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Abstract: Solvent extraction of red pigments from fermented solids is reported. The pigments were produced 

by solid-state fermentation of oil palm frond (OPF) biomass with the food-safe fungus Monascus purpureus 

FTC 5357. The effects of extraction solvent and other operational conditions (pH, temperature, agitation rate, 

contact time) on the recovery of pigments are discussed. The recovery was maximized using aqueous 

ethanol (60% ethanol by vol) as solvent at pH 6, 30 °C, with an extraction time of 16 h and an agitation rate 

of 180 rpm. A fermented solids dry mass of 1 g was used for each 160 mL of solvent during extraction. The 

kinetics of extraction were assessed by fitting the experimental data to different models. Peleg’s model proved 

to be the best for describing solid-liquid extraction of the pigments under the above specified conditions. The 

highest extraction yield of red pigments under the above specified optimal conditions was 2076.08 AU g1 

dry fermented solids. 

HIGHLIGHTS 
 

 Red pigment of Monascus purpureus effectively extracted from dried fermented oil palm frond 

(OPF) using 60% ethanol. 

 Maximum pigment recovery was obtained at 30 C, 180 rpm agitation speed, 16 h, ratio of 1:60 

solid to solvent and pH 6 of 60% ethanol. 

 Peleg’s model proved to be the best for describing solid-liquid extraction of the pigments under the 

above specified conditions. 
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INTRODUCTION 

Natural colorants extracted from plants, animals and microorganisms are in demand as substitutes for 

synthetic pigments used as food colorants. Although most natural colorants are extracted from plants [1–5], 

microorganisms [6–11] offer an attractive alternative for several reasons. Unlike plants, microorganisms can 

be grown anywhere, anytime and under controlled culture conditions to provide a high and consistent 

productivity of the target compound. This work is concerned with solvent extraction of red pigments produced 

by a Monascus fungus grown on an agroindustrial solid substrate. Solid-state fermentation (SSF) has been 

used to produce many fungal products [12,13] including Monascus pigments [10,14,15-17]. Oil palm fronds 

are an agricultural residue of the palm oil industry [18], which can be effectively used for growing Monascus 

purpureus [19,20]. Although extraction of the red pigments from such fermented solids has not been 

demonstrated. Pigments and other metabolites produced by SSF are generally recovered by solvent 

extraction of the fermented solids [17,21]. Extraction is expensive and attaining a high recovery yield of the 

target compound requires an optimally designed recovery scheme. A suitable nontoxic extraction solvent 

must be selected to recover the pigments for use as food colorants. Extraction may be affected by diverse 

factors including pH, contact time, solvent-to-solids ratio and temperature.  

A simple solvent extraction requires less sophisticated equipment compared to other methods such as 

Soxhlet extraction [22], ultrasound-assisted extraction [23] and microwave-assisted extraction [24]. Extraction 

solvent penetrates the solids being extracted and dissolves the target compound, preferably preferentially 

relative to the many other compounds that may be present. The dissolved solute is transported from the 

interior of the solid particles to their surface by pore diffusion and from there to the bulk liquid phase [25]. 

Mass transfer of the solute is influenced by temperature as the diffusion coefficient generally increases with 

temperature [3,25]. In addition, turbulence at the solid-liquid interface and in the bulk solvent influences mass 

transfer [3,25].  

Extraction of diverse natural products has been studied, but mainly from plant materials [1, 3, 4, 26-28], 

not fermented solids. Thus, this work reports on solvent extraction of Monascus red pigments from fermented 

solids. Optimal solvent and other extraction conditions (pH, temperature, solid-to-solvent ratio, solid-solvent 

contact time, mixing regimen) are established and extraction kinetics are quantified. Kinetics study quantified 

in the study helps in understanding conditions that affect the extraction rate, especially when designing 

extraction unit for industrial scale. 

