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Abstract: Because of its potential to directly transform solar energy into heat and energy, without
harmful environmental effects such as greenhouse gas emissions. Hybrid nanofluid is an efficient way
to improve the thermal efficiency of solar systems using a possible heat transfer fluid with superior
thermo-physical properties. The object of this paper is the study the latest developments in hybrid
applications in the fields of solar energy systems in different solar collectors. Hybrid nanofluids are
potential fluids with better thermo-physical properties and heat transfer efficiency than conventional
heat transfer fluids (oil, water, ethylene glycol) with single nanoparticle nanofluids. The research
found that a single nanofluid can be replaced by a hybrid nanofluid because it enhances heat transfer.
This work presented the recent developments in hybrid nanofluid preparation methods, stability
factors, thermal improvement methods, current applications, and some mathematical regression
analysis which is directly related to the efficiency enhancement of solar collector. This literature
revealed that hybrid nanofluids have a great opportunity to enhance the efficiency of solar collector
due to their noble thermophysical properties in replace of conventional heat transfer working fluids.
Finally, some important problems are addressed, which must be solved for future study.

Keywords: hybrid nanofluids; efficiency; solar collectors; thermal properties

1. Introduction

A safe and prosperous world now needs more than ever an environmentally friendly
and effective source of energy [1–3]. In the face of the challenges of eliminating fossil fuels
and reducing exhaust emissions from those fuels, one of the major divisions of renewable
energy is solar energy. Although the option of energy sources has always been low-priced,
solar energy has never really been used globally. More to the point, while the energy of
the sun is free, it is expected that the maintenance charge of such systems, including the
construction of devices and systems, would surpass the total cost of the usable source [4–6].
Looking closely at renewable technologies and their recent development estimates, the
world has a perceivable interest in solar energy systems, accounting for almost 60 percent of
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the overall growth in the renewable energy potential of more than 250 GW in 2021–2022 [7].
There have been major efforts taken to increase the performance of the existing energy
conversion systems [8,9].

In recent years, several academics and researchers have made progress in nano-fluid
technologies. The number of papers published in the field of nano-fluids per year should is
presented in Figure 1. The figure below illustrates the importance of nanofluid flows in
the different engineering sectors as well as the solar energy sector. [10–20]. The evolution
of technologies of nanofluids has drawn the attention of assorted researchers in recent
years. With the aid of nanofluids, researchers have focused on research in many scientific
fields, including warming, climate control, electronics and microelectronics, new energy,
medicine, as well as energy and fuel management [21–26].
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The heat-transfer system plays a crucial role in many industries related to thermal
and chemical processes. The heat-transfer process is always treated by using fluids. The
main aim of the use of mixtures (hybrid nanofluid) is to improve the potency of the
mixture’s thermal properties, and the mixture of various nano-sized particles with fluid is
called hybrid nanofluid. In practice, numerous methods have been applied to enhance the
thermal properties of fluids. Nanoparticles are the most common and the most up-to-date
technological trend in terms of improving heat-transfer efficiency [27]. Nanofluids have
an excellent ability to increase the thermal efficiency of the solar collector by different
nanoparticles used in different types of solar collectors [28]. Hybrid nanofluids were
found to be the most efficient approach when used as a working fluid in solar energy
systems [29]. The hybrid nanoparticles consist of a synthesis of two or more nanoparticles
and are propagated into the base fluid. This is due to the synergistic effect of the hybrid
nanofluid heat-transfer change compared to a nano-fluid containing a nano product. A
hybrid nanofluid can have good thermal characteristics compared to the simple fluid
and nanofluid-containing single nanoparticles [30]. The choice of the base fluid, size of
nanoparticles, viscosity, fluid temperature and stability, dispensability of nanoparticles,
purity of nanoparticles, method of preparation, size and shape of nanoparticles, and
compatibility of nanoparticles have contributed significantly to the improvement of hybrid
nanofluid heat transfer, resulting in the harmonious nanofluid mixture [31–35]. The primary
goal of using hybrid nanofluids is to improve thermal conductivity at a lower cost and with
acceptable stability due to the synergistic effect of its constituent materials. Stability is a term
used to describe the long-term performance and thermal efficiency of nanofluids [36,37].
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In comparison to mono nanofluids, hybrid nanofluids can significantly improve heat
transmission. The pressure drop caused by the friction factor escalation, on the other hand,
remains a major concern in hybrid nanofluids. The increase in pressure drop is a direct
result of the increase in hybrid viscosity, which results in the penalty of high pumping
power [30].

Nanoparticles are subject to various parameters of their thermal conductivity, in-
cluding concentration, temperature, particle size, pH, shape, material, and perhaps, the
production process. Theoretical models for thermal conductivity and viscosity deter-
mination. The stability of nanofluids or hybrid nanofluids in terms of settlement and
agglomeration is still troublesome for practical applications, particularly in higher concen-
trations. Hybrid nanofluids, therefore, exhibit greater thermal conductivity compared to
the individual nanofluids, which separately contain nanoparticles. Therefore, this paper
focuses on evaluating the research of hybrid nano-fluid to recognize and resolve the latest
technology by way of a forefront study into the economic feasibility of this technology in
the future. The reported theoretical, digital, and experiential work on single nanofluid
has revealed that nanofluid cooling, cameras, microcomputers, displays, heat exchangers,
and space-craft applications can be implemented in various possible ways. Many thermal
product reviews are found in the literature. However, single nanofluids are characterized
and prepared. Few articles are available on hybrid nanofluid preparedness and thermal
characteristics. The purpose of this paper is therefore to provide a further consideration of
recent developments in various engineering applications in a hybrid nanofluid. Moreover,
the critical challenges of hybrid nanofluids are presented, such as long-term stability, cost
of preparation, and production. More experimental research is needed to address several
issues related to hybrid nanofluids, such as instability and an increase in the friction factor,
to reduce pumping power in solar systems. These issues appear to be critical for hybrid
nanofluid commercialization and general applications. More importantly, the cost of prepar-
ing hybrid nanofluids is high and must be reduced. Future research should concentrate on
finding a balance between the hybrid nanofluid’s high thermal efficiency and the cost of
preparation. This is a critical step toward the commercialization of hybrid nanofluids-based
solar systems.

