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A B S T R A C T   

This study focuses on the utilization of mostly available renewable energy resources, such as lignocellulosic 
biomass, to generate syngas and bioethanol through a hybrid gasification and syngas fermentation process. The 
lignocellulosic biomass was characterized using TGA, XRD, FESEM with EDX analysis, and gasifying parameters 
were optimized using Aspen Plus®. In the first stage of this integrated process, hydrogen-containing syngas was 
generated, and the final product was bioethanol. The forest waste-based syngas produces higher bioethanol than 
EFB and coconut shell in the presence of biocatalyst. Therefore, bioethanol will be a sustainable biofuel that will 
satisfy the world’s future energy demands.   

1. Introduction 

Lignocellulosic biomass, which is composed of forestry and agricul-
tural waste, is used as a sustainable feedstock for bioenergy production 
[1]. These are the most abundant natural biomass, with an estimated 
natural output of 200 billion tons per year [2]. Renewable energy re-
sources are more feasible than non-renewable energy resources because 
of their renewability and carbon-neutrality [1]. Bioethanol, as a sus-
tainable energy produced from lignocellulosic biomass, does not release 
as many greenhouse gases (GHGs) as fossil-based fuels (coal, peat, oil, 
gas) [3,4]. Syngas is produced through thermochemical conversion of 
lignocellulosic biomass via pyrolysis (torrefaction), hydrothermal 
treatment, gasification, and combustion [5]. It is converted to bio-
ethanol using yeast and bacteria in a tar-free bioreactor [6]. 

The development of metabolically microbial systems for fourth- 
generation biofuels and high-value biochemicals has made significant 
progress [7]. Hydrogen fuel is a viable alternative of fossil fuels due to its 
high energy content and minimal emissions [8]. Highly efficient pho-
tocatalysts are employed for water treatment and hydrogen generation 
[9,10] and barium titanate nanostructures are used for photocatalytic 
hydrogen production [11]. Metal nitrides and graphitic carbon nitrides 
as novel photocatalysts used for hydrogen production and environ-
mental remediation [12]. 

In the literature, bottleneck work has been attempted to achieved 

sustainable bioethanol through integrated technique. Therefore, the 
purpose of this article is to produce clean and sustainable syngas and 
bioethanol by means of a hybrid gasification and syngas fermentation 
process. 

2. Methodology 

Syngas was produced (Stage 1) from lignocellulosic biomass 
including empty fruit bunches (EFB) of palm oil, coconut shell, and 
forest waste through thermochemical process in a downdraft gasifier 
(Fig. 1a). In the second stage, bioethanol was generated through 
biochemical process in a tar-free bioreactor utilizing two different types 
of biocatalysts (yeast and bacteria). 

The lignocellulosic biomass was characterized in order to validate 
their feasibility for gasification reactions. Three distinct characteriza-
tions of TGA (Thermogravimetric analysis), XRD (X-ray powder 
diffraction), and FESEM (Field emission scanning electron microscopy) 
with EDX (Energy-dispersive X-ray) were performed. The simulation 
process was run before running the gasification using Aspen Plus® to 
optimize the gasification parameters. Three separate gasification ex-
periments using EFB, coconut shell, and forest waste were carried out 
applying the optimized parameters of temperature (1000 ◦C) and pres-
sure (30 bar). GC-TCD (Gas Chromatography-Thermal Conductivity 
Detector) analysis was used to identify the composition of syngas (H2, 
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CO, CO2, CH4). After the completion of syngas fermentation (16 days), 
yield was taken from fermentation broth, extracted using chloroform 
solvent, and analyzed by GC–MS (Gas chromatography-Mass 
spectrometry). 

3. Results and discussion 

3.1. Characterization 

The TGA analytical results for EFB, coconut shell, and forest waste 
show three key weight loss regions (A-zone, B-zone, C-zone), which 
correspond to dehydration (moisture removal), devolatilization (volatile 
material removal) and solid disintegration, respectively (Fig. 2a). Cel-
lulose and hemicellulose have effectively decayed at temperatures be-
tween 120 ◦C and 400 ◦C in all biomass samples, with weight losses of 
0.06 (wt%) at 235 ◦C, 0.08 (wt%) at 223 ◦C, and 0.07 (wt%) for forest 
waste at 255 ◦C. The cellulose and hemicellulose were pyrolysed by 
raising temperature of 400 ◦C leaving trace amount of ash (~12 wt 
%/◦C). The degradation rate for EFB, coconut shell and forest waste was 
0.41 (wt%/◦C) at 355 ◦C, 0.38 (wt%/◦C) at 365 ◦C, and 0.38 (wt%/◦C) at 

