
AN 16 – BIT FIXED – POINT SQUARE ROOT OPERATION USING VHDL

AHMAD JUZAILI BIN ALIAS

UNIVERSITI MALAYSIA PAHANG

i

AN 16 – BIT FIXED – POINT SQUARE ROOT OPERATION USING VHDL

AHMAD JUZAILI BIN ALIAS

A report submitted in partial fulfillment of the

requirements for the award of the degree of

Bachelor of Electrical (Electronics) Engineering

Faculty of Electrical and Electronics Engineering

University Malaysia Pahang

OCTOBER 2008

ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : AHMAD JUZAILI BIN ALIAS

Date : 12 NOVEMBER 2008

iii

To my beloved parents and my siblings, I’m nothing without them.

iv

ACKNOWLEDGEMENT

First of all, I present my gratitude towards the almighty god for being able to

finish this project this far. Without his blessing, this project wont even started. During

doing this project, I realize many great people who is around me, my friends, my

supervisor, my family and the lecturers of Faculty of Electrical and Electronic

Engineering (FKEE).

Without their support, I won’t able to understand my project and do it throughout

the semesters. Special thanks and gratitude for my supervisor, Puan Nor Farizan Zakaria

for her kind support, guidance, knowledge and motivation on doing this project.

Without her help, I won’t have a clue of what I would be doing in this project. How

fortunate I feel to be supervised by this great and considerable person.

Lastly, I would want to thank my friends and my family for their earnest support

and motivation in order for me to think positive and strive to do the best in my project. I

am nobody without them besides me, may god bless you all in life.

v

ABSTRACT

Digital design is a part of human life nowadays; we cannot deny its existence in

our life. The simple example would be our computer. Behind its functionality in doing

its jobs and task, there is a complex design of digital system that play the role part of

executing the operation so that our computer can perform its task when given one. On

the other hand, square root is one of an important part in scientific calculation, computer

graphic applications. Hence, square root is one of the operation that important for

computer to performs its task. The programming languages used is VHDL (Very High

Speed Integrated Circuit Hardware Description Language). The software used is ISE

10.1 that were specially made to interface with Xilinx development board. Through

successfully creates it, simulation can be done and verify the system with it

functionality. Hence, a digital system that operates as fixed –point square root is

created.

vi

ABTRAK

Sama ada sedar atau tidak, sistem digital merupakan perkara yang menjadi satu

keperluan masakini. Contoh yang jelas sekali ialah komputer peribadi. Suatu operasi

ringkas yang dilaksanakan oleh komputer mempunyai mekanisme yang

menggerakkannya. Terdapat suatu reka bentuk sistem digital yang memainkan peranan

membolehkan fungsi yang dijalankan beroperasi dengan baik dan sempurna.Semakin

rumit tugas yang dilakukan, semakin rumit juga binaan sistem digital untuk

menggerakkan fungsi tersebut. Melihat kepada operasi punca kuasa, ia adalah suatu

operasi penting dalam pengiraan saintifik dan aplikasi imej. Dengan ini, suatu sistem

digital direka dengan tujuan untuk menjalankan operasi punca kuasa dengan

memasukkan suatu nilai dan secara automatik sistem tersebut akan mengira nilai punca

kuasa nilai yang dimasukkan. VHDL digunakan untuk memprogram sistem digital

tersebut. Aplikasi VHDL yang akan digunakan ialah ISE 10.1 yang dibuat oleh syarikat

Xilinx untuk FPGA keluaran syarikat tersebut. Konsep atau teori operasi yang

digunakan ialah Non – Restoring Square Root Algorithm. Di akhir projek ini, simulasi

ke atas sistem yang direka dapat dilakukan dan diuji samada ia dapat berfungsi sebagai

yang dijangka. Dengan itu, suatu sistem digital yang berfungsi telah berjaya direka.

vii

TABLE OF CONTENT

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABREVIATIONS xii

LIST OF APPENDICES xiii

1 INTRODUCTION 1

 1.1 Overview 1

 1.2 Objective 2

 1.3 Scope of the Project 2

 1.4 Problem Statement 3

 1.5 Project Contribution 3

 1.6 Thesis Organization 3

viii

2 LITERATURE REVIEW 5

 2.1 Digital System Design 5

 2.2 VHDL 8

 2.3 Square – Root Algorithm 9

 2.3.1 Mathematical Calculation 10

 2.3.2 Algorithm Calculation 13

3 METHODOLOGY 15

 3.1 Introduction 15

 3.2 Research Methodology 15

 3.3 Square – Root Algorithm 18

 3.4 Digital System Design 20

 3.4.1 Overall Design 20

 3.4.2 Data Path Unit 21

 3.4.3 Control Unit 22

 3.5 VHDL Coding 24

 3.5.1 Overall System 25

 3.5.2 Data Path Unit 27

 3.5.3 Control Unit 30

ix

4 RESULT AND DISCUSSION 32

 4.1 Introduction 32

 4.2 Data Path Simulation Result 33

 4.3 Control Unit Simulation Result 34

 4.4 Overall Simulation Result 35

 4.5 Performance 36

 4.6 Costing & Commercialization 37

5 CONCLUSION & RECOMMENDATION 38

 5.1 Conclusion 38

 5.2 Recommendation 48

REFERENCES 40

Appendixes A - B 42 - 67

x

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Control Vector signal for Each State 23

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Typical Activity Flow in Digital Design 7

2.2 Binary Calculation Using Algorithm 14

3.1 Flow Chart of the Project 17

3.2 Pseudo Code of the Algorithm 18

3.3 Flow Chart of the Algorithm 19

3.4 Block Diagram of Overall System 20

3.5 Data Path Unit 21

3.6 Control Unit Block Diagram 22

3.7 State Transition 24

3.8a VHDL coding for Master (overall system) 26

3.8b VHDL coding for TMAP (Data path unit) 27

3.8c VHDL coding for TMAP (Data path unit) 28

3.9 VHDL coding for TMAP (Data path unit) 29

3.10 VHDL coding for Cont_Unit (Control unit) 31

4.1 Data Path Simulation Result 33

4.2 Control Unit Simulation 34

4.3 Overall Simulation 36

xii

LIST OF ABBREVIATION

ASIC - Application – Specific Integrated Circuit

DoD - Department of Defense

FPGA - Field Programmable Gate Array

FSM - Finite State Machine

GUI - Graphical User Interface

HDL - Hardware Description Language

RTL - Register Transfer Level

VHDL - Very high speed integrated circuit Hardware Description
 Language

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Behavioral Code for Each Components 42

B ISE Software Tutorial Lab 50

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Digital system design has becoming a crucial technology that moves the

modern world. It has been contributing its hands in variety of field of activities. From

industrial to daily life, mankind cannot deny that digital system has been an

important need in this modern world now and future.