2. Historical Background

A key parameter of all the specifications which have contributed enormously to the
improvement of heat transfer is thermal conductivity. Several studies have reported that
the use of nanofluids has improved thermal conductivity undoubtedly [38–42]. Nanofluid
hybrid is a brand-new type of nanofluid, which is massed by dispersing two distinct
nanoparticles into an agreed heat-transference fluid. Hybrid nanofluids are possible fluids
that have improved thermo-physical properties over traditional thermo-transfer fluids, an
increased thermo-efficiency (oil, water, and ethylene glycol) and nanofluids with single
nanoparticles. The scientific findings have shown that the hybrid nanofluid can be substi-
tuted with one single nanofluid as it enhances heat transfer, especially in the automotive,
electro-mechanical, manufacturing, HVAC, and solar industries [43].

In solar collectors, a wide ranges of functioning fluids have been tested. Historically,
water, grease, ethylene glycol, and various lubricants have been used to promote the
performance of solar collectors, as shown in Figure 2 [44–49]. In anchor fluids (water,
ethylene glycol or oil/lubricant), nanosized metals (Al, Cu, Zn, Ag, Au, etc.), metal oxides
(SiO2, TiO2, Al2O3, ZnO, CuO, etc.) or organic particles (carbon nanotubes, graphene
oxide, diamond, etc. could be disseminated to create hybrid nanofluids) [50,51] are used to
enhance the thermophysical properties and heat transfer efficiency, and hybrid nanofluid
synthesis is crucial. The Al2O3-Cu nanofluid, for example, was developed using the
hydrogen reduction method using Al2O3 and CuO (90:10 ratio) to improve the viscosity to
be steeper than concentration conductivity [52,53]. The MWCNT-Fe3O4 nanocomposite
particle has been synthesized empirically (0–0.3 volume percentage) to test their thermal
properties [54]. Improved thermal conductivity was achieved with Ag/MWCNT-HEG
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hybrid nanofluids at 25 ◦C by 0.08 percent with 0.04 percent of volume fraction. The
rheological properties of nanocomposite MWCNT-Ag can be measured by covalent and non-
covalent working methods [55]. A 20.2% increase in the thermal transfer coefficient relative
to the base fluid has been discovered in a platform exchanger by the MWCNT-TiO2/water
hybrid nanofluids [56]. The performance of the heat exchanger served by bringing together
0.0111% MWCNT/water nanofluid with 1.89% Al2O3/water. The appeal for graphene
nanoplatelets (GNPs) has enormously increased despite the excellent use of MWCNTs for
hybrid nanofluids [57]. Its diffusion in distilled water showed a 17.77% advancement in
thermal conductivity at a 0.1% weight concentration and 40 ◦C. Another study investigated
the impacts of particle concentration (range, 0.0–2.3%) and temperature (range, 25–50 ◦C)
on the thermal conductivity of f-MWCNTs-Fe3O4-EG hybrid nanofluid [58]. The effects of
various flows and geometrical parameters of solar thermal collector depend on different
nanoparticles, base fluids and the thermophysical properties of different nanoparticles.
This study indicated that the hybrid nanofluids significantly enhanced the exergy efficiency.
The assessment criteria of the examined cases are the thermal, energetic, and overall
performance and background of solar collector.
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3. Preparation of Hybrid Nanofluids

Hybrid nanofluids are new fluids that are generated in a mixture or composite form
to increase the heat transmission by suspending two or more nanoparticles [59]. By using
hybrid nanostructures consisting of multiple materials with nano dimensions, the ther-
mophysical properties of nanofluids can be further enhanced [43,60]. Water is the basic
fluid exposed to radiation. This hybrid mixture uses a larger wavelength combination
and absorbs heat. For various concentrations, diameters, and container heights, graphite
and the numeric value for the mixture are added into the water of gold, silver, aluminum,
graphite, and silicon dioxide gold nanoparticles [61]. Quite a few studies have studied
and modeled the thermophysical characteristics of these hybrid fluid forms [62]. It has
been found that relative to the base fluid at a volumetric concentration and a temperature
of 0.86%, the thermal conductivity ratio of the hybrid nanofluid increased to 20.1% [63].
The reviewed literature indicates that hybrid nanofluids are an attractive candidate for
thermal convective fluids in solar systems. Furthermore, hybrid nanofluids have a variety



Energies 2022, 15, 1391 5 of 26

of benefits, which make them more useful for the increase in heat transfer. A summary of
solar power is given in this report. Subsequently, the use of hybrid nanofluids is reviewed
and the findings are analyzed in various forms of solar-driven technologies [64]. The
two-step process of nanofluid preparation includes the induction of the mechanical or
chemical action of nanoparticles in powder form, followed mixing them with base fluid as
shown in Figure 3. In the base fluid, powdered nanoparticles are dispersed by an intense
shearing action known as ultrasonic. Both strength and ultrasonic length play a critical role
in the stability of hybrid nanofluids [65].
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By scatting around 0.2–1.5 vol.% of these nanoparticles in water and ethylene gly-
col, Al2Cu, and Ag2Al nanoparticles synthesized by mechanically alloying the prepared
nanofluids, the nanoparticles were identified by X-ray diffraction and transmission electron
microscopy and the nanofluid thermal conductivity was found by employing a changed
thermal comparator. The findings suggest an increase in the thermal conductivity ad-
vancement of existing nanofluids by 50–150%. Both experimental findings and empirical
analysis suggest that the degree of change strongly depends on the dispersed nanoparti-
cles’ identity/composition, scale, volume fraction, and shape [67]. The two-step method
was used to generate a 0.1 percent volume fraction Al2O3-Cu/water hybrid nanofluid.
As a surfactant, sodium lauryl sulfate (SLS) was used. Before that, over several steps,
a thermochemical synthesis process that included spray drying, precursor powder oxi-
dation, hydrogen-atmosphere reduction, and homogenization was used to prepare the
nanocrystalline alumina–copper (Al2O3-Cu) hybrid powder [68]. The two-step technique
was introduced to generate identical hybrid nanofluids as prepared by Suresh et al. Dry
f-MWCNT and nanoparticle Fe3O4 were prepared with a mixture of equivalent volumes.
For the development of hybrid nanoparticles (f-MWCNT-Fe3O4) dispersed in ethylene
glycol, a two-step method was employed [58].