MATERIAL AND METHODS  

Culture and Solid-State Fermentation 

Monascus purpureus FTC 5357 was purchased from the culture collection of Malaysian Agricultural 

Research and Development Institute (MARDI), Malaysia. The fungus was maintained on potato dextrose 

agar (PDA) plates at 4 C and subcultured every month. Oil palm fronds (OPF) were collected from Felda 

Lepar Hilir oil palm plantation, Gambang, Pahang, Malaysia. The fresh fronds were cut into 5 cm long pieces 

and dried in an oven at 60 C for 1 day, ground and sieved (Retsch AS 200 Basic, Germany) to obtain 1 mm 

particles [29]. These OPF solids were stored in plastic bags at room temperature until needed. When needed, 

the dry OPF powder was mixed with distilled water such that the resulting slurry contained 1 g of OPF powder 

for each 18 mL of water, autoclaved at 121 °C for 15 min, and cooled to room temperature [29]. The heat 

treated OPF solids were recovered by filtration, washed with the same volume of distilled water as the original 

slurry sample, recovered again and oven dried at 60 °C for 24 h [29]. The pretreated OPF solids were mixed 

with peptone (4 g peptone per 100 g dry pretreated solids), sufficient distilled water was added to obtain a 

moisture content of approximately 75% (wt/wt) and the pH was adjusted to 8 using HCl (0.5 M) or NaOH (0.5 

M). This moist solid medium was autoclaved at 121 °C for 20 min, cooled to room temperature, inoculated 

with a standardized spore suspension (20 mL suspension per 100 g dry OPF solids) of M. purpureus, and 

mixed well aseptically. The inoculated solids were incubated in an Erlenmeyer flask at 30 °C for 8 days. 

The spores for inoculation had been grown on PDA slants at 30 °C for 8 days. Sterile distilled water was 

added to the slant and the spores were gently scraped off from the agar. The spores were counted using a 

Neubauer haemocytometer and the suspension was standardized by adding distilled water to a concentration 

of 1.0107 spores mL1. 
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Extraction Process 

Fermented OPF solids were dried in an oven at 60 °C for 24 h. In different experiments, the same original 

batch of fermented dried solids was extracted with different solvents and under different conditions. Three 

solvents were evaluated: distilled water as control, 60% ethanol (60:40 by volume ethanol and water) and 

95% ethanol (95:5 by volume ethanol and water). All extraction experiments used 1 g of dry fermented solids 

per 160 mL of fresh solvent [29]. Dried fermented solids (0.5 g) were placed in a 250 mL Erlenmeyer flask 

and mixed with the solvent and agitated at 180 rpm in an incubator-shaker at 30 C, for 1 h. This procedure 

was used to identify the most effective extraction solvent.  

Using the best identified extraction solvent, further separate experiments were carried out at different 

extraction temperatures (i.e., 30, 40, 50, and 60 °C). The other conditions remained fixed (agitation speed = 

180 rpm, extraction time = 2 h). Once the most effective extraction temperature had been identified, all future 

experiments used this temperature. Further separate experiments were carried out using different pH values 

(i.e., pH 2, 4, 6, and 8) for the extraction solvent while keeping the agitation speed and extraction time, as 

specified above. The solvent pH was adjusted as specified earlier for the fermentation step.  

Using the optimal extraction solvent, temperature and pH identified in earlier experiments, further 

separate experiments were conducted at different agitation speeds during extraction (i.e., 100, 140, 180, and 

220 rpm) while the extraction time remained fixed at 2 h. Once a suitable extraction speed had been identified, 

further separate experiments were carried out to assess the effect of extraction time (i.e., 4, 8, 12, 16, 20, 

and 24 h). The above sequential scheme of experiments identified an optimal extraction solvent and the other 

conditions (temperature, pH, agitation speed, contact time). All extractions were carried out in triplicate 

experiments.  

Pigments Assay 

On completion of the extraction period, the suspension was set aside for 15 min under static conditions 

at room temperature and then filtered using a Whatman No. 1 filter paper (GE Healthcare, Pittsburgh, PA, 

USA). A UV/VIS spectrophotometer (Thermo Scientific GenesysTM 10S UV-Vis Spectrophotometer, USA) 

was used to measure the absorbance of the extract at a wavelength of 500 nm [14]. The blank was an extract 

of uninoculated sterilized OPF solids prepared using the same solvent as the extract of fermented solids [20]. 

The measured absorbance of the sample was corrected for any dilution required prior to measurement [20]. 

The corrected absorbance (AU, absorbance units) was used to express the concentration of the pigments as 

AU g1 of the fermented dry solids extracted.  