So, this development of technology of digital system is going forward for the

sake of modern technology in trying to reduce the cost production and maximized the

output of production as example for industrial field. In people daily life, they

expected in to do various kind of task that would ease our job despite being portable

and has limited resources. For example a handset, which in nowadays users not only

can use it as communication tools but also as entertainment tools. This is thanks to

digital system technology that has been developed and still developing as it offers

many possibilities in improving it.

In developing digital system design, a common techniques use is to used

VHDL language in order to programmed it in software where simulation can be

perform to do analysis of designed system. This approached has its advantages as its

does not make any cost as the programmed system can be programmed and erased

without the effort to alter the hardware

2

VHDL stands for (very high speed integrated circuit hardware description

language) is languages that enable the programmer describe the circuits of digital

design in textual form. So, it is preferred than other programming language such as

C++, Visual Basic and MATLAB which is usually a sequential languages.

Usually the hardware used would be a development board such as FPGAs

that being offers by many manufacturer, for example is Spartan-3 from Xilinx. This

development board has a chip that can be used to implement the designed digital

system for analysis afterward.

1.2 Objective

This project has 3 objectives;

1. To use a description language to creates digital system design.

2. To choose and understand a suitable algorithm to be implemented.

3. To operates a Fixed-point square root function with a digital system

design by simulation.

1.3 Scope of project

1. Output of the system would be in Fixed-point only, which means no

floating point will be expected to be in the output.

2. The language used would be VHDL that stands for (very high speed

integrated circuit description language).

3. The input would have maximum range of 16 bit which means the range

would be 0 to +65535 of unsigned number.

4. The design would be running trough simulation only, no implementation

into hardware involved.

3

1.4 Problem Statement

 The square root function is a basic operation in computer graphic and

scientific calculation application. Due to its algorithm complexity, the square root

operation is hard to be designed in digital system. Digital system is the system that

can realize the operation of square root operation in hardware. As known, digital

system has been used in daily life or industrial purpose that may have been in need of

square root operation to fully its functions.

 So, this project is being done to help create a prototype of digital system

design that can operate as square root operation that would be implemented in

hardware devices. Furthermore, the design created is reduced in cost and high in

performance by choosing the appropriate algorithm.

1.5 Project Contribution

 A prototype of functioning digital system that operates the fixed-point

square-root function with accurate output within the required limitation of Spartan-3

Xilinx FPGA board.

 A systematic approach of designing a digital design using VHDL language

with ISE 10.1 as the platform software used.

1.6 Thesis Organization

 This thesis is organized into five chapters. The first chapter introduced the

introduction of this project, project objective, scope of work, and contribution of this

project.

4

 Chapter 2 present the related reference studied that being used to do this

project. The algorithm used is also introduced in this chapter.

 Chapter 3 would explain about the project methodology which clearly

explained about how this project is planned and organized in completing the project.

 Chapter 4 presents the result for the system designed and discussion of

overall result.

 In the final chapter, the project research is summarized and the

recommendations for future works are presented. The cost of the whole project and

commercialization of it is also discussed here.

5

CHAPTER 2

LITERATURE REVIEW

 This chapter explained the VHDL language, digital system design and the

algorithm for square root function.

2.1 Digital System Design

 Digital system can be defined as “a combination of devices designed to

manipulate logical information or physical quantities that are represented in digital

form; that is, the quantities can only take discrete value [7].

 Other definition for Digital system is “an electronic system that operates on

two-valued electric signals, referred to as ‘1’ and ‘0’ ” [5].

 While, digital system design is defined as “a process that starts from the

specification of requirements and produce a functional design that is eventually

refined through a sequence of steps to a physical implementation.”[2].

 As integrated technology has enable more and more component to be in a

chip, digital system has become more complex. When digital system has become

complex, detailed design of the system at gate and flip-flop level would be tedious

6

and time-consuming. For this reason, hardware description languages have become

important in digital system design [8].

 VHDL will naturally leads to top – down design methodology, in which the

system is first specified at a high level and tested using a simulator. After the system

is debugged at this level, the design can gradually be refined, leading to a structural

description closely related to actual hardware implementation [8].

 Consider the design development of application-specific integrated circuit

(ASIC) for a specific purpose, unlike a microprocessor that being programmed to do

variety of task. The Figure 2.1 shows us the typical sequence activities that typically

takes place in ASIC design [2].

7

Figure 2.1: Typical activity flow in top-down digital system design

 The first step is to consider the specification of the requirement that the chip

is to satisfy. In other word, developers have to consider the limitation of the chips in

designing a digital system so that the designed system is capable to operate on the

chip. With these functional requirements, one can create a preliminary high-level

functional design. Furthermore, simulation is often used to converge to a functional

design that can meet the specified performance requirements [2].

 With the initial functional design, developers refined it to produce a more

detailed design description at the level of registers, memories, arithmetic units, and

state machines. This is the register transfer level (RTL) of the design [2].

Requirements

Functional Design

Register transfer
Level Design

Logic Design

Circuit Design

Physical Design

Behavioral simulation

RTL Simulation
Validation

Logic Simulation
Verification
Fault Verification

Timing Simulation
Circuit Analysis

Design Rule Checking

Description for manufacture

8

 Subsequence refinement of RTL description produces a logic design that

implements each of RTL components. Both RTL and logic simulation can ensure

that the design meets its original specification [2].

 At each level of these levels describe the design with various components. At

higher or abstract level, it has a smaller number of more powerful components such

as adders and memories. At lower and less abstract levels, it has a larger number of

simpler, less powerful components, such as gates and transistors [2].