MXene with a Ti3C2 chemical theorem was synthesized by applying the wet chemistry
method and suspended in pure olein palm oil (OPO) to formulate a new type of heat-
transfer fluid by applying COMSOL Metaphysics to investigate its thermal and energy
efficiency numerically in a hybrid PV/T solar thermal structure. In addition to this research,
the hybrid PV/T solar thermal device contrasts Al2O3–water-based nanofluid with MXene-
OPO nanofluid. With a loading concentration of 0.01, 0.03, 0.05, 0.08, 0.1, and 0.2 percent,
the MXene-OPO nanofluid was prepared. At a 0.2 percent loading concentration, the
MXene-OPO nanofluid exhibits a 68.5 percent higher thermal conductivity than pure OPO
at 25 ◦C. When the temperature increased from 25 ◦C to 50 ◦C for the nanofluid with 0.2 wt.
percent of MXene, the maximum viscosity reduction was observed as 61 percent. The
MXene-based nanofluid shows about a 16 percent higher thermal efficiency improvement
at a 0.07 kg/s flow rate compared to PVT with Al2O3–water-based nanofluid. For the
PVT with MXene nanofluids, a heat transfer coefficient improvement of approximately
9 percent was observed compared to PVT with Al2O3–water heat-transfer fluid. Compared
to the stand-alone PV modules, the MXene nanofluid can reduce PV temperature by
40 percent [69].
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4. Application of Hybrid Nanofluids in the Solar Collector

The research related to the relevance of nanofluids is the talk of the hour. A research-
facility survey of single nano-fluid work covering a wide range of functions has been
carried out, with regard to electronic cooling, heat exchange, heat capacity, sun-based build-
ing heating and cooling, sun-powered pickers, cooling, room, and security, etc., [70–76].
Among all the applications, the usage, and the implementation of hybrid nanofluids in
solar collectors are breaking new ground. The crossbreed or nanocomposite fluid may be
a unique type of nanofluid, and although its utility at the research-facility level has been
largely detailed in literary works [77–81], there is also work detailing factors such as heat
exchange, electronic cooling, essential limits, and so on. It is now pertinent to focus on the
mechanical utilization of crossbreed nano liquids with regard to single nano liquids [81] uti-
lized such as Cu–TiO2/deionized two-fold refined water hybrid nanofluid for ducts within
the duct-sort counter stream heat exchanger. They detailed that the surface-functionalized
and exceedingly crystalline nature of crossover nanocomposite (Cu–TiO2) contributed
to the creation of successful warm interfacing with the liquid medium; thus, allowing
for the accomplishment of an increased heat conductivity and heat-transfer potential for
nanofluids [79].

Concentrated solar panel (CSP) technology, as a typical PV application, is gaining
popularity due to its benefits such as high conversion efficiency and low cost, among others.
However, an important issue for CPV technology is non-uniformity in illumination and
temperature, which can ultimately affect the overall electrical efficiency of solar cells [82].
Heat transfer applications have been analyzed by fluidic behavior, thermal properties, the
size of nanoparticles and the mathematical co-relationships [83]. At higher temperatures,
the increase in thermal conductivity with an increasing solid volume fraction is more
pronounced. The effect of increasing the volume fraction on thermal conductivity, however,
was greater than the effect of increasing temperature. Thermal conductivity was increased
by 27.84% compared to the base fluid at a volume fraction of 0.5% and a temperature of
75 ◦C. Besides, Aguilar, Navas [84] studied the thermal properties of NiO-based nanofluids
for CSP applications experimentally, and dynamic structures have also been studied as well.
They inferred that thermal conductivity increased by up to 96% and that the heat transfer
coefficient was enhanced by 50%. They also found that the surfactant has a significant
effect on the improvement of thermal properties in CSP. Finally, a model for predicting
the thermal conductivity of nanofluids based on the measured data was proposed. This
model has a margin of error of 1.44 percent, indicating that the results obtained from model
calculations are compatible with the experimental data [85]. The main criteria of the solar
collector are to collect heat or increase the efficiency by using different nano or hybrid
nanofluids of different conditions.

Table 1 illustrates the application characteristics of different solar collectors using
hybrid nanofluids. For instance, FPC is used for warm-water in-home applications. Using
hybrid nanofluids in these kinds of solar collectors enhances the productivity and outlet
temperature, as well as the efficiency, which is also improved significantly. Additionally,
ETSC is used to heat the water for residential purposes. ETSC is much better than FPC
in cool weather. Generally, CPC is utilized for sun-oriented drying, water cleaning, and
biomedical conditions, during which temperature performance is also increased by ap-
plying hybrid nanofluids. Besides, PTC is the most developed and commercially used
solar collector. PTC is preferred largely due to some specific characteristics such as its
high-temperature range. On the other hand, the linear frenal, parabolic-dish reflector, and
heliostat-field collector are used to produce electricity by harvesting solar energy. These
solar collectors perform at quite high temperatures.
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Table 1. Application of hybrid nanofluids in various solar collectors.

Reference Types Schematic Image Applications

Tang, Cheng
[86]

Flat-plate solar
collector
(FPSC)
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let temperatures when there is less 
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the most part planned for warm 
climates. Efficiencies for 500 and 
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disparate source of light. It covers 

a temperature of 60–240 °C. 500 
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Solar collector of this sort is abruptly utilized in
residential hot water. Additionally, in manufacturing
air deicer. 20–80 ◦C is the working temperature. Thus,
it acts as foremost common sort of collector in different
kinds of sun-oriented collector frameworks. Provides

higher productivity and outlet temperatures when
there is less warmth through the cover of glass in

collector and the requirement of sunlight. Customary
sorts are for the most part planned for warm climates.
Efficiencies for 500 and 1000 W/m2 are 0.71–0.75 and

0.72–0.75 separately.

Arunkumar,
Velraj [87]

Compound
parabolic

collector (CPC)
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Papadimitratos,
Sobhansar-

bandi
[88]
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solar collector
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Table 1. Cont.

Reference Types Schematic Image Applications

Li, Dubowsky
[91]

Parabolic dish
reflector
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Table 2 describes the research area and possible outcomes using hybrid nanofluids.
Besides, Table 2 also presents the used nanoparticles and base fluids for these research
studies. The repeatedly used nanoparticles are Al2O3, MWCNT, Ag, Fe3O4, MgO, SiO2,
ZnO, TiO2, Cu, CNT, graphene, silica, and water is the most used base fluid. Ethylene
glycol was also utilized several times as a base fluid in these research studies. Table 3 stated
that research has been conducted in various areas such as in a circular tube, warm channel,
electronic-warm sink, thermal solar collector, etc. Moreover, the thermo-physical properties
such as optical and rheological properties of hybrid nanofluids are still being studied.

