux with various values of k and c are tabulated

in Table 3 for future references.

Table 4 provides the values of Re1=2x Cf and Re�1=2
x Nux for

various values of the dimensionless physical parameters. At a
certain fixed value for the inspected parameters
(e ¼ �1;S ¼ 2:4;k ¼ 1:5;M ¼ 0:01; c ¼ Ec ¼ 0:1; R ¼ 3; and

Pr ¼ 10), it is perceived that the values of Re1=2x Cf increase

for the rising in S and M; while they are decline with the addi-
¼ 0.

Waini et al. [69] Present Result

�0.518869 �0.518869

�0.677648 �0.677648

�0.873643 �0.873643



Fig. 2 Skin friction coefficientRe1=2x Cf vs k for various values of c.

Fig. 3 Local Nusselt number Re�1=2
x Nux vs k for various values

of c.

Table 3 Values of Re1=2x Cf and Re�1=2
x Nux for k and c when e ¼ 1;

k Re1=2x Cf

c ¼ 0:3 c ¼ 0:5 c ¼ 2

0.5 �0.621590 �0.571308 �0.4877

0.8 �0.657721 �0.641512 �0.6102

1 �0.677648 �0.677648 �0.6776

1.2 �0.695334 �0.708625 �0.7374

1.5 �0.718770 �0.748420 �0.8166

2 �0.752030 �0.802982 �0.9292

2.5 �0.780308 �0.848005 �1.0248

3 �0.805100 �0.886657 �1.1085
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tion of e; k; and c. The changes in Ec; R; and Pr do not affect

the values of Re1=2x Cf since these parameters are independent of

the momentum equation. The values of Re�1=2
x Nux (thermal

rate) boost with the increment of e; S; M; and Pr, whereas they
are showing a downturn trend with the accession of k; c; Ec;
and R. The dominance of stretching flow, suction, magnetic
parameter, and high Prandtl number tends to release the
energy to the flow while the existence of Reiner–Philippoff
fluid parameter, the Bingham number, Eckert number, and

radiation parameter retards the flow energy.

Figs. 4 and 5 illustrate the variations of Re1=2x Cf and

Re�1=2
x Nux against the shrinking parameter e for three different

fluids: shear-thickening k < 1ð Þ, Newtonian k ¼ 1ð Þ, and
shear-thinning k > 1ð Þ. From these figures, the shear-
thickening fluid k ¼ 0:8ð Þ extends the solution’s domain of e
with the critical values of ec1 ¼ �1:1567, followed by the New-
tonian fluid k ¼ 1ð Þ with ec2 ¼ �1:1352, and the shear-thinning
fluid k ¼ 1:5ð Þ with ec3 ¼ �1:0798. This signifies the important

role of the non-Newtonian fluid from the shear-thickening sub-
class in the boundary layer separation. The critical value is
usually distinguished as the separation value from laminar to

turbulent boundary layer flow. Further, both Re1=2x Cf and

Re�1=2
x Nux deteriorate with an upsurge of k.

The plots of the skin friction coefficient Re1=2x Cf and the

local Nusselt number Re�1=2
x Nux against S for diverse values

of k;M; Ec; and R are illustrated in Figs. 6–11. The suction
parameter is one of the contributing factors in the generation

of similarity solutions. It is noticed that the dual similarity

solutions exist for Re1=2x Cf and Re�1=2
x Nux up to a minimum/-

critical value of the suction parameter called Sc where beyond

these values, no other solutions are reached. The enlargement
of Sc is requirable for the addition of Reiner–Philippoff fluid
parameter k such that Sc1 ¼ 2:2215 k ¼ 0:8ð Þ;
Sc2 ¼ 2:2499 k ¼ 1ð Þ, and Sc3 ¼ 2:3163 k ¼ 1:5ð Þ. This implies
the shear-thinning fluid k > 1ð Þ obligates more suction
strength to induce the fluid motion yet produces two solutions.