400 ◦C. The highest lignin-breakdown temperature was 900 ◦C with 
weight loss of 0.92 (wt%/◦C), 0.94 (wt%/◦C) and 0.77 (wt%/◦C), 
respectively. It is also found that lignin part is the most complex part of 
biomass to degrade, and its breakdown occurred very slowly throughout 
the whole temperature profile (upto 900 ◦C). As a result, in order to 
achieve optimal energy efficiency, minimum temperature required for 
biomass gasification using a downdraft gasifier was 900 ◦C. 

The XRD pattern (Fig. 2b) confirmed three strong diffraction peaks at 
2θ values of 44.03◦, 64.36◦, and 77.48◦ which correspond to the (110), 
(200), and (211) crystal faces for EFB. Similar patterns were confirmed 
for coconut shell and forest waste. The crystalline structure of all sam-
ples were revealed by the sharp high-intensity peaks. The broad range 
peaks in all biomass samples, indicated amorphous in nature [13]. 

The FESEM images of EFB, coconut shell, and forest waste corre-
spond to morphology and surface characteristics (Fig. 2c–e). The EDX 
analysis of these samples revealed two main elements of carbon and 
oxygen. In this study, very low concentration of sulfur was detected and 
confirmed that studied lignocellulosic biomass was environmentally 
acceptable. Metal traces such as iron, zinc, copper, etc. were shown to be 
favorable for microbial cell growth during syngas fermentation [14,15]. 

Fig. 1. Schematic diagram of an integrated process: (a) Stage 1. Syngas production in a downdraft gasifier (b) Stage 2. Bioethanol production in a bioreactor.  
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3.2. Simulation for gasification optimization 

Fig. 3a shows the simulation results. Syngas composition (H2, CO) 
together with CO2 and CH4 were simulated to identify best-operating 
parameters. According to the simulation curve, optimum temperature 
(T) and pressure (P) for performing gasification were 900–1000 ◦C and 
30–35 bar, respectively. Therefore, the required temperature for cellu-
lose, hemicellulose and lignin breakdown was 900 ◦C which consistent 
with TGA results. 

3.3. Product analysis 

Produced syngas contains combustible (H2, CO, and CH4) with non- 
combustible gases (CO2, N2, etc) (Fig. 5a). Previous studies are agreed 
this syngas concentration [1,16,17]. The highest H2 concentration was 
produced in forest waste-based gasification whereas EFB-based gasifi-
cation produced least amount of H2. However, coconut shell-based H2 
concentration was higher than EFB-based gasification and lower than 
forest waste-based gasification. The CO concentration follows same 
pattern as H2 in all gasification. Moreover, CO2 concentration in coconut 
shell-based gasification was quite significant, while other two gasifica-
tion produced more CO2. During the whole process, CH4 concentration 
was almost same for three different gasification. 

Fig. 3b shows GC–MS analytical results of end product (Stage 2). The 
MS fraction of extracted samples were comparable to standard MS 
fraction of 15:29:31:45. The concentration of bioethanol produced using 
biocatalysts (yeast and bacteria) were 15.02–15.31 mmol/L and 
14.23–14.97 mmol/L, respectively. This results agreed with the 

literature [3,18]. According to the results, highest bioethanol was 
generated through forest waste based syngas fermentation using yeast, 
and lowest bioethanol was produced from EFB based syngas fermenta-
tion using bacteria. In this integrated process, lignocellulosic biomass 
based syngas is suitable for bioethanol production. 

4. Conclusion 

This research performed an integrated gasification and syngas 
fermentation technique to produce sustainable bioethanol, reduce de-
pendency on non-renewable energy sources. Temperature and pressure 
were optimized using Aspen Plus® and gasification was run producing 
syngas. This syngas was further performed fermentation process with 
presence of biocatalysts. The highest amount of bioethanol (15.31 
mmol/L) was produced during forest waste-based syngas fermentation 
in the presence of yeast, and lowest amount of bioethanol (14.23 mmol/ 
L) was generated during EFB-based syngas fermentation in the presence 
of bacteria. This study is limited to small-scale bioethanol production 
using a tar-free bioreactor. In this study, concentration of bioethanol 
was found to very low when its yield was compared to other fermen-
tation processes. Therefore, further advanced research is needed to 
improve bioethanol production and potential of its commercialization. 
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