Table 2. Previous research works are based on hybrid nanofluids.

Author Nanoparticles Base Fluids Research Study

Ho, Huang [80] Al2O3, MEPCM Water
Crossbreed water, primarily based

nanoparticle laminar in a
round deportation

Han and Rhi [77] Ag, Al2O3 Water
Considered warm characteristics for

hybrid nanofluids on a notched
warm channel.

Baby and Sundara [54] Ag, HEG HEG–Deionized water
and Ethylene glycol (EG)

Improvement of heat physical
phenomenon and warmth transfer for the

arranged hybrid nanoparticle.

Esfe, Yan [93] Ag, Al2O3 Water Arrangement and
characterization considered.

Selvakumar, Suresh [79],
Suresh, Venkitaraj [94] Cu, Al2O3 Water

Exploratory considerations of convective
warm exchange and weight drop for
crossbreed nanofluids in an electronic

warm sink.
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Table 2. Cont.

Author Nanoparticles Base Fluids Research Study

Baghbanzadeh, Rashidi [95] Silica, MWCNT Distilled water
Heat transfer and weight drop for hybrid

nanofluids in the associated electronic heat
sink.

Chen, Yu [96] Ag, MWCNT Water Considered the upgrade of compelling
thermal conductivity.

Chen, Yu [96] Graphene, MWCNT Deionized water and
Ethylene glycol (EG)

Upgrade of warm properties for hybrid
nanofluids.

Jyothirmayee Aravind and
Ramaprabhu [97] Al2O3, MWCNT water Improvement of warm conductivity for

single and half-breed nanofluids.

Munkhbayar, Tanshen [98] Ag, MWCNT Water Examined the warm characteristics for the
prepared cross breed nanofluids.

Labib, Nine [99] CNT, Al2O3 Water

Analytical examination along with the
impact of associate fluids and cross-breed

nanofluid in constrained convective
heat exchange.

Tomar and Chakrabarty [100] TiO2, ZrO2 - Considered the auxiliary and optical
properties for the arranged nanocomposite.

Suresh, Venkitaraj [101] Cu, Al2O3 Distilled water
Turbulent warm exchange and weight sip

for hybrid nanofluids in a consistently
warmed round tube.

Madhesh, Parameshwaran
[81] Cu, TiO2 Water

Test considers convective heat transfer and
natural philosophy characteristics of

hybrid nanofluids in the tube
heat exchanger.

Batmunkh, Tanshen [102] MWCNT, Fe2O3 Water

Tests consider heat-convective transfer and
touch calculates nanofluids in a

continuously warmed circular tube for a
fully formed, turbulent stream on

a crossover.

Xuan, Duan [103] TiO2, Ag Water Upgrade in sun-based assimilation.

Takabi and Salehi [73] Cu, Al2O3 Water

Considered the enlargement of the warm
transfer performance of a sinusoidal

corrugated enclosure by utilizing
crossover nanofluid.

Baghbanzadeh, Rashidi [104] Silica, MWCNT Water
Considered the examination of an upgrade

of rheological properties (thickness and
density) for crossover nanofluids.

Sundar, Misganaw [105] ND, NI Water and EG
Examined the upgrade of thermal

conductivity and thickness for the hybrid
nanofluid with distinctive base liquids.

Syam Sundar, Sousa [106] CNT, Fe3O4 Water

Examined the warm exchange upgrade in
low-quality awareness for the arranged

hybrid nanofluids in a tube with bent tape
inserts beneath turbulent steam.

Esfe, Wongwises [107] Cu, TiO2 Water

Test examination of warm conductivity for
the arranged crossover Nanofluids and

created Artificial Neural Network (ANN)
simulation and correlation for

heat conductivity.

Esfe, Yan [93] DWCNT, ZnO Water

The heat conductivity improvement for the
organized nanofluids examined for

different temperatures (25 ◦C to 50 ◦C) and
strong volume division of (0.25% to 1%).
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Table 2. Cont.

Author Nanoparticles Base Fluids Research Study

Esfe, Arani [108] Ag, MgO Water

Exploratory investigation on warm conductivity
and energetic consistency for the arranged

crossover Nanofluids with different volume
divisions run from (0% to 2%) and created a

relationship for warm conductivity and energetic
thickness for the arranged cross

breed nanofluids.

Afrand, Toghraie [109] Fe3O4, Ag EG

In particular, the effect on the rheological activity
of the arranged blended nano-fluid is checked

for temperature and
nanoparticulate concentration.

Eshgarf, Afrand [110] MWCNT, SiO2 EG-water

Experimental change of the temperature range
(25 ◦C to 50 ◦C) from different suspensions to

strong volume distribution and of the
rheological behavior of non-Newtonian hybrid

nano-coolants in heating and cooling frame
applications from (0.0625% to 2%).

Harandi, Karimipour [58] f-MWCNT, Fe3O4 EG

The test considers the influence of temperature
and concentration on the thermal conductivity of
the arranged cross nanofluid from 25 ◦C to 50 ◦C,
to test different tests of nanofluids with a volume
fraction from 0.1% to 2.3% and unused produce.
The relationship of the thermal conductivity of

the fluid is considered for testing.

Sundar, Ramana [111] ND, Fe3O4 Water

Considered the improvement of warm
conductivity, thickness for the arranged

half-breed nanofluid by shifting the temperature
ranges (20 ◦C to 60 ◦C) and the volume

concentration (0.05 to 0.2%). Additionally, an
unused relationship was established for the
thermal conductivity and consistency of the

semi-aligned nanofluid with
exploratory information.

Soltani, Akbari [112] MgO, MWCNT EG

Exploratory consideration of energetic thickness
for their arranged half-breed nanofluid with

different volume concentrations (0.1% to 1%) by
shifting the temperature (30 ◦C to 60 ◦C) and

created an unused relationship for the energetic
consistency from their experimental work.

Senniangiri, Bensam Raj
[113,114] Graphene/NiO Coconut oil

The high nanomaterial concentration regenerates
the formation of lamellar agglomerated particles
and increases the complex viscosity of the basic
fluid. To estimate the dynamism of the hybrid
nanofluid with a limited deviation margin, it is

suggested to use the theoretical correlation
artificially (ANN).