 Each level of design hierarchy corresponds to a level of abstraction and has

an associated set of activities and design tools that support the activities at this level.

Moreover, throughout this hierarchy, simulation is commonly used technique.

Hardware description languages such as VHDL are targeted for use throughout this

design hierarchy and provide some degree of uniformity across the various levels [2].

2.2 VHDL

 VHDL stands for Very High Speed Integrated Circuit Hardware Description

Language. This VHDL language can be used for several goals in mind. “It may be

used for the synthesis of digital circuits, verification and validation of digital designs,

test vector generation for testing circuits, or simulation of digital systems” [2].

 VHDL can be described as a general-purpose hardware description language

that can be used to describe and simulate the operation of wide variety of digital

systems, ranging in complexity from a few gates to an interconnection of many

complex integrated circuits [8].

 VHDL is one of three popular modern HDL languages. A second HDL is

Verilog, it was developed to have a syntax similar to the C programming language.

The third HDL is SystemC that is developed on 2000s by several companies. Some

9

people say that SystemC is not a hardware description language but rather a system

description language [5].

 Back to history of VHDL development, “The Department of Defense (DoD)

sponsored this program with the goals of developing a new generation of high –

speed integrated circuits” [2]. This development continues until a team of DOD

contractor is awarded the contract to develop the language, and the 1st released in

1985 [2].

 It was then transferred to IEEE for standardization, after which

representatives from industries, government, and academic were further involved in

its development. Many standards have been released since then, and the latest is

IEEE 1164 standard [2].

 Comparing with conventional procedural programming languages, such as C

or Pascal, that’s describing procedures for computing a mathematical function or

manipulating data, VHDL is different. Rather than the program is a recipe consisting

of a sequence of steps defining how to perform a computation or manipulate data

value, VHDL language describes digital systems.

 One of the advantages of using VHDL languages is that it was designed to be

technology independent. If a design is described in VHDL, and implemented in

today’s technology, the same VHDL description could be used as a starting point for

a design in some future technology [8].

2.3 Square Root Algorithm

 There are many square root algorithms available for implemented using

VHDL language. For example are these three algorithms: Newton-Raphson method,

SRT-Redundant method and Non-Restoring Square Root Algorithm [1].

10

 The Newton-Raphson Method operates with Iteration methods that start with

initial (guess) value and improved accuracy of the result with each iteration. While

the SRT-Redundant method based on recursive relation, in each iteration will be one

digit shift left and addition. This method may generate a wrong resulting value at the

last digit position [1].

 Next, the Non-restoring method uses the two’s complement representation for

the square root result. With this method, an exact result value can be generated at

each iteration even in the last bit. Furthermore, there is no need to do complex

calculation as appear in SRT-Redundant method [1].

 Non – restoring method is chosen to be used in this project, this is because of

several advantages it has compared to other algorithms. Firstly, it only requires one

traditional adder/subtractor in each iteration compared to Newton – Raphson Method

which needs multipliers or even multiplexors [9].

 Secondly, it generates the correct resulting value even in the last bit. Next,

based on the resulting value of the last bit, a precise remainder can be obtained

without any correction or addition operation. Finally, it can be implemented at very

fast clock rate because of the very simple operation at each iteration. Hence, the Non

– restoring algorithm is adopted to do this project [9].

2.3.1 Mathematical Calculation

 In this section, an example is shown to show how is the calculation of square

– root by hand. So that, a clear understanding how the square – root value is obtained

without using calculator. The same method shown in [3] can be used to calculate the

example below.

Example: Find √127 to one decimal place.

11

First group the numbers under the root in pairs from right to left, leaving either one

or two digits on the left (6 in this case). For each pair of numbers it will get one digit

in the square root.

To start, find a number whose square is less than or equal to the first pair or first

number, and write it above the square root line (2).

Square the 1, giving 1, write that underneath the 1, and subtract. Bring down the

next pair of digits.

Then double the number above the square root symbol line (highlighted), and write it

down in parenthesis with an empty line next to it as shown.

Next think what single digit number something could go on the empty line so that

twenty-something times something would be less than or equal to 27.

21 x 1 = 21

22 x 2 = 44, so 1 works.

12

Write 1 on top of line. Calculate 1 x 21, write that below 027, subtract, bring down

the next pair of digits (in this case the decimal digits 00).

Then double the number above the line (11), and write the doubled number (22) in

parenthesis with an empty line next to it as indicated:

Think what single digit number something could go on the empty line so that two

hundred twenty-something times something would be less than or equal to 600.

222 x 2 = 444

223 x 3 = 669, so 2 works.

Calculate 2 x 222, write that below 600, subtract, and bring down the next digits.

Then double the 'number' 112 which is above the line (ignoring the decimal point),

and write the doubled number 224 in parenthesis with an empty line next to it as

indicated:

13

2246 x 6 = 13476, 2246 x 7 = 15729, which is less than 15600, so 6 works.

Thus to one decimal place, √127 = 11.3

2.3.2 Algorithm Calculation

 The algorithm used is Non – restoring square root algorithm. In this section, the

algorithm is used to calculate the binary square – root value.

Binary Square Roots

 In general, the procedure consists of taking the square root developed so far,

appending 01 to it and subtracting it, properly shifted, from the current remainder. The 0

in 01 corresponds to mutliplying by 2; the 1 is a new trial bit. If the resulting remainder

is positive, the new root bit developed is truly 1; When the remainder goes negative, first

enter a 0 as the next root bit developed. To this append 11. This result is shifted left the

proper number of times and "added" to the present remainder. Using the same method in

[4], it can solve the example as shown in Figure 2.2.

14

 1 0 1 1 .

) 01 11 11 11 . 00
 -1

 00 11 <--- positive: first bit is a 1
 -1 01 <--- Developed root is "1"; appended 01; subtract

 11 10 11 <--- negative: 2nd bit is a 0
 +10 11 <--- Developed root is "10"; append 11 and add.

