THE EFFECTIVENESS OF PALM OIL CLINKER (POC) IN GABION WALL FOR SLOPE PROTECTION

LIM LI YANG

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

THE EFFECTIVENESS OF PALM OIL CLINKER (POC) IN GABION WALL FOR SLOPE PROTECTION

LIM LI YANG

Thesis submitted in partial fulfillment of the requirements for the award of the B. Eng (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources

UNIVERSITI MALAYSIA PAHANG

Г

MAY 2019	PERPUSTAKAAN UNIVERSIT! MALAYSIA PAHANG	
	No. Peyolohan	No. Pangyilar
	T001231	FKASA
	Taro.	.1569
		2219
	1 5 OCT 2020	Bc.

G

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : LIM LI YANG ID Number : AA15154 Date : 31 MAY 2019

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Dr. Amizatulhani for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my degree study.

Next, thank to my fellow technician assistants of Soil & Geotechnical Engineering Laboratory, Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang (UMP) for their fully support and assistance. I would like to thanks my good buddys, Hafiz, Izzat and Asyraf for their help all along the time. I would never forget all the chats and beautiful moments I shared with them.

I am grateful to my parents, who have provided me through moral and emotional support in my life. I am also grateful to my other family members and girlfriend Mun Lin who have supported me along the way.

Lastly, thanks to everyone that help me along this university life! Good luck!

ABSTRAK

Klinker kelapa sawit (POC) adalah produk sampingan dalam industri kelapa sawit yang biasanya digolongkan sebagai sisa yang menyebabkan masalah alam sekitar. Kerikil adalah bahan utama dinding gabion. Walau bagaimanapun, kerikil merupakan sumber yang tidak boleh diperbaharui di muka bumi, jadi bahan alternatif perlu dicadangkan untuk mengurangkan penggunaan kerikil. Kajian ini mengkaji keberkesanan klinker kelapa sawit untuk digunakan sebagai bahan dinding gabion untuk perlindungan cerun. Objektif utama kajian ini adalah untuk mengkaji keberkesanan POC dalam menggantikan kerikil di dinding gabion dengan nisbah 0%, 20%, 50%, 80%, dan 100% dari segi jumlah. Dinding gabion digunakan untuk mengekalkan model cerun yang terdiri daripada tanah dengan sudut yang paling kritikal jaitu 60°. Keamatan hujan berterusan diaplikasikan ke atas cerun dan bacaan transduser yang mencatatkan pergerakan dinding gabion telah diambil. Perbandingan dibuat berdasarkan bacaan yang diperolehi. Kajian didapati bahawa dinding gabion dengan 20% klinker minyak sawit mempunyai anjakan tambahan sebanyak 25% berbanding dengan gabion konvensional. Hasilnya menunjukkan klinker kelapa sawit kurang berkesan untuk digunakan sebagai bahan alternatif untuk kerikil dalam pembinaan dinding gabion. Walau bagaimanapun, bahan tersebut masih mempunyai potensi untuk mengurangkan penggunaan sumber semula jadi.

ABSTRACT

Palm oil clinker (POC) is a waste by-product of palm oil industry that usually treated as waste which may cause problem to the environment sustainability. Gravel is the main material of gabion wall. However, gravel is non-renewable resources on earth, so alternative material has to be suggested to reduce the usage of gravel. This research studied about the effectiveness of palm oil clinker to use as raw material of gabion wall for slope protection. The primary objective of this study is to study the effectiveness of POC in replacing the gravel in gabion wall with 0%, 20%, 50%, 80%, and 100% in term of volume. Gabion wall was used to sustain the slope model consisting of soil sample with critical angle of 60°. Constant rain intensity was added on the slope and transducer reading that recorded the movement of gabion wall was taken. Comparison was made based on the reading obtained. It was found that the gabion wall with 20% of palm oil clinker has 25% extra displacement when compared with conventional gabion. The result shows that palm oil clinker is less effective to use as alternative material for gravel in constructing of gabion wall. However, there are still have potential to reduce the usage natural resources.