Hussein, Habib [37]

Covalent
functionalized

graphene
nanoplatelets

water

Found that when the mixed hybrid nanofluid
was used as the absorption medium and the flow

rate was 4 L/min, the solar collector with the
highest thermal efficiency increased by as much

as 85%.
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Table 3. Previous research works are based on hybrid nanofluids.

Author Base Fluid Nanoparticles Mass Volume % Solar Collectors Efficiency Observation

Harandi,
Karimipour [58] H2O Al2O3/Fe, Al2O3 0.05–0.2 wt. FPSC Maximum 6.9% increase

Sundar, Misganaw
[105] H2O ND–CO3O4 0.05–0.15 wt. FPSC Maximum 59% increase if

0.15 wt.

Hussein, Habib
[37] H2O MWCNTs/GNPs/h-

BN 0.05–0.1 wt. FPSC Maximum 89% increase

[115] H2O MWCNTs/MgO,
MWCNTs/CuO 0.25–2 vol. FPSC

Performance of
CuO-MWCNT was

18.05%, while
MgO-MWCNT was

20.52%.

Arıkan, Abbasoğlu
[116] H2O/EG Al2O3, ZnO 0.25 vol. FPSC Performance was 15.13%

positive

[117] H2O SWCNT 0.2 vol. ETSC Optium productivity at
93.43%

[118] H2O Al2O3, TiO2 0.3 wt. ETSC

Compared to its based
liquid, the system’s

performance improved by
16.67%

Daghigh and
Zandi [119] H2O MWCNT, CuO and

TiO2
Different ETSC

Performance of the
collector using

nanoparticles MWCNT,
CuO, and TiO2, compared
to water, increased by 25%,
12%, and 5%, respectively.

Peng,
Zahedidastjerdi

[120]
Water Al2O3, CuO, TiO2 Different ETSC

CuO has 1.5% higher
collector thermal

efficiency than Al203,
TiO2-water fluid

Luo, Wang [121] Oil C, Ag, SiO2, Al2O3,
Cu 0.01–0.025 wt. DAC

Efficiency improves by
30–100 K and by 2–25%

than the base oil

Hussain, Jawad
[122] H2O Ag and ZrO2 5 vol. ETSC Efficiency % not

mentioned but improved.

Kim, Ham [123] 20% propylene
glycol-water

MWCNT, Al2O3,
CuO, SiO2, and

TiO2

0.2 vol. ETSC Performance 20% increase

Kaya, Gürel
[124,125] Methanol CuO 0.3 vol. Tube Performance 63% increase

Gorji and Ranjbar
[126,127] water

Graphite,
Magnetite—15 nm,

Silver—20 nm
5–40 ppm DAC

According to the results,
nanofluids promoted
thermal and exergy

efficiencies by 33–57% and
13–20%, respectively,

compared to base fluid.

Li, Chang [128] Di-water
Ti3AlC2,

hydrochloric acid,
triton X—100

100 ppm DAC

For MXene loading, the
maximum photothermal
conversion efficiency of

77.49% is achieved.
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Table 3. Cont.

Author Base Fluid Nanoparticles Mass Volume % Solar Collectors Efficiency Observation

Samylingam,
Aslfattahi [69] Di-water Ti3AlC2, plum

oil—MXene-OPO 0.2 wt. DAC

A 40% efficiency increase
with respect to

Al2O3-water-based
nanofluid.

Gupta, Singh [129] Water ZnFe2O4 0.02–0.5 wt. DAC Performance enhancement
of 42.99%

Abdelrazik, Tan
[130] Di-water rGO-Ag, graphene

oxide 0.0005 to 0.05 wt. DAC

Hybrid system displays
improved efficiency at

concentrations of less than
0.0235 wt. percent compared

to the PV system without
integration with optical

filtration. The hybrid solar
PV/T system with OF using

water/rGO-Ag nanofluid
can produce thermal energy

with efficiencies between
24 percent and 30 percent.

Kasaeian,
Daneshazarian

[131]
EG Nano silica 0.3 wt. PTC

Maximum outlet
temperature of MWCNT is

338.3 K, and the thermal
performance reaches 74.9%.

Loni, Pavlovic
[132] Water TiO2, SiO2, Fe2O3,

ZnO, Al2O3. N/A PTC

Use pure water to enhance
the energy performance of

low enthalpy parabolic
trough collectors.

Esfe, Alirezaie
[133] EG SWCNT-MgO 0.05–2 vol. PTC Thermal conductivity

enhancement of 18%.

Bahrami, Akbari
[24] EG-water Fe-CuO 0.05–1.5 wt. PTC

Efficiency increases in the
different conditions in

different types.

[134] Engine oil MWCNT-ZnO 0.125–1.0 wt. PTC If the viscosity increases
then the efficiency increases.

Afrand [135] EG MgO-MWCNT 0.6 vol. PTC Performance increase—21%

Sundar, Singh
[136] EG-water graphene

oxide/CO3O4
0.2 vol. PTC

Performance
increase—water
based—19.14%

Performance increase—EG
based 11.75%

Nine, Batmunkh
[137] Water Al2O3-MWCNT 1–6 wt. PTC

Increasing thermal
conductivity is not sharp

when compared to
simple nanofluids

Baby and Sundara
[54]

Water and
EG CuO-HEG 0.05 vol. PTC

Increasing thermal
conductivity with
volume fraction

Khan, Abid [138] Oil-based Al2O3, CuO and
TiO2

1 wt. Solar dish
collector

Performance increased by
33.73% and 36.27%

Loni, Pavlovic
[132] Thermal oil Cu, CuO, TiO2,

and Al2O3
0–5 wt. Solar dish

collector

Thermal efficiency is found
to be equivalent to 35% and

up to 10% of the exergy
efficiency.
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Table 3. Cont.

Author Base Fluid Nanoparticles Mass Volume % Solar Collectors Efficiency Observation

Zadeh,
Sokhansefat [139]

Synthesis
oil/thermal

oil
Al2O3 N/A Tube Improve the mean efficiency

by 4.25%.

Huang and
Marefati [140]

Thermal oil
and water CuO and Al2O3 N/A Solar dish

collector Efficiency increase—28.7%

Loni, Asli-Ardeh
[141] Thermal oil Al2O3/thermal,

SiO2/thermal N/A Solar dish
collector Improve efficiency

Potenza, Milanese
[142] Airflow CuO, nanopowder N/A Transparent

receiver tube
Mean efficiency of

about 65%

Aslfattahi,
Samylingam [143] Silicon oil

MXene with a
chemical formula

of Ti3C2

0.1 wt. Photovoltaic
thermal collector

Thermal conductivity
improvement of 64%.