 11 11 10 11 <---Overflow: 3rd bit is a one
 1 00 11 <---Developed root is "101";append 01 and subtract

 1 00 00 11 10 <--- positive: 4th bit is a one

Figure 2.2: Binary calculation using algorithm

The binary number ‘01111111’ equal to 127,

The fixed-point answer is ‘1110’ that is equal to 11 in decimal with remainder of 6

127 ‐ 11² = 6

15

CHAPTER 3

METHODOLOGY

3.1 Introduction

 The methodology of this project is represented in this chapter, which will

explain the steps and flow being done in order to complete this project. In other

words, the development of the digital system will be explained in this chapter.

3.2 Research Methodology

 Referring to the Figure 3.1, before we can develop the function, we have to

understand the operation of the function, which is the square root function. So we

have to know first how to yield a correct value of square root input value using the

algorithm we have chosen. In other words, we have to know and understand the

operation of the algorithm In order to do that, we have to use the algorithm to

calculate a square root value.

 After that, we have to understand some digital design component involved in

our algorithm operation. Some of the component is shift register, counter, adder and

data register. After we understand each component involved, its times to design the

digital system. We have to keep in mind the system design need some control

operation as these components cannot be enabled at the same time.

16

 As mentioned earlier, there would be a sequence of operation involved in this

system. So, we have to make a Control Unit to control the operation of each

component in the system that we describe as Data Path Unit. When we finally

incorporate these Control Unit and Data Path Unit, a completely functional system is

produced that enable to operates square root operation.

 As described in Figure 3.1, the Data Path Unit needs to be verified first

before designing the Control Unit. In order to do that, we need software that

compatible with VHDL language and can done a simulation of designed system. So,

we use ISE 10.1 software that also use for implementing digital design to Xilinx

manufactured FPGA board.

17

Figure 3.1: Flow Chart of the Project

Identify Algorithm

Understand the
algorithm operation

Understand Square Root
Operation

Understand VHDL

Design the Data Path Unit

Design the Control Unit

Program in VHDL

(ISE 10.1)

Simulation

Simulation

Integrate Control Unit
with Data Path Unit

Start

End

Functioning

Not
Functioning

Functioning

Not
Functioning

18

3.3 Square Root Operation and Algorithm

 The square root algorithm chosen in this project is Non-Restoring Square root

algorithm. This algorithm was chosen for it’s simplicity in its operation compared to

other algorithm. Thus, it would avoid using much component to compute each

operation in the algorithm. The pseudo code for this algorithm is enlisted in Figure

3.2.

Figure 3.2: Pseudo Code of the Algorithm

 The focus of the algorithm is on the partial remainder with each iteration. It

generates a correct resulting bit in each iteration. The operation is subtraction or

addition based on the sign of previous iteration.

 Based on the flow in Figure 3.3, we can see the operation is mostly depends

on the remainder of iteration. The operation starts with initial condition of remainder

equal to zero. After iteration happens, its will use the current remainder to examine

/*input value*/

/*Square-root value*/

/*Remainder*/

/*for each root bit*/

/*new Q:*/

/*new remainder:*/

/*-Q01*/

/*new remainder:*/

/*+Q11*/

/*newQ:*/

t

r

r

o

the sign of th

root value w

representing

operation fo

he remainde

which is Q. T

g each bits of

our times.

F

er. Dependin

This process

f the answer

igure 3.3: Fl

ng on the rem

will continu

r. So, if the a

low Chart of

D
in

Q
(

R
(

mainder sign

ues until i equ

answer is 4 b

f the Algorit

D be 16‐bit un
nteger (input

Q be 8‐bit uns
results)

R be 10‐bit int
remainder)

it will enter

ual to zero w

bits, its will l

thm

1

nsigned
t)

signed intege

teger

r the square-

which is

loop the

19

r

20

3.4 Digital System Design

 In this part, the structural description of the digital system designed is presented

here. It divided into three parts, the overall system, data path unit and control unit.

3.4.1 Overall System

 Figure 3.4 shows the block diagram of the whole system. As you can see, there is

two main components that integrate to create the system. In these components also have

a few smaller components operating inside it. The algorithm used is implemented in the

Data Path Unit. So, the design of the algorithm is the Data Path Unit itself. The Control

Unit is the one that control the Data Path Unit operation. With integrating these two

equally important components, the system will function correctly.

Figure 3.4: Block diagram of overall system

Control Unit Data Path Unit

Master (overall system)

Control

Vector

Output

Real

Clock

Reset

Start

Data

Output

16

16

1
1

6

1

1

21

3.4.2 Data Path Unit

 Figure 3.5 shows us the data path unit and its components inside it with some

interconnection between them are visible. An adder/subtractor is used in this Data Path

Unit. When the control input is 0, it will subtract, otherwise it adds. One resulting bits of

the answer will generated for each clock cycle. In this case, for input value of 16 bits, the

total clock cycle for generating the answer bits is 8 clock cycle.

Q => 8 bit

R=> 10‐bit

D => 16 bit

10 bit

0 sub

1 add

Data Register

Counter

1

Data

Output

Data Path Unit

Figure 3.5: Data Path

1

1

1

1

8

2

8

8

16

Add /Sub

Figure 3.5 Data Path Unit

22

3.4.3 Control Unit

 Figure 3.6 shows the block diagram of Control Unit, which is consist of finite

state machine. The Control Unit main purpose is to control the Data Path Unit

Operation. This was done by connecting the entire enable signal for each component

in Data Path Unit to a data bus known as Control Vector. With the enable signal

connected to Control Unit, it can control for which component would be enable and

operates at one time. With this in hand, the operation of Data path Unit can be

operating smoothly and the output can be obtained.

 Figure 3.7 show us the state available in the Data Path operation and the Table

3.1 shows us the corresponding control vector value for each state given. From the state

diagram we can see the operation of square root will execute only if the start signal is

activated. When the operation is activated, it will go through a sequence of state and

looping the sequence of state until the feedback signal from Data Path Unit signifies that

the current value in the output register is the real output.

Finite

State

Machine
Control Vector 0
Control Vector 1
Control Vector 2
Control Vector 3
Control Vector 4
Control Vector 5

Load

Add/Sub

Output True

Data
Path
Unit

Start

Reset

1

1

1

Figure 3.5: Control Unit Block Diagram

Data

Path

Unit

Figure 3.6: Control Unit Block Diagram

23

 We can see from here that, without the control output, the data path unit would

unable to process the data given correctly. Thus, it would be impossible to acquire the

correct answer without it.