TABLE OF CONTENT

DEC	CLARATION	
TIT	LE PAGE	
AC	KNOWLEDGEMENTS	ii
ABS	TRAK	iii
ABS	TRACT	iv
TAB	BLE OF CONTENT	v
LIS	r of tables	viii
LIS	r of figures	ix
LIST	Г OF SYMBOLS	xi
LIS	F OF ABBREVIATIONS	xii
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objective	2
1.4	Scope of Research	3
1.5	Significance of Research	3
CHA	APTER 2 LITERATURE REVIEW	4
2.1	Malaysia's Climate/Weather	4
2.2	Introduction to Slope Failure	5
2.3	Cases of Slope Failure in Malaysia	5
2.4	Current Practice/ Method to Ensure Stability of Slope	7

	2.4.1	Turfing	7
	2.4.2	Drainage System	7
	2.4.3	Retaining Wall	8
2.5	Applic	cation of Palm Oil Clinker in Industry	13
CHA	PTER 3	B METHODOLOGY	15
3.1	Introd	uction	15
3.2	Research Flow Chart		16
3.3	Materi	ial Testing	16
	3.3.1	Sieve Analysis	17
	3.3.2	Constant Head Test	18
	3.3.3	Specific Gravity Test	19
	3.3.4	Standard Proctor Test	20
	3.3.5	Atterberg Limit Test	20
	3.3.6	Direct Shear Test	22
3.4	Prepar	ration of Slope Model	23
	3.4.1	Testing box	23
	3.4.2	Gabion Retaining Wall	25
3.5	Model	l Testing	27
	3.5.1	Unprotected Slope with Various Angle	27
	3.5.2	Protected Slope with Critical Angle	29
CHAI	PTER 4	RESULTS AND DISCUSSION	31
4.1	Introd		31
4.2	Basic	properties of material	31
	4.2.1	Sieve Analysis	31

	4.2.2	Constant Head Test	33
	4.2.3	Specific Gravity Test	34
	4.2.4	Standard Proctor Test	35
	4.2.5	Atterberg Limit Test	37
	4.2.6	Direct Shear Test	38
4.3	Critic	al Angle of Slope	40
4.4	Effect	iveness of POC in gabion wall	41
	4.4.1	POC gabion with POC compacted backfill	41
	4.4.2	Gabion wall made of the best POC-gravel mixture with gravel	
		compacted backfill	43
CHA	PTER S	5 CONCLUSION	45
5.1	Introd	uction	45
5.2	Concl	usion	45
5.3	8 Recommedations 4		
REFE	ERENC	ES	47
APPE	ENDIX	A SIEVE ANALYSIS	50
APPE	ENDIX	B CONSTANT HEAD TEST	52
APPE	NDIX	C SPECIFIC GRAVITY TEST	54
APPE	ENDIX	D STANDARD PROCTOR TEST	55
APPE	ENDIX	E ATTERBERG LIMIT TEST	58

.

LIST OF TABLES

Table 3.1 Material used for gabion wall with different proportion	25
Table 4.1 Coefficient of uniformity and coefficient of curvature	32
Table 4.2 Result of constant head test	34
Table 4.3 Result of specific gravity test	35
Table 4.4 Summary of Standard Protor Test	37
Table 4.5 Summary result of Atterbeg Limit test	38
Table 4.6 Summary of cohesion and internal angle of friction for material	40
Table 4.7 Maximum reading recorded in transducer by each angle	41
Table 4.8 Maximum reading recorded in transducer by each proportion of gabion wall	43
Table 4.9 Maximum reading recorded in transducer by each proportion of compacted backfill in gabion wall	44