Soltani, Kasaeian
[144] Water SiO2, Fe3O4 N/A

Photovoltaic
thermal-

thermoelectric
system

Maximum energy efficiency
at the fixed irradiation of

900 W/m2.

Sardarabadi,
Passandideh-Fard

[145]
Water SiO2 1–3 wt.

Photovoltaic
thermal-

thermoelectric
system

Total exergy of the PV/T
system with nanofluids was
increased by up to 24.31%.

Arora, Singh [146] Water SWCNT, MWCNT
NP Different

Photovoltaic
thermal-

thermoelectric
system

Percentage enhancement in
total yield obtained using

SWCNT and MWCNT was
65.7% and

28.1%, respectively.

Wahab, Khan [147] Water Graphene hybrid 0.05–0.15 vol.
Hybrid

photovoltaic
thermal system.

Maximum sustainability
index of 1.17 is shown at

optimum conditions.

Soltani, Kasaeian
[148] Water SiO2, Fe3O4

Mass ratio 0.5
vol.

Photovoltaic
thermal collector

Improvement of 54.29% and
1.72% in both power

production and efficiency.

Sardarabadi,
Hosseinzadeh

[149]
Water Al2O3, TiO2, ZnO 0.2 wt. Photovoltaic

thermal collector

Results indicate that the
overall exergy efficiencies

for the cases of PVT/water,
PVT/TiO2, PVT/Al2O3, and
PVT/ZnO are enhanced by
12.34%, 15.93%, 18.27%, and

15.45%, respectively

Sardarabadi,
Passandideh-Fard

[150]
Water TiO2, ZnO, Al2O3 0.2 Photovoltaic

thermal collector

Performance of ZnO is
better than for the other

types. The numerical model
shows that the mass fraction

of hybrid nanofluid has a
significant impact on the
thermal performance of

PVT collectors.

5. Efficiency Observations of Solar Collectors with Hybrid Nanofluids

Hybrid nanofluid and thermal systems play a vital role in heat transfer and the ef-
ficiency enhancement of solar collector. Efficiency enhancement is also directly related
to nanoparticle size and the mass flow system of fluid, concentration or solid volume
fraction of nanoparticles may have a significant effect on the thermal conductivity of hybrid
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nanofluids. [116]. When a hybrid nanofluid was prepared using Al2O3/Fe, Al2O3-water,
with the mass volume of 0.05–0.2 wt., the volume % increases the efficiency of thermal heat
transfer by 6.9%, as found by Harandi, Karimipour [58]. The hybrid nanofluids were devel-
oped by dispersing a synthetic ND-CO3O4 nanocomposite into water, ethylene glycol, and
water mixtures to confirm the ND and CO3O4 phases of synthesized nanocomposites. The
thermal properties including thermal conductivity and viscosity were experimentally tested
at various weight and temperature concentrations and the ND–CO3O4-water maximum
efficiency increased to 59% if 0.15 wt. as found by Sundar, Misganaw [105]. The efficiency
increased to 89% for the water-based MWCNTs/GNPs/h-BN flat plate solar collector,
whereas the mass volume concentration was 0.05 to 0.1 for the weight of water, as reported
by Hussein, Habib [37]. For the water-based MWCNTs/MgO, MWCNTs/CuO flat-plate
solar collector, the mass volume concentration was 0.25 to 0.2% wt., and the performance
increase of CuO-MWCNT was 18.05%, while for MgO-MWCNT it was 20.52% [117]. An
efficiency increase of 15.13% was observed for the water/EG-based Al2O3, ZnO flat-plate
solar collector, whereas the mass volume concentration was 0.25, as reported by Arıkan,
Abbasoğlu [116]. Recent studies have investigated this kind of solar collector. The use of
hybrid nanofluids is studied in the planned method, and some of the problems in some of
the ETSCs with increased heat transfer are evaluated through the general analysis, such
as different types of nano-fluids, the nano-fluid scale, volume-fraction, and hybrid nano-
fluid application. The efficiency of ETSCs was affected by nanoparticles, using a base
fluid [117–124]. In some studies, the enhanced performance was attributed to a higher
Nusselt number. The Nusselt number can be improved with the use of hybrid nanofluids
to make convective heat transfer more efficient [125,126].

6. Mathematical Analysis of Hybrid Nanofluids in Solar Collectors

When sunbeams, G, hit the darkened absorber’s surface zone, Aab, they are ingested
by the heat-exchange medium and transferred into the heat. The valuable vitality selected
by the collector, Qu, is the sum of warmth that the working liquid collects, subtracted
by the sum of the heat exchange from the collector to the discussion as the misplaced
vitality [151–153].

ηFPC =
Qc

AcG
=

mCp(To − Ti)

AcG
(1)

where FR is calculated as

FR =
mCp
Aab

(
1− exp

[
ULF′Ac

mCp

])
(2)

and Tab and Ta are the surface temperature of the safeguard and discuss temperature
individually, F

′
indicates the collector proficiency figure which drops with a rise in the

general misfortune coefficient, UL, from the accepting plate to the environment, which was
firstly presented by Hottel and Woertz [154] that was afterward created by Klein [155].

UL = Uto + Ubo + Ued (3)

Hence, the valuable vitality extricated from the collector can be decided by the sum of
the sun-oriented occurrence where the warm productivity of an FPC can be assessed as
provided by Fudholi, Sopian [156].

ηFPC =
Qc

AcG
=

mCp(To − Ti)

AcG
(4)

where η (%) is the collector effectiveness, Qc is the vitality achieved from the collector, m is
the mass stream rate, Cp is the heat, Ac is the collector range, To and Ti are the outlet and
gulf temperatures of the liquid separately. In TSCs, the safeguard range is an imperative
parameter characterized as the plate region short the punctured range and demonstrates
the sum of the retained vitality (Qab = GAcαc). Radiative and convective heat traded from
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the surface to the encompassing and the back divider are the major components for warm
misfortunes [157,158]. For this sort, heat productivity is portrayed as a division of the
overall sun-powered energy that comes to the collector’s surface and is accomplished by
the discussion as the valuable heat which can be calculated as demonstrated by Leon and
Kumar [159].