Besides, the values of Re1=2x Cf and Re�1=2
x Nux lessen with the

increment of k as presented in Figs. 6 and 7. From the physical
point of view, larger values of k create obstacles to the shear-

thinning effect which reduce the contact of fluid to surfaces
and yield fewer drag forces.

Contrarily, Figs. 8 and 9 show that as the magnetic param-

eter M increases, less suction strength is needed in generating
the solutions where Sc1 ¼ 2:3422 M ¼ 0ð Þ; Sc2 ¼ 2:3163
S ¼ M ¼ Ec ¼ R ¼ 0, and Pr ¼ 10.

Re�1=2
x Nux

c ¼ 0:3 c ¼ 0:5 c ¼ 2

59 3.063624 3.049700 3.001094

95 3.066347 3.062447 3.049366

48 3.067894 3.067894 3.067894

28 3.069294 3.072134 3.081279

91 3.071182 3.077117 3.095768

34 3.073917 3.083286 3.111775

71 3.076280 3.087925 3.122407

74 3.078370 3.091646 3.130094



Table 4 Values of Re1=2x Cf and Re�1=2
x Nux for various values of physical parameters.

e S k c M Ec R Pr Re1=2x Cf Re�1=2
x Nux

�1 2.4 1.5 0.1 0.01 0.1 3 10 1.127876 11.277762

0.5 �0.875647 17.059217

1 �1.870635 17.490042

�1 2.38 1.099379 11.047620

2.35 1.050061 10.666508

2.32 0.974659 10.155402

2.4 0.8 1.161349 11.406684

1 1.153161 11.373878

1.2 1.144044 11.338411

1.5 0.15 1.100107 11.170018

0.18 1.075828 11.076295

0.2 1.052414 10.987043

0.1 0 1.102980 11.239276

0.015 1.138984 11.293718

0.02 1.149432 11.308099

0.01 0 1.127876 12.003672

0.15 1.127876 10.914808

0.2 1.127876 10.551853

0.1 1 1.127876 13.305740

2 1.127876 12.249361

2.5 1.127876 11.751529

3 5 1.127876 4.256010

7 1.127876 6.949639

8 1.127876 8.366637

Fig. 4 Skin friction coefficient Re1=2x Cf vs e for various values of
k.

Fig. 5 Local Nusselt number Re�1=2
x Nux vs e for various values

of k.
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M ¼ 0:01ð Þ and Sc3 ¼ 2:2901 M ¼ 0:02ð Þ. Moreover, the other

impact of M is to boost the values of Re1=2x Cf and Re�1=2
x Nux

with the increasing values of M. Physically, the rising strength
of the Lorentz force from the operation of the magnetic field

essentially opposes the fluid motion. However, the application
of suction helps in stabilizing the unconfined vorticity within
the shrinking flow which then tends to induce the skin friction
coefficient and simultaneously, enhance the fluid velocity as

depicted in Fig. 14 (first solution). Furthermore, the addition
of the magnetic parameter also enhances the thermal rate by
boosting the heat transfer operation. As earlier stated, the
magnetic parameter assists the fluid motion, which syn-
chronously drives the hot particles towards the plate. This

active operation augments the heat transfer rate and reduces
the temperature (first solution) as shown in Fig. 15.

The impact of Eckert number Ec and radiation parameter

R are deliberated in Figs. 10 and 11, respectively. The value
of Sc remains unchanged where Sc ¼ 2:3163 for each value
of Ec and R considered since the Eckert number (arise from

the viscous dissipation and Joule heating effect) and thermal
radiation parameter does not directly affect the momentum
equation (flow progress). However, since these parameters



Fig. 6 Skin friction coefficient Re1=2x Cf vs S for various values of

k.

Fig. 7 Local Nusselt number Re�1=2
x Nux vs S for various values

of k.

Fig. 8 Skin friction coefficient Re1=2x Cf vs S for various values of

M.

Fig. 9 Local Nusselt number Re�1=2
x Nux vs S for various values

of M.