Table 3.1: Control Vector signal for each state

State Load D_Shift Q_Shift Remainder Counter AddSub

S0 1 0 0 0 0 0

S1 0 0 0 0 0 1

S2 0 0 0 1 0 0

S3 0 0 1 0 0 0

S4 0 1 0 0 1 0

S5 0 0 0 0 0 0

24

Figure 3.7: State Transition

3.5 VHDL Coding

 The VHDL coding as mention earlier is the language that describes the digital

system. With structural description is acquired in above part, we can do the coding with

VHDL. This part is also divided by three parts that is Overall System, Data Path unit and

Reset = 0

Clock Trigger

Clock Trigger

S0

S1

S2

S3

S4

S5

Start = 0

Start=1

Reset = 1

Clock Trigger

Output true = 1

Clock Trigger

25

Control Unit. The software used is ISE 10.1 which is capable of programming in both

Verilog and VHDL language. Simulation also can be done using the same software.

3.5.1 Overall System

 The coding in Figure 3.8 describes the Figure 3.4, which is the block diagram of

the whole system. These coding describe the behavioral or operation of the system and

the interconnection between its components, that is Data path Unit and Control Unit.

Notice the italic word of TMAP and Cont_Unit which represent the Data Path Unit and

the Control Unit. The bold word of M1 is describing the connection of Data Path Unit

while M2 is for Control Unit.

26

Figure 3.8: VHDL coding for Master (overall system)

architecture Behavioral of master is

signal CV : STD_LOGIC_VECTOR(5 downto 0);

signal CountStop : STD_LOGIC;

component TMAP - - - - Data Path Unit

generic(width:integer:= 16);

Port (enable_D2 : in STD_LOGIC;

 enable_R2 : in STD_LOGIC;

 enable_Q2 : in STD_LOGIC;

 enable_count2:in STD_LOGIC;

 enable_as2 : STD_LOGIC;

 Load2 : in STD_LOGIC;

 Reset: in STD_LOGIC;

 clock_du : in STD_LOGIC;

 count_i2 : out STD_LOGIC;

 Data : in STD_LOGIC_VECTOR ((width-1) downto 0);

 Output : out STD_LOGIC_VECTOR(((width/2)-1) downto 0);

 Output_2 : out STD_LOGIC_VECTOR(((width/2)-1) downto 0));

end component;

component Cont_Unit - - - - control unit

Port (clock_CU : in STD_LOGIC;

 reset_CU : in STD_LOGIC;

 start_CU : in STD_LOGIC;

 I : in STD_LOGIC;

 Cont_Vector : out STD_LOGIC_VECTOR (5 downto 0));

end component;

begin

M1: TMAP generic map(16) port map (Load2 => CV(5), enable_D2 => CV(4), enable_Q2 =>

CV(3), enable_R2 => CV(2), enable_count2 => CV(1),enable_as2 => CV(0),Reset => reset_m,

clock_du => clock_m, count_i2=> CountStop,Output_2 => output_final, Data => data_m,

 Output => output_m);

M2: Cont_Unit port map (clock_CU => clock_m, reset_CU => reset_m,

start_CU => start_m, I => CountStop, Cont_Vector => CV);

output_true <= CountStop;

end Behavioral;

27

3.5.2 Data Path Unit

 The coding in Figure 3.9a, 3.9b, 3.9c describes the Figure 3.5, which is the

block diagram of Data Path Unit. The VHDL code describes the behavioral of the

Data Path Unit and interconnection of its components. Notice the italic word of

D,Q,R,N,AddSub,count_reg and Out_reg which represent the input register, solution

register, remainder register, not gate, adder/subtractor, counter and the output

register. The bold word of U1 is describing the connection of D while U2 is for Q,

U3 is for R, U4 is for N, U5 is for AddSub, U6 is for count_reg and U7 is for Out-

reg. The behavioral description in VHDL for each component is in the appendix.

Figure 3.9a: VHDL coding for TMAP (Data path Unit)

architecture Behavioral of TMAP is

signal A1 : std_logic_vector (1 downto 0);

signal A2,B3: std_logic_vector (((width/2)-1) downto 0);

signal Add2 : std_logic_vector ((((width/2)+2)-1) downto 0);

signal B2,Q1,count_i3:std_logic;

constant mask : std_logic := '1';

component D - - - - D register

generic(width:integer:= 16);

Port (Output_D1 : out STD_LOGIC_VECTOR (1 downto 0);

Data_D : in STD_LOGIC_VECTOR ((width-1) downto 0);

Enable_D : in STD_LOGIC;

Load : in STD_LOGIC;

Clock_D : in STD_LOGIC;

Reset_D : in STD_LOGIC);

end component;

component Q - - - - Q register

generic(width:integer:= 16);

Port (Output_Q : out STD_LOGIC_VECTOR (((width/2)-1) downto 0);

Left1_Q : in STD_LOGIC;

Enable_Q : in STD_LOGIC;

Clock_Q : in STD_LOGIC;

Reset_Q : in STD_LOGIC);

end component;

28

Figure 3.9b: VHDL coding for TMAP (Data path Unit)

component R - - - - R Register

generic(width:integer:= 16);

Port (Data_R : in STD_LOGIC_VECTOR ((((width/2)+2)-1) downto 0);

Enable_R : in STD_LOGIC;

Reset_R : in STD_LOGIC;

Clock_R : in STD_LOGIC;

Output_R3 : out STD_LOGIC_VECTOR (((width/2)-1) downto 0);

Output_R1 : out STD_LOGIC);

end component;

component N - - - - Not gate logic

Port (In_N : in STD_LOGIC;

Out_N : out STD_LOGIC);

end component;

component AddSub - - - - Adder/Subtractor

generic(width:integer:= 16);

Port (A_in2 : in STD_LOGIC_VECTOR (1 downto 0);

A_in1 : in STD_LOGIC_VECTOR (((width/2)-1) downto 0);

B_in3 : in STD_LOGIC;

B_in2 : in STD_LOGIC;

B_in1 : in STD_LOGIC_VECTOR (((width/2)-1) downto 0);