ηFPC =
maCp,a(Ta,o − Tamb)

(Tabs − Tamb)
(5)

A further calculation of the warm trade adequacy (HEE) proportion (εHX) is addition-
ally taken under consideration to assess the contrast between the real temperature and the
greatest conceivable esteem given by Kutscher [160].

εHX =
(Ta,o − Tamb)

(Tabs − Tamb)
(6)

Solar collectors are one of the cleanest and most efficient heating systems available.
Density, absorbency, temperature, the heat-transmission system, dynamic viscosity and
types of nanoparticles are important for efficiency. Table 4 just illustrates the different
parameter, which are directly related to efficiency. Normally, temperature and volume
are the key parameters of the solar collector co-relation. Besides, if we see an example
analysis of hybrid nanofluids as shown in Figure 4, we can see that depending on nanopar-
ticle concentration, it depicts the thermal conductivity of hybrid nanofluids. Remarkable
researchers preserved tiny quantities of nanoparticles to prevent particle sedimentation
and agglomeration (usually less than 1%). At 1.5% of the volume, the maximal increase in
thermal conductivity for Al2Cu hybrid nanofluids was 150 percent. Nanoparticle weight
and volume % is the key to the hybrid nanofluid performance of enhancing heat efficiency.
can The mathematical correlations related to the design of the solar collector, numerical
simulations, efficiency enhancement of solar collectors with different variables such as
volume concentrations and viscosity are presented in Table 4.

Table 4. Mathematical expression of solar collectors.

References Specification Correlation Remarks

Esfe, Behbahani
[161]

Functioning fluid:
SiO2-MWCNT/EG

Temperature field: 30–50 ◦C
Volume area: 0.05–1.95 vol. %

An f
Kb f

= 0.905 + 0.002069ϕT
+ 0.04375ϕ0.09265 T0.3305

− 0.0063ϕ3

Two design methods and a
feed-forward neural network have been

provided to model the thermal
conductivity of the hybrid nanofluid.
R2 values of 0.9864 and 0.9981 were
obtained for new methods and the

artificial neural network (ANN). When
these two measurement methods were
compared to experimental data, both

methods proved to be effective in
predicting data. However, ANN’s
correlation findings have a much

lower error.

Afrand [135]

Functioning fluid:
MgO-MWCNT/EG

Temperature field: 25–50 ◦C
Volume area: 0–0.6 vol. %

An f
Kb f

= 0.8341 + 1.1ϕ0.243 T−0.289

Maximum increase in nanofluid
thermal conductivity is 21.3%. A new
connection was proposed to estimate
the nanofluid thermal conductivity.

Sardarabadi,
Passandideh-

Fard
[150]

Functioning fluid:
f-MWCNTs-Fe3O4/EG

Temperature field: 25–50 ◦C
Volume range: 0–2.3 vol. %

An f
Kb f

= 1 + 0.0162ϕ0.7038 T0.6009

Numerical simulation has been
validated and used for the effects of

mass ZnO-nanoparticles on TiO2, ZnO,
Al2O3/water nanofluids (0.2 wt.%).
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Table 4. Cont.

References Specification Correlation Remarks

Esfahani,
Toghraie [162]

Functioning fluid:
ZnO-Ag/H2O

Temperature range: 25–50 ◦C
Volume range: 0.125–2 vol. %

An f
Kb f

= 1+ 0.00008794ϕ0.5899 T1.345
Effect on thermal conductivity of

hybrid nanofluid of volume fractions
and temperatures is demonstrated.

Toghraie,
Chaharsoghi

[163]

Functioning fluid:
ZnO-Ag/H2O

Temperature field: 25–50 ◦C
Volume percentage:

0–3.5 vol. %

An f
Kb f

= 1 + 0.004503ϕ0.8717 T0.7972

Increase in thermal conductivity
variance of nano-fluids with a higher
solid volume fraction temperature is
also greater than that of a lower solid

volume fraction.

Alirezaie,
Saedodin [164]

Functioning fluid:
f-MWCNT-MgO/engine oil

Volume percentage:
0.0625–1 vol. %

Heat range: 25–50 ◦C
Shear rate: 50–650 rpm

µn f = 4× 104 + 145ϕ− 240T −
0.061γ + 1.9× 106 ϕ2 + 0.36 T2

Experimental data were calculated with
a three-variable correlation, with

artificial neural networks modeling the
experimental results. The comparison

of experimental results with the
simulations shows that neural-network

modeling is highly accurate.

Asadi, Asadi
[134]

Functioning fluid:
f-MWCNT-ZnO/engine oil

Volume percentage:
0.125–1 vol. %

Heat variable: 5–55 ◦C

µn f = 796.8 + 76.26ϕ + 12.88T +

0.7695ϕT +
−196.9T−16.53ϕT

T0.8441

At a solid concentration of 2 percent
and a temperature of 40 ◦C, a maximal

increase in dynamic viscosity was
achieved at 65% while a minimum
increase in solid concentration was

achieved at 0.25% and a temperature of
25 ◦C was achieved at 14.4%.

Esfe, Arani [62]

Functioning fluid:
MWCNT-ZnO/10W40

engine oil
Volume percentage:

0.05–1 vol. %
Temperature difference:

5–55 ◦C

µn f
µb f

= 1.035

+
ϕe−1.023

(
2.046ϕ

T +0.4015ϕ 2T
)

T0.8441

Thermal conductivity at some
temperatures was 38% higher than that
of ethylene glycol. A new correlation of
volume concentration and temperature

(R2 = 0.9925) is proposed to forecast
experimental thermal conductivity.

Moldoveanu,
Ibanescu [165]

Functioning fluid:
Al2O3-SiO2/H2O

For 0.5% Al2O3 + 0.5% SiO2 :
µn f = 0.000005T2 − 0.003T + 0.5

For 0.5% Al2O3 + 1.5% SiO2 :
µn f = 0.00000T2 − 0.004T + 0.571

Temperature variation in viscosity for
hybrid nanofluid, which underpins

viscosity reduction as the temperature
increase rises and the action of low

hysteresis, has been studied
experimentally, proposing two viscosity

variation equations as the
temperature increases.

