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INTRODUCTION 

An automated optical inspection machine is key for a semiconductor company to remain competitive. This stem from 

manual human inspection accuracy can drop to between 70%-85% after 15 months of training due to several factors such 

as process advancement, increasing complexities due to product evolution and mental fatigue [1]. Thus, an automated 

optical inspection can offer an improvement in terms of inspection accuracy and less manpower usage. The core for an 

automated optical inspection machine is usually a machine learning model capable of learning various defect features and 

accurately predicting the outcome. However, adopting this automated inspection machine requires thousands of images 

to be stored for machine learning training purposes. Images captured by an automated inspection machine, usually on a 

large scale, to preserve several defects features. Thus, proper compression is required to preserve the defect features whilst 

maintaining an acceptable classification accuracy.  

Transfer learning is a machine learning method that harnesses pre-trained models as a foundation to develop machine 

learning models, especially in computer vision and natural language processing. It reused the already developed model 

as a starting point to develop a model for another task, mostly on features extraction from images or signals. This 

simplifies the steps taken for developing a new model to suit various machine learning tasks. A myriad of transfer learning 

models had been used in various application fields such as sports[2], medical device [3], aquaculture [4], and agriculture 

[5]. 

RELATED WORK 

Saqlain et al. [6] introduce a voting ensemble technique to increase classification accuracy for wafer pattern images. 

They were extracting features from the raw images and run four different classifiers. Density