S_out : out STD_LOGIC_VECTOR ((((width/2)+2)-1) downto 0);

control_op : in STD_LOGIC;

Clock_as : in STD_LOGIC;

enable_as : in STD_LOGIC;

reset_addsub : in STD_LOGIC);

end component;

component count_reg - - - - Counter

Port (clock_count : in STD_LOGIC;

reset_count : in STD_LOGIC;

enable_count : in STD_LOGIC;

count_i : out STD_LOGIC);

end component;

29

Figure 3.9c: VHDL coding for TMAP (Data path Unit)

component Output_reg - - - - Output Register

generic(width:integer:= 16);

Port (in_reg : in STD_LOGIC_VECTOR (((width/2)-1) downto 0);

 out_reg : out STD_LOGIC_VECTOR (((width/2)-1) downto 0);

 clk_reg : in STD_LOGIC;

 enable_reg : in STD_LOGIC;

 rst_reg : in STD_LOGIC);

end component;

begin

--

U1: D generic map(16) port map (Output_D1 => A1,Enable_D => enable_D2, Load => Load2,

Reset_D => Reset,Data_D => Data, Clock_D => clock_du);

--

U2: Q generic map(16) port map (Enable_Q => enable_Q2, Clock_Q => clock_du,

Reset_Q => Reset, Output_Q => B3, Left1_Q => Q1);

--

U3: R generic map(16) port map (Data_R => Add2, Enable_R => enable_R2,

Reset_R => Reset, Clock_R => clock_du, Output_R1 => B2, Output_R3 => A2);

--

U4: N port map (In_N => Add2(5), Out_N => Q1);

--

U5: AddSub generic map(16) port map (A_in1 => A2, A_in2 => A1, B_in1 => B3,

B_in2 => B2, B_in3 => mask,S_out => Add2, control_op => B2, reset_addsub => Reset,

Clock_as => clock_du,enable_as => enable_as2);

U6: count_reg port map (reset_count => Reset, enable_count => enable_count2,

clock_count => clock_du, count_i => count_i3);

U7: Output_reg generic map (16) port map (in_reg => B3, out_reg => Output_2 , clk_reg =>

clock_du,

enable_reg => count_i3, rst_reg => Reset);

Output <= B3;

count_i2 <= count_i3;

end Behavioral;

30

3.5.2 Control Unit

 The coding in Figure 3.10 describe the Figure 3.6, which is the block diagram of

the Control Unit. These coding describe the behavioral or operation of the Control Unit

as a Finite State Machine. Notice the italic word is the coding that does the state

transition and conditioning according to Figure 3.7. While the bold one is the coding that

assigns the value of control vector for each corresponding state computed from Table

3.1.

31

Figure 3.9: VHDL coding for Cont_Unit (Control Unit)

architecture Behavioral of Cont_Unit is

type state is (S0,S1,S2,S3,S4,S5);

signal y :state;

begin

state_transition:

 process(reset_CU,clock_Cu,y)

 begin

 if reset_CU = '1' then

 y <= S0;

 elsif (clock_CU= '0' and clock_CU'event) then

 case y is

 when S0 => if start_CU = '1' then y <= S1; else y <= S0;end if;

 when S1 => y <= S2;

 when S2 => y <= S3;

 when S3 => y <= S4;

 when S4 => if I = '1' then y <= S5; else y <= S1;end if;

 when S5 => y <= S5;

 end case;

 end if;

 end process state_transition;

output:

 process(y)

 begin

 Cont_Vector <= (others => '0');

 case y is

 when S0 => Cont_Vector <= "100000";

 when S1 => Cont_Vector <= "000001";

 when S2 => Cont_Vector <= "000100";

 when S3 => Cont_Vector <= "001000";

 when S4 => Cont_Vector <= "010010";

 when S5 => Cont_Vector <= "000000";

 end case;

 end process output;

end Behavioral;

32

CHAPTER 4

RESULT AND DISCUSSION

4.1 Introduction

 The result of this project is represented in this chapter, which mostly from

simulation graph. Each stage result would be represented here by form of simulation

graph.

33

4.2 Data Path Simulation Result

 From the Figure 4.1 below, the Data Path Unit is tested at 8 bit input value.

Since the simulations only involve Data Path Unit, the enable signal for each

component is manually configured. By referring to simulation result in Figure 4.1

and Figure 3.4 , enable_d2 is for D register(shifting enable), enable_r2 is for R

register, enable_q2 is for Q register, enable_c is for counter, enable_as is for

adder/subtractor and load is for D register also(store data). Clock_du is the main

clock to the Data Path Unit, count_i2 is the feedback signal to Control Unit that

triggered when the counter has reach the required cycle of operation to get the final

correct answer.

Figure 4.1: Data Path Simulation Result

 ‘Data’ is the input value given to be calculated, while ‘output’ is the output

signal from register Q which store every answer generated for each cycle. Output_2

is the output of the output register in Data Path Unit that would be the real output of

34

the whole system. From the Figure 4.1 we can see the input of 8 bit with a value of 4

would compute answer after 4 cycles with value of 2. Notice that the all the enable

signal is going through a sequence of pulse that cycle 4 times to compute the last

answer. The signal named ‘output’ shows us the answer for each cycle, but the real

answer is considered after the signal named ‘count_i2 is triggered as 1. Hence, the

signal named ‘output_2’ take the value from signal ‘output’ to be the real output of

the system.

4.3 Control Unit Simulation Result

 Figure 4.2 shows us the simulation results of the Control Unit. Since it only

the Control Unit being simulated, the signal ‘I’ , signal reset, signal and signal start is

manually configured. Signal ‘I’ is the feedback signal from Data Path Unit that

triggered the when the counter has reach the required cycle of operation to get the

final correct answer. Start signal is the signal that triggered the operation to start its

operation. The signal ‘cont_vec’ is the control vector signal that connected to all

enable signal of Data Path Unit components.