LIST OF FIGURES

Figure 2.1 Total rainfall for year 2016 in each state in Malaysia	5
Figure 2.2 Gabion wall were built to repair the concrete embankment that collapse	d 6
Figure 2.3 Turfing	7
Figure 2.4 Drainage system	8
Figure 2.5 Forces on Retaining Structure	9
Figure 2.6 Gabion wall	10
Figure 2.7 Cement masonry wall	10
Figure 2.8 Cantilever retaining wall	11
Figure 2.9 Counterfort retaining wall	12
Figure 2.10 Crib wall	12
Figure 2.11 Soil nailing wall	13
Figure 2.12 Lightweight concrete made by using POC (a) and granite (b)	14
Figure 3.1 Research flow chart	16
Figure 3.2 Gravel, POC and Soil	17
Figure 3.3 Soil sample collection at slope near Sekolah Sukan Gambang	17
Figure 3.4 Setting up the sieves to the sieve shaker machine	18
Figure 3.5 Details of constant head test	18
Figure 3.6 Small pycnometer method	19
Figure 3.7 Liquid limit test	21
Figure 3.8 Plastic limit test	21
Figure 3.9 Plasticity chart	22
Figure 3.10 Principle of shear box test: (a) start of test. (b) during relative displacement	23
Figure 3.11 Testing box with dimension 70cmx30cmx30cm	24
Figure 3.12 Rain simulator	24
Figure 3.13 Average rainfall of Gambang in 2018	24
Figure 3.14 Gabion wall for modelling testing	26
Figure 3.15 Material mixed according to volume of bucket	26
Figure 3.16 Gabion filled with 80% POC and 20% gravel	27
Figure 3.17 Position of transducer to record slope movement	28
Figure 3.18 Layout of unprotected slope	28
Figure 3.19 Side view of unprotected slope testing	29
Figure 3.20 Layout for protected slope	30
Figure 3.21 Plan view of protected slope	30

Figure 4.1 Particle size distribution of material	32
Figure 4.2 Unified Soil Classification System (USCS) for soil	33
Figure 4.3 Unified Soil Classification System (USCS) for gravel and POC	33
Figure 4.4 Compaction curve for soil	36
Figure 4.5 Compaction curve for gravel	36
Figure 4.6 Compaction curve for POC	37
Figure 4.7 Graph of moisture content against cone penetration	38
Figure 4.8 Peak shear stress against normal stress graph for soil	39
Figure 4.9 Peak shear stress against normal stress graph for gravel	39
Figure 4.10 Peak shear stress against normal stress graph for POC	40
Figure 4.11 Comparison of different angle to determine the critical angle for the slope	41
Figure 4.12 Variations of displacement against time for gravel and POC	42
Figure 4.13 The variation of displacement against time for gravel backfill and POC backfill	2 44

LIST OF SYMBOLS

c	Cohesion
Gs	Specific gravity
kN	Kilo Newton
kPa	Kilo Pascal
mm	Millimetre
mm/h	Millimetre per hour
μm	Micrometre
Wopt	Optimum moisture content
γ	Unit weight
Ymax	Maximum unit weight
$ ho_{d}$	Dry density
R ²	Correlation cohesion
%	Percent
0	Degree
φ	Angle of friction

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
LL	Liquid Limit
PL	Plastic Limit
POC	Palm Oil Clinker

CHAPTER 1

INTRODUCTION

1.1 Introduction

Every year, slope failure causing huge impact due to amount of losses to the people and country of Malaysia (Abd Rahim et al , 2017). For example, in 2008, July 2013, November 2013 and June 2015, slope failure have repeated occurred in Kampung Mesilou and caused trillions of Ringgit Malaysia for reconstruction and repairs. Therefore, slope protection has become an urgent issue to take attention. The suitable material used for the slope protection reinforcement need to be considered instead of slope condition because the material properties will affect the strength and durability of the retaining structure.

Gabion wall is one of the methods to overcome the problem of slope failure (Yuen, 2012). Gabions filled up with rock or other heavy material which provide stability to the slope. The interlocking effect of the packed stone and their mass functioned to support the slope (Hrvatska, 2018). However, gravel is non-renewable resources that may finish up one day in future. Therefore, alternative material is needed to be study to reduce the dependency on gravel.