Fig. 10 Local Nusselt number Re�1=2
x Nux vs S for various values

of Ec.

Fig. 11 Local Nusselt number Re�1=2
x Nux vs S for various values

of R.
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Fig. 17 Temperature profiles hðgÞ for different values of R.

Fig. 12 Velocity profiles f0ðgÞ for different values of k.

Fig. 13 Temperature profiles hðgÞ for different values of k.

Fig. 14 Velocity profiles f0ðgÞ for different values of M.

Fig. 15 Temperature profiles hðgÞ for different values of M.

Fig. 16 Temperature profiles hðgÞ for different values of Ec.
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are related to the energy equation, it is found that the distribu-

tion of Re�1=2
x Nux reduces with the addition of Ec and R: This

thermal behaviour is accomplished for both first and second

solutions. On the other hand, from Figs. 6–11, it is also observ-
able that the raising in S significantly enhances the distribution

of Re1=2x Cf Re�1=2
x Nux. Physically, the suction parameter can

enhance the flow including the skin friction coefficient by
restraining the vorticity generation due to the shrinking move-
ment and simultaneously, helps in deferring the boundary

layer separation (Miklavčič and Wang [43]). Meanwhile, the
increment of thermal rate is related to the progressive move-
ment of the hot fluid particles towards the plate surface.

The obtained dual solutions are also displayed for the distri-
bution of the velocity and the temperature as portrayed in
Figs. 12–17 for fixed values of the pertinent parameters. The

far-field boundary conditions were satisfied asymptotically. In
Fig. 12, as k increases, the first solution of the fluid velocity
decreases while the second solution shows an increment. How-
ever, the temperature distribution as displayed in Fig. 13 shows

a contradictory behaviour. Figs. 14 and 15 emphasise the impact
of themagnetic parameter in enhancing the velocity profile (first
solution) while depreciating the temperature profile (first solu-

tion). Previous discussion for Figs. 8 and 9 (impact of M on
the skin friction and thermal progress) has highlighted the phys-
ical reason for this trend. Similar results have been figured out

for the variation of Ec and R as depicted evidently in Figs. 16
and 17 where both dual distributions show an ascending trend
of the temperature profile. This reflects the reduction of heat

transfer operation which synchronously, raises the fluid temper-
ature. Physically, the heat is transmitted from the wall surface to
the fluid, and as the radiation parameter increases, the heat
transfer rate diminishes which signifies that the fluid tempera-

ture near the wall is still hotter than the far-field temperature
[70]. Meanwhile, the Eckert number arise from the generation
of Joule heating, viscous dissipation and magnetic field effects.

These effects physically produces heat from the electric current
source to the conducting shrinking plate and simultaneously,
increase the temperature [71].

Fig. 18 presents the variation of the smallest eigenvalues a
against S where the positive eigenvalue stands for the first solu-
tion, while the negative eigenvalue for the second solution.
Fig. 18 Eigenvalues a vs mass flux parameter S.
Hence, it can be concluded that the first solution is stable
and significantly reliable as time progresses, while the opposite
manner is for the second solution.

5. Conclusion

An analysis of radiative heat transfers in a Reiner–Philippoff

fluid flow over a nonlinearly shrinking sheet was considered.
The effects of magnetohydrodynamics and viscous dissipation
were also taken into account. The findings are as follows:

� Dual solutions exist by exerting the suction parameter on
the plate surface.

� The Reiner–Philippoff fluid parameter reduces the friction
factor and the local Nusselt number due to the obstacles
that appear to the shear-thinning phenomenon which

reduces fluid interaction with surfaces and generates fewer
drag forces.

� The suction and magnetic parameters appears to allow the
Reiner–Philippoff fluid molecules to gain control of the sur-

face, resulting in the enhancement of the heat transfer rate.
� The inclusion of Eckert number and thermal radiation
parameter reduces the heat transfer performance in the sur-

face domain.
� The stability analysis indicates that the first solution is
stable, whereas the second is unstable, as time progresses.
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