Figure 4.2: Control Unit Simulation

35

 From the Figure 4.2 that before the signal start is triggered, the value of

control vector signal will remain at 32 which corresponding to state S0 referring back

to table 3.1. When the signal start is activated, the control vector output will sends a

sequence of value that corresponding to a sequence of state accordingly to Table 3.1

and Figure 3.7. Until the signal ‘I’ is activated, it will loop the sequence value

continuously. When the signal ‘I’ is activated, the control vector will constantly send

0 value as long as the signal ‘I’ is activated and the reset is not activated. When the

reset signal is activated, the control vector signal will return to value 32 that is state

S0.

 We can see that the Figure 4.2 itself describe the behavioral of Table 3.1 and

state diagram of Figure 3.7. So, the control vector is can be assure to be working

accordingly as required.

4.4 Overall System Simulation Result

 Figure 4.3 shows the overall system result of the simulation being done. The

input data value is 25 in decimal. Output_m signal shows the answer for every cycle

of operation till the last answer. While ‘output_f’ signal is the output of the system

that only take the value when the signal ‘output-true is triggered into 1 which means

that is the correct value of output. In this case, the correct value is 5 in decimal.

 As we know that the square root value of 25 is 5, this concluded that the

simulation was successful as the operation done creates the correct answer of square-

root value of input data.

36

Figure 4.3: Overall Simulation result

4.5 Performance

 Performance of the design can be extracted after the analysis of the design,

from the simulation we have some of the performance result that is:

Total Memory Usage: 161216 kilobytes

Total Real time to Xst completion: 9.00 seconds

Total CPU time to Xst completion: 8.91 seconds

Time taken to complete process is 7.824 ns, with the frequency of 127.812 MHz.

Verify output true
The output value

Input Value

37

4.6 Costing and Commercialization

 The cost of this project is as listed below:

 License of software ISE 10.1 : RM 200.00

 Hardware used : None

 Total : RM 200.00

 While for potential of commercialization, this project is still in development

or research. So it’s not suitable to be commercializing it yet. The functions its offers

are not significant enough to be commercialize on its own. Hence, its need to be

accompanied with other product, implementation on hardware or component so that

it can be commercializes.

38

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

 The proposed 16- bit Fixed-Point Square Root System is a digital system that

being developed using VHDL languages. It is being simulated using ISE 10.1 by

Xilinx to verify the design and functionality. It appear to working perfectly and able

to process a fixed-point square root value precisely.

 The focus of this project is to implement square-root algorithm that appears

to be hard to implement on hardware. This was successfully done by creating a

digital system to operate as according to the square root algorithm used that is the

Non-Restoring Square Root Algorithm. Using the hardware description languages,

the implementation of the system to hardware can be verified through simulation and

it was proved to be successful.

5.2 Recommendation

 The work in this project suggests that future improvement can be carried out to

improve the design to achieved better output result and execution performance. Below is

some proposed work:

39

 The first recommendation is to create a floating point square-root output value.

This can be done by adjusting the Data Path Unit digital design. However by adjusting

the Data Path Unit, the Control Unit also has to be adjusted. In other words, we have to

revise back the whole system design and control sequence of the Data Path Unit

operation [10].

 The second recommendation is to increase the performance of the execution time

of the digital design operation of calculating the square-root value. In other word, we

want the digital system to operate and compute output faster. This recommendation can

be achieved by adjusting the digital design. We can try to reduce the clock cycle used to

get the output, without changing the algorithm used. This approach however will

increase the component used, hence increase the cost of the digital design [9].

 Next recommendation is to creates a Graphical User Interface(GUI) in order for

user to input the data to the digital system without the need to studies the VHDL

languages. In other word, any user with various background can use and operates the

digital system created to calculate the square-root of input data. This can be done by

using other software that can interface with VHDL development software, for example is

MATLAB. This mostly depends on the VHDL software and the developments board

with which software of GUI can it interface with [11].

 Finally, as we can see that this project only operates on simulation, we can

implement the digital design to hardware. For the VHDL used, that is ISE 10.1, this

software is specially developed to be compatible with Xilinx FPGA board. So, we can

somehow implement it to Xilinx FPGA and operates the digital system in hardware.

Further analysis can be done on the digital design on how effective it operates on real

hardware compared to simulation result [1][9].

40

REFERENCES

 [1] K. Piromsopa, C. Aporntewan, P. Chongsatitvatana. An FPGA Implementation

of a Fixed – Point Square Root Operation, Department of Computer Engineering,

Chulalongkorn University.

 URL www.cp.eng.chula.ac.th/~krerk/publication/iscit-sqrt.pdf

[2] Sudhakar Yalamanchili, (2005). VHDL A Starter’s Guide, Pearson Prentice Hall.

[3] Square Root Algorithm

URL www.homeschoolmath.net/teaching/sqr-algorithm-why-works.php

[4] Square Root Theory

URL http://www.dattalo.com/

[5] Frank Vahid, Roman Lysecky, (2007). VHDL For Digital Design, Wiley.

[6] Mohamed Khalil Hani, (2007). Starter’s Guide to Digital Systems VHDL &

Verilog Design, Pearson Prentice Hall.

[7] Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, (2001). Digital Systems,

Pearson Prentice Hall.

[8] Charles H. Roth, Jr. (1998). Digital System Design Using VHDL, PWS

Publishing Company.

[9] Yamin Li, Wanming Chu, (1996). A New Non-Restoring Square Rot Algorithm

and its VLSI Implementation, International Conference on Computer Design

(ICCD’96).

41

[10] Anuja J. Thakkar . Design and implementation of Double Precision Floating

Point Division and Square Root on FPGA, University of Central Florida, College of

Electrical Engineering and Computer Science.

[11] Fearghal Morgan, Patrick Rocke, Martin O’ Halloran. Applied VHDL Training

Methodology, EDA Framework and Hardware implementation Platform, Dept of

Electrical Engineering, National University of Ireland.