Malaysia is one of the largest producers and exporters of palm oil in the world, which contributing to 11% of the world's oils and fats production and 27% of export trade of oils & fats (MPOB, 2011). During the extraction process, there is large number of waste by product produce at the same time, which is palm oil clinker (POC). The study is purposely using this waste material to use in construction industry in order to reduce to usage and dependency on natural aggregate.

According to researcher (Abutaha et al, 2016), POC shows its potential to replace aggregate in manufacturing of fresh concrete. It indicates that POC is very useful due to its properties and sustainability. The properties of POC is suitable to use as lightweight material that can save up 40% of aggregate during the batching process. This may reduce the cost of construction (Ahmad and Noor, 2009).

1.2 Problem Statement

Nowadays, palm oil was widely used as cooking oil and manufacturing of margarine and non-dairy creamers. Besides that, it is also used as raw material for soap and detergent. In 2016, Malaysia has 4.49 million hectares of land that was under oil palm cultivation due to its hot climate. Malaysia is one of the largest producers and exporters of palm oil in the world, which contributing to 11% of the world's oils and fats production and 27% of export trade of oils & fats (MPOC, 2016). The palm oil industry is looking forward for keep growing and developing.

During palm oil processing phases, there are plenty of waste by-products are produced. One of them is palm oil clinker (POC), which is obtained in large amount during the oil palm shell and fibre incineration process. POC has no economic value and consider as solid waste.

1.3 Objective

The main objectives of this research study are stated as follows,

- i. To determine the basic properties of testing material (Soil, Gravel and Palm Oil Clinker)
- ii. To identify the critical angle of the slope.
- iii. To determine the effectiveness of palm oil clinker in replacing gravel as material to make gabion wall.

1.4 Scope of Research

The main focus in this study is to identify the effectiveness of palm oil clinker in gabion wall. A model that simulate the slope is build up. The slope is formed in various angle which are 30° , 45° and 60° using soil sample that collected from same location and its critical angle is determined. In order to get the comparison result between gravel and palm oil clinker, several laboratory test such as particle size distribution test, specific gravity test and Atterberg limit test were conducted on the soil sample collected, palm oil clinker, gravel to obtain the value required (sieve analysis, specific gravity, unit weight of soil and more). After the critical angle was determined, the slope had been reinforced using gabion wall that made up using different proportion of gravel and POC. The results obtained were compared to identify the performance of each combination of material. The performance was evaluated based on the time taken for the slope to fail and collapse under same rain intensity.

1.5 Significance of Research

Since gravel is non-renewable material that may use up in one day, this research may contribute to the reduction of dependency of gravel in manufacturing of gabion wall. By combining palm oil clinker into the manufacturing material of the gabion wall, the quantity of raw material used to build up gabion wall which is gravel can be reduced. Meanwhile, the strength of the gabion wall with combination of gravel and POC is expected to have same strength or even greater strength than gabion wall that made up of 100% of gravel. Utilising the waste material is promoting the sustainable material to replace conventional material, which by this can preserve environment and save up construction cost.