Kinetics of Extraction 

Three widely used models of extraction kinetics [28,30] were evaluated for extraction of the red pigments 

from the fermented solids. The models were the first-order kinetic model [31], Peleg’s model 

[4,26,28,30,32,33] and logarithmic model [4,26,28,30]. The equations of the model were as follows: 

𝒅𝑪𝒕

𝒅𝒕
= 𝒌𝟏(𝑪𝒔 − 𝑪𝒕)  (1) 

               for the first-order model;  

𝑪𝒕 = 𝑪𝟎 +
𝒕

𝒌𝟐+𝒌𝟑𝒕
  (2) 

               for Peleg’s model; and  

𝑪𝒕 = 𝒂 𝐥𝐨𝐠 𝒕 + 𝒃  (3) 

               for logarithmic model.  

In the above equations, Ct (AU g1) was the concentration of pigments extracted at time t (min), k1 (min1) 

was the first-order extraction rate constant, Cs (AU g1) was the maximum concentration of the pigments that 

could be extracted, C0 (AU g1) was the initial pigments concentration (i.e. pigments concentration at t = 0 

min), k2 (g min AU1) was Peleg’s rate constant, k3 (g AU1) was Peleg’s capacity constant [32], and a (AU 

g1 min1) and b (AU g 1) were constants in Equation (3). 
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RESULTS AND DISCUSSION 

Effect of extraction solvent 

Choice of extraction solvent is important. A solvent must be able to effectively solubilize the targeted 

metabolite. In addition, it should be cheap for large scale use and easily separable from the solute after 

extraction. A solvent used in extraction of food products must be safe and nontoxic. Therefore, water and 

aqueous ethanol solutions were assessed (Table 1) as preferred solvents. In separate experiments, the 

polarity of extraction solvent was varied by using different proportions of ethanol in water (Table 1). All 

solvents proved capable of extracting the red pigments, but 60% ethanol was by far the most effective solvent 

and water was the least effective (Table 1). For otherwise identical conditions, extraction with 60% ethanol, 

the optimal solvent, recovered nearly 17-fold more pigments compared to extraction with water. Also, 60% 

ethanol was nearly 5-fold more effective in extraction compared to 95% ethanol (Table 1). In earlier work on 

extraction of pigments from Monascus-fermented solid substrates, 60% ethanol was reported to be the most 

effective solvent [15], but the substrates used (various grains, cassava starch, potato) were all noncellulosic 

and morphologically quite different compared to the pretreated oil palm fronds used in the present work. 

Table 1. Maximum concentration of red pigments extracted using different solventsa 
Solventb Concentration (AU g1) 

Distilled water 3.23 

60% ethanol  53.73 

95% ethanol 10.32 
a Extraction conditions were: 1 g fermented solids per 160 mL solvent; agitation speed = 180 rpm; temperature = 30 C; 

extraction time = 1 h 
b Solvents are tabulated in decreasing order of polarity. 

Dielectric constant of a solvent is an indicator of its polarity. A higher dielectric constant means a higher 

polarity. At 20 C, the dielectric constant of pure water and ethanol are 80.1 and 25.2, respectively. For both 

pure solvents, dielectric constants decrease with increasing temperature and the same is expected for a 

mixture of water and ethanol. Increasing concentration of ethanol in water reduces the polarity of mixture. At 

a suitable polarity of solvent, the solubility of the red pigments is maximized, that is the pigments are most 

compatible with the solvent in terms of polarity. In addition, the pore diffusion of a solvent in a solid matrix 

such as the fermented solids can be affected by solvent polarity. A solvent less compatible with the solid 

matrix may have a reduced potential to penetrate the solids and recover the pigments [34]. Similar finding 

was found by Srianta and coauthors [35], where high Monascus pigment was extracted at 7:3 ethanol to 

water ratio. In view of Table 1, 60% ethanol was the most effective solvent and it was used in all subsequent 

work.  

Effect of temperature on extraction 

For otherwise fixed conditions, temperature affected recovery of the pigments as shown in Figure 1. 

Extraction was most effective at 30 C compared to higher temperatures, which was supported by earlier 

work [35]. Generally, a higher temperature enhances the solubility of a solute and, therefore, should increase 

recovery. Furthermore, an increasing temperature reduces solvent viscosity and increases solute diffusivity 

and both these effects are expected to improve diffusive mass transfer of the pigments within the solid pores 

and in the bulk solvent [25] to increase the observed rate of extraction. The results in Figure 1 were therefore 

contrary to expectations.  
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Figure 1. Amount of pigments extracted from dry fermented solids at different temperatures. The extraction solvent was 

60% ethanol. The other extraction conditions were: 1 g dry solids in 160 mL solvent; agitation speed = 180 rpm; 

extraction time = 2 h. Columns with different superscript letter are significantly different (P<0.05) via Duncan’s Multiple 

Range Test.  