42

APPENDIX A

BEHAVIORAL CODE FOR EACH COMPONENT

A.1. ‘D’ Register
--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

--

entity D is

generic(width:integer:= 16);

Port (Output_D1 : out STD_LOGIC_VECTOR (1 downto 0);

 Data_D : in STD_LOGIC_VECTOR ((width-1) downto 0);

 Enable_D : in STD_LOGIC;

 Load : in STD_LOGIC;

 Clock_D : in STD_LOGIC;

 Reset_D : in STD_LOGIC);

end D;

--

architecture Behavioral of D is

Signal R: std_logic_vector((width-1) downto 0);

Begin process(Clock_D)

43

begin

if (Clock_D = '1' and Clock_D'EVENT) then

if (Reset_D = '1') then

R <= (others => '0');

elsif (Load = '1') then

R <= Data_D;

elsif (Enable_D = '1') then

R(0) <= '0';

R(1) <= '0';

for index in 0 to width-3 loop

R(index+2) <= R(index);

end loop; end if; end if; end process;

Output_D1 <= R((width-1) downto (width-2));

end Behavioral;

--

A.2. ‘Q’ Register

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

--

entity Q is

generic(width:integer:= 16);

Port (Output_Q : out STD_LOGIC_VECTOR (((width/2)-1) downto 0);

 Left1_Q : in STD_LOGIC;

 Enable_Q : in STD_LOGIC;

44

 Clock_Q : in STD_LOGIC;

 Reset_Q : in STD_LOGIC);

end Q;

--

architecture Behavioral of Q is

Signal R2: std_logic_vector(((width/2)-1) downto 0);

begin

process(Clock_Q)

begin

if (Clock_Q = '1' and Clock_Q'EVENT) then

if (Reset_Q = '1') then

R2 <= (others => '0');

elsif (Enable_Q = '1') then

R2(0) <= Left1_Q;

for index in 0 to (width/2)-2 loop

R2(index+1) <= R2(index);

end loop; end if; end if; end process;

Output_Q <= R2;

end Behavioral;

--

A.3. ‘R’ Register

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

45

entity R is

generic(width:integer:= 16);

 Port (Data_R : in STD_LOGIC_VECTOR ((((width/2)+2)-1) downto 0);

 Enable_R : in STD_LOGIC;

 Reset_R : in STD_LOGIC;

 Clock_R : in STD_LOGIC;

 Output_R3 : out STD_LOGIC_VECTOR (((width/2)-1) downto 0);

 Output_R1 : out STD_LOGIC);

end R;

architecture Behavioral of R is

signal Data_R2_1,mask :STD_LOGIC;

signal Data_R2_2 :STD_LOGIC_VECTOR (((width/2)-1) downto 0);

begin

process(Clock_R)

begin

if(Clock_R'event and Clock_R = '1')then

if(Reset_R='1')then

Data_R2_1 <= '0';

Data_R2_2 <= (others => '0');

elsif Enable_R = '1' then

Data_R2_1 <= Data_R(((width/2)+2)-1);

mask <= Data_R(width/2);

Data_R2_2 <= Data_R(((width/2)-1) downto 0);

end if; end if; end process;

Output_R1 <= Data_R2_1;

Output_R3 <= Data_R2_2;

end Behavioral;

46

--

A.4. ‘N’ Gate Logic

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

--

entity N is

 Port (In_N : in STD_LOGIC;

 Out_N : out STD_LOGIC);

end N;

--

architecture Behavioral of N is

begin

Out_N <= not In_N;

end Behavioral;

--

A.5. Adder/Subtractor

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

--

entity AddSub is

generic(width:integer:= 16);

47

Port (A_in2 : in STD_LOGIC_VECTOR (1 downto 0);

 A_in1 : in STD_LOGIC_VECTOR (((width/2)-1) downto 0);

 B_in3 : in STD_LOGIC;

 B_in2 : in STD_LOGIC;

 B_in1 : in STD_LOGIC_VECTOR (((width/2)-1) downto 0);

 S_out : out STD_LOGIC_VECTOR ((((width/2)+2)-1) downto 0);

 control_op : in STD_LOGIC;

 Clock_as : in STD_LOGIC;

 enable_as : in STD_LOGIC;

 reset_addsub : in STD_LOGIC);

end AddSub;

--

architecture Behavioral of AddSub is

signal R3 : std_logic_vector(((width/2)+1) downto 0);

begin

process(Clock_as,A_in1,A_in2,B_in1,B_in2,B_in3,control_op)

begin

if(Clock_as'event and Clock_as = '1')then

if (reset_addsub = '1') then

R3 <= (others => '0');

elsif (enable_as = '1') then

if (control_op = '1') then

R3 <= (A_in1 & A_in2) + (B_in1 & B_in2 & B_in3);

elsif (control_op = '0') then

R3 <= (A_in1 & A_in2) - (B_in1 & B_in2 & B_in3);

end if; end if; end if; end process;

S_out <= R3;

end Behavioral;

48

A.6. Counter

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity count_reg is

 Port (clock_count : in STD_LOGIC;

 reset_count : in STD_LOGIC;

 enable_count : in STD_LOGIC;

 count_i : out STD_LOGIC);

end count_reg;

architecture Behavioral of count_reg is

signal count : std_logic_vector(3 downto 0);

constant termcount : std_logic_vector(3 downto 0):="0000";

begin

process(clock_count)

begin

if(clock_count = '1' and clock_count'event) then

if reset_count = '1' then

count <= "1000";

elsif enable_count = '1' then

count <= count-'1';

end if; end if; end process;

count_i <= '1' when count = termcount else '0';end Behavioral;

49

A.7. Output Register

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Output_reg is

generic(width:integer:= 16);

Port (in_reg : in STD_LOGIC_VECTOR (((width/2)-1) downto 0);

 out_reg : out STD_LOGIC_VECTOR (((width/2)-1) downto 0);

 clk_reg : in STD_LOGIC;

 enable_reg : in STD_LOGIC;

 rst_reg : in STD_LOGIC);

end Output_reg;

architecture Behavioral of Output_reg is

begin

process (clk_reg)

begin

if (clk_reg = '1' and clk_reg'EVENT) then

if (rst_reg = '1') then

out_reg <= (others => '0');

elsif (enable_reg = '1') then

out_reg <= in_reg;

end if; end if; end process; end Behavioral;

50

APPENDIX B

ISE SOFTWARE TUTORIAL LAB

B.1 Lab 1

51

52

53

54

55

B.2 Lab 2

56

57

B.3 Lab 3

58

59

60

B.4 Lab 4

61

62

B.5 Lab 5

63

64

65

B.6 Lab 6

66

67