Motahari,
Moghaddam

[166,167]

Functioning fluid:
MWCNT-SiO2/20W50 oil

Volume range: 0.05–1 vol. %
Heat range: 40–100 ◦C

µn f
µb f

= 0.09422− [
(

T
ϕ

)2
+

0.100556 T0.8827 ϕ0.3148] exp
(72474.75Tϕ3.7951)

Increase in solid volume fraction and
temperature-improved hybrid

nano-lubricant viscosity. Nano viscosity
was 171 percent higher than pure

20W50, at its maximum solid volume
fraction and temperature. Current

models are not capable of predicting
the hybrid viscosity of nano-lubricants.
A new correlation was thus suggested

with an R-squared of 0.9943 with
regard to solid volume fraction

and temperature.
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Figure 4. Enhancement of thermal conductivity using hybrid nanofluids; (a–c) mirror an accelerated
thermal conductivity as a feature of the quantity fraction of the thermal conductivity improvement
obtained via researchers (d) as a characteristic of the obtained weight fraction [167].

7. Challenges Found Based on the Study

Hybrid nanofluids are newly emerging dynamic liquids, which remain in the study
stage. Researchers continue, however, to conduct a feasibility analysis on hybrid nanofluids
and solar collectors for better performance across different applications. Some interesting
characteristics of hybrid nanofluids were noticed in the performance of heat transfer but
there are some challenges with regard to them being a new type of working fluid. First,
there is a lack of consensus between researchers and the theoretical model to predict the
exact behavior of hybrid nanofluids. Second, there is a lack of understanding between
the researchers. Third, in the preparation process, the findings for a particular hybrid
nanofluid and volume fraction vary in different methods. The challenges include the
design of the solar plate, mixing and making the concentration of the base fluid with
different nanoparticles, whether it flows inside the tube or coil, the stability of the hybrid
nanofluid, the behavior of surfactants usage, nanoparticles size and volume concentration,
pumping power, pressure drop, and most importantly, the cost of hybrid nanofluids.
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7.1. Physical Characteristics

Stability is one of the main factors in the success of nanofluids and can have a detri-
mental impact on the hybrid nanofluid, i.e., lack of good stability. The stability of certain
nanofluids deteriorates over time, which was observed by previous researchers. Surfac-
tants were used to minimize fluid surface tension and to promote the dispensability of
particles in a fluid [53] or no active surface compound. Excess surfactant, however, affects
nanofluid viscosity, thermal conductive properties, and stability [168]. Solar power systems
are also based on the mass and size of nanoparticles [169]. More research on the effect
of nanoparticles on solar energy has been reported for thermal systems [170]. Reference
has been made to the appropriate size and quantity of nanoparticles required to optimize
the maximum outlet temperature and achieve the desired thermal efficiency of the solar
collector [146].

Nanofluids can be prepared by calculating the number of nanoparticles for the required
volume concentrations using the following (Equation (7)) [171]:

φ =

 w
ρp

w
ρp

+
wb f
ρb f

× 100 (7)

where φ is the volume concentration of nanofluids (%); w is the mass; and ρ stands for
the density of nanoparticles. The subscripts p and bf stand for nanoparticles and base
fluid, respectively.

A visual inspection of sedimentation in the GNP nanofluids was performed, and it
was indicated that the GNP nanofluids were stable even after the heat-transfer run [172]
examined the stability of the nanofluids by observing the sedimentation photographs of
the nanofluids captured after 30 days of preparation [173]. A combined experimental and
statistical method was used to investigate the effective thermal conductivity and relative
viscosity of CNC/W-EG nanofluids. The authors used a sedimentation observation to assess
the stability of nanofluids. The observation was carried out every day in this investigation.
After one week of preparation of the nanofluids, there was no aggregation of CNC and
AL2O3 nanoparticles at the bottom of the test tube, as portrayed in Figure 5. This discovery
reveals the moderate to good stability of both nanofluids, whereas quantitative approaches
have been used to study the numerical values of stability as shown in Figure 6 [42].
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7.2. Design and Mathematical Relationship

The total efficiency of the solar collector is based on the design parameters. The
evaluation of the efficiency of each upgrading technique centered on the characteristics
concerned. Thus, with characteristics such as a higher concentration rate, the effect of sun
trackers may be more positive [174]. Hybrid nanoparticles have volume functions in most
of the correlations formed by experiments. The efficiency in the heat transfer was character-
ized by hybrid nanofluids. However, there exist some disagreements with regard to the
development of hybrid nanofluids as a new working fluid replacing water or any common
working fluid. Besides, the results of a similar hybrid nanofluid analysis appeared to have
little contrast as regards to thermal improvement. In particular, the data gained by different
researchers are not standardized. Furthermore, expected mathematical correlations are still
limited for other applications because of their limitations. The experimental application of
nanofluids is therefore limited. Mathematical models rely solely on experimental integrity
analytical research [175].

7.3. Cost and Economic Perspective

An economic analysis is used to identify industrial effective nanofluids. It is especially
critical, therefore, that the type and price of hybrid nanofluids are considered so that
the best comprehensive thermal transfer efficiency can be achieved at a lower cost for
further industrial applications [176]. The mixing of nanoparticles and preparation of hybrid
nanofluids is a challenge in the cost-effective procedure [177]. More importantly, the cost
of creating hybrid nanofluids is prohibitively expensive and must be reduced. Future
research should focus on finding a balance between the high thermal efficiency of the
hybrid nanofluid and the cost of preparation.

8. Conclusions

In this current paper, a comprehensive study has been performed on the performance
of solar collectors with hybrid nanofluids. The literature reviewed that hybrid nanofluids
had been applied in different engineering fields to enhance their performance in terms of
the circular tube, heat channel, electronic-heat sink and thermal solar collector. Moreover,
hybrid nanofluids were implemented in various kinds of solar collectors such as a flat-plate
collector, compound parabolic collector, evacuated tube solar collector, parabolic trough
collector, linear Fresnel collector, parabolic-dish reflector, and heliostat field collector to
evaluate the performance in replace of conventional fluids. The study mainly stated the per-
formance of efficiency of solar collectors that has been increased significantly. A maximum
increase of 89% efficiency was achieved for a flat-plate collector by MWCNTs/GNPs/h-
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BN-water hybrid nanofluids. The stable, higher thermal conductive, and lower viscous
hybrids nanofluids are preferred so as to improve the performance of a solar collector.
Although the hybrid can increase the efficiency of solar collectors to a greater extent, it is
also associated with some obstacles. However, a hybrid nanofluid is an impressive fluid to
replace conventional fluids and increase the efficiency of solar collectors.
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