Monascus pigments are known to be susceptible to thermal degradation at temperatures >60 C 

although slow degradation does occur at lower temperatures (30 to 50 C) in a neutral (pH 6 to 8) medium 

[36]. For the measurements in Figure 1, the pH was not adjusted but was around 7 to 8, the typical range for 

Monascus-fermented solids [11], and therefore the observed reduced recovery at 40–50 C must have other 

contributing factors. For example, the solvent may impact thermal stability. For the data in Figure 1, the 

solvent was 60% ethanol whereas in the earlier work [36] it was a buffered aqueous solution. In the present 

work, pigments recovery was highest at 30 C and therefore this extraction temperature was used in all 

subsequent work.  

Effect of pH on extraction 

Extraction is known to be strongly affected by pH especially if the solute being extracted changes 

ionization status with pH. In view of their chemical structure [14], the red pigments of Monascus are unlikely 

to be affected by changes in pH. Nonetheless, extractions were carried out a different pH values in the range 

of pH 2 to 8. The results are shown in Figure 2. A maximum amount of pigments (172 AU g1) was extracted 

at pH 6, although at pH 4 extraction was reduced by only 17% and at pH 8 it was reduced by 22% relative to 

the maximum. Therefore, extraction was not highly sensitive to pH, suggesting that the chemical structure of 

the red pigments was mostly unaffected by changes in pH. As pH 6 was most effective for extraction, all 

subsequent experiments used this extraction pH.  
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Figure 2. Effect of pH on extraction of red pigments. Amounts of red pigments extracted from dry fermented solids at 
various pH values are shown. The extraction conditions were: Extraction solvent = 60% ethanol; 1 g dry solids in 160 

mL solvent; agitation speed = 180 rpm; temperature = 30 C; extraction time = 2 h. Columns with similar superscript 
letter are not significantly different (P<0.05) via Duncan’s Multiple Range Test.  

Effect of agitation rate on extraction 

Effect of different agitation speeds on pigments recovery is shown Figure 3. The pigments recovery 

increased as the agitation speed was increased to 180 rpm, but the recovery decreased distinctly as the 

agitation speed increased further to 220 rpm. The maximum pigments recovery at 180 rpm was 170 AU g1 

dry fermented solids. As agitation intensity increases, more of the solid material is brought into suspension 

and this improves solid-liquid contacting to enhance extraction. In addition, mass transport of a solute through 

pore diffusion within the substrate and the exterior of solid particles is improved with increased agitation and 

mixing in the slurry [25,27] and this contributes to enhanced extraction. Increasing turbulence at the external 

surface of a particle causes pressure fluctuations that induce mixing also within the pores connected to the 

surface to enhance intraparticle mass transport of solute [25]. Once the solid particles are fully suspended, 

further increase in agitation speed has little effect on solid-liquid mass transfer which is governed by relative 

motion between the phases [25] as determined by differences in densities of the phases [25]. This explains 

an absence of further increase in pigments recovery once the agitation speed increased beyond 180 rpm 

(Figure 3). Unbaffled Erlenmeyer flasks placed on an orbital shaker platform were used in extraction. In such 

devices, the slurry simply swirls instead of mixing if the agitation speed is too high. This effect likely explained 

the reduced pigments recovery once the agitation speed was further raised to 220 rpm (Figure 3). As 

pigments recovery was highest at 180 rpm, all future experiments used this agitation speed.  
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Figure 3. Effect of agitation rate on pigments extraction. The extraction conditions were: Extraction solvent = 60% 

ethanol; 1 g dry solids in 160 mL solvent; pH = 6; temperature = 30 C; extraction time = 2 h. Columns with different 
superscript letter are significantly different (P<0.05) via Duncan’s Multiple Range Test.  

Effect of solid-liquid contact time on extraction.  