REFERENCES

- Abd Rahim, I., Kiun You, L. and Mohd Salleh, N. (2017) 'Kampung Mesilou landslide: The controlling factors', Geological Behavior (GBR), 1(1), pp. 19–21. doi: 10.26480/gbr.01.2017.19.21.
- Abutaha, F., Abdul Razak, H. and Kanadasan, J. (2016) 'Effect of palm oil clinker (POC) aggregates on fresh and hardened properties of concrete', Construction and Building Materials, 112, pp. 416–423. doi: 10.1016/j.conbuildmat.2016.02.172.
- Ahmad, M. H. and Noor, N. M. (2009) 'PHYSICAL PROPERTIES OF LOCAL PALM OIL CLINKER AND FLY ASH Physical Properties of Local Palm Oil Clinker And Fly Ash', 1st Engineering Conference on Energy & Environment, (December), pp. 1–6.
- Borneo Post Online (2013) 'Gabions to stabilise slope at Bukit Setiawangsa'. Retrieved from https://www.theborneopost.com/2013/01/29/gabions-to-stabilise-slope-at-bukitsetiawangsa/
- B.S. Mohammed, W. Foo, M. Abdullahi (2014).Flexural strength of palm oil clinker concrete beams. Mater. Des., 53, pp. 325-331
- Climate, W. W. (2018) 'World weather and climate information'. Retrieved from https://www.climatestotravel.com/climate/malaysia
- Davison, D. L. (2000). Soil description and classification. Retrieved from http://environment.uwe.ac.uk/geocal/SoilMech/classification/default.htm
- Gopal Mishra (2009) 'Types of Reinforced Concrete Retaining Wall and Their Components Types of Reinforced Concrete Retaining Wall and Their Components Types of Reinforced Concrete Retaining Wall'.
- Gray, Donald H. and Leiser (2017) A. T., Biotechnical Slope Protection and Erosion Control, Leiser Van Reinhold Inc.

- Hrvatska (2018) 'Gabion walls function, application, advantage'. Retrieved from https://www.geotech.hr/gabionski-zid/
- Hwang C-L, Bui LA-T, Lin K-L, Lo C-T. Manufacture and performance of lightweight aggregate from municipal solid waste incinerator fly ash and reservoir sediment for self-consolidating lightweight concrete. Cem Concr Compos 2012;34:1159–66.
- Kanadasan, J. and Abdul Razak, H. (2015). Engineering and sustainability performance of self-compacting palm oil mill incinerated waste concrete. J. Cleaner Prod., 89 (2015), pp. 78-86
- Manual, et al. (2012) 'Chapter 5 : Physical Methods for Slope Stabilization and Erosion Control', pp. 30–59.
- M.A. Rashid (2012) Effect of replacing natural coarse aggregate by brick aggregate on the properties of concrete Dhaka Univ. Eng. Technol. J., 1 (3), pp. 17-22
- Measures, S. P. (1982) 'CHAPTER 5 SURFACE AND SLOPE PROTECTIVE MEASURES'. Retrieved from http://www.fao.org/3/T0099E/T0099e05.htm
- MPOB (2011) '(Malaysian Palm Oil Board). Malaysian Palm Oil Industry.', p. 2011. Retrieved from www.palmoilworld.org/about_malaysian-industry.html.
- MPOC (2016) 'The Oil Palm Tree', Malaysia Palm Oil Council, p. 54.Retreived from www.palmoilworld.org/about_malaysian-industry.html.
- Purpose, S. (2012) 'Slope Stabilization System'. Retrieved from http://terrafixgeo.com/wp-content/uploads/81835_TerraFirmBrochure.pdf
- Reddy, P. K. (2014). Experiment 10 Permeability (Hydraulic Conductivity) Test
 Constant Head Method. Retrieved from Engineering Properties of Soils Based on
 Laboratory Testing: http://cemmlab.webhost.uic.edu/Experiment%2010Permeability.pdf

- Rica (2017) 'Malaysia Climate and Weather'. Retrieved from https://www.climatestotravel.com/climate/malaysia
- Rodriguez Juan (2018) 'What Is Soil Nail Wall Construction' Retrieved from https://www.thebalancesmb.com/what-is-soil-nailing-construction-guidelines-and-tips-844577
- S.H. Hussein, K.N.B.M.C. Muda. (2012) Modeling of ultimate load for lightweight palm oil clinker reinforced concrete beams with web openings using response surface methodology Int. J. Civil Eng.
- Yuen, M. (2012) 'Bkt Setiawangsa landslip: Unsuitable slope protection method the likely cause, says expert - Nation | The Star Online', The Star Online. Available at: https://www.thestar.com.my/news/nation/2012/12/29/bkt-setiawangsa-landslipunsuitable-slope-protection-method-the-likely-cause-says-expert/