The contact time between the extraction solvent and the solids being extracted affects recovery of the 

solute. Solute recovery progressively increases with time until an equilibrium is reached. At equilibrium further 

extraction ceases either because the solvent has become saturated with the solute, or the maximum possible 

amount of solute has been extracted. The previously identified optimal extraction conditions (60% ethanol 

used as extraction solvent; 1 g dry solids in 160 mL solvent; 180 rpm; pH 6; 30 C) were used to establish 

the time needed to maximize pigments recovery. Samples collected at 4 h intervals for 24 h were used to 

measure the pigments recovery. The results are shown in Figure 4. Pigments recovery progressively 

increased with contract time until equilibrium was reached at 16 h (Figure 4). The maximum pigments 

recovery at 16 h was 2076.08 AU g1 dry fermented solids. Thus, under the specified operational conditions, 

extraction was complete at 16 h. At 16 h, nearly 2.3-fold more pigments was extracted compared to the 

situation at 4 h (Figure 4). An extraction period of up to 16 h at the above specified operational conditions 

was used to assess the extraction kinetics discussed in the following section.  
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Figure 4. Effect of contact time on extraction. The extraction conditions were: Extraction solvent = 60% ethanol; 1 g dry 

solids in 160 mL solvent; agitation speed = 180 rpm; pH = 6; temperature = 30 C. Columns sharing the same superscript 
letter are not significantly different (P<0.05) via Duncan’s Multiple Range Test.  

Comparison of kinetic models of pigments extraction.  

The pigments concentration versus contact time data were plotted as shown in Figure 5. Straight line 

plots were expected for the kinetic models that most closely matched the experimental data. Regression lines 

were calculated for the data plotted according to the requirements of the first-order model, Peleg’s model and 

the logarithmic model (Figure 5). The coefficient of determination (R2) of the straight lines (Figure 5) and root 

mean square error (RMSE) for model-predicted pigments concentration compared to the measured data, are 

shown in Table 2. From the plots (Figure 5) and the data in Table 2, extraction clearly did not follow first-

order kinetics. Both Peleg’s model and logarithmic model fitted well the experimental data (Figure 5 B, C), 

but the RMSE value for logarithmic model was more than 40-fold higher compared to RMSE for Peleg’s 

model (Table 2). For product recovery from some plant materials, both Peleg’s and logarithmic models have 

been reported to equally well describe the extraction kinetics [4,28,30]. In extraction of pigments from 

fermented solids, Peleg’s model best fitted the experimental observations. 

Table 2. Kinetic constants, coefficient of determination (R2) and root mean square error (RMSE) for the extraction 

modelsa  
Model Model constant R2 RMSEb 

First-order kinetics  k1 = 0.0153 min1 0.8183 2.447 
Peleg’s model  k2 = 1.8793 g min AU1, k3 = 3.3103 g AU1 0.9758 0.213 

Logarithmic model  a = 170.87 AU g1 min1, b = 318.24 AU g 1 0.9628 8.821 

a The extraction conditions were: 1 g fermented solids per 160 mL solvent (60% v/v ethanol); agitation speed = 180 rpm; 

temperature = 30 C; pH = 6  
b Calculated using the following equation: 

RMSE = √
1

𝑛
∑ (𝐶𝑡,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐶𝑡,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)

2𝑛
𝑖=1   

where n is the number of measurements, Ct,measured is the measured concentration of the pigments at time t, and Ct,calculated 

is the pigments concentration calculated using the model at time t. 
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Figure 5. Pigments concentration versus time data plotted using linearized forms of the equations for: (A) first-order 
kinetics; (B) Peleg’s model; and (C) logarithmic model. All data were obtained for extraction with 60% ethanol at the 

following conditions: 1g dry fermented solids for 160 mL solvent, temperature = 30 C, pH = 6, and agitation speed = 

180 rpm. Ct (AU g1) is the concentration of pigments extracted at time t (min), Cs (AU g1) is the maximum concentration 

of the pigments that could be extracted and C0 (AU g1) is the initial pigments concentration (i.e. pigments concentration 
at t = 0 min). 
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CONCLUSION 

The solubility of the red pigment of Monascus purpureus is maximized at a suitable solvent polarity, 

which is 60% ethanol. The yield recovery was maximum at pH 6, temperature of 30 C, agitation speed of 

180 rpm, and contact time of 16 h. Kinetics models of red pigment extraction constructed were in conformity 

to Peleg’s model and logarithmic model. However, Peleg’s model best fitted the experimental observations 

with lower RMSE. Under the above specified optimal extraction conditions, Peleg’s rate constant k2 was 

1.8793 g min AU1 and the capacity constant k3 was 3.3103 g AU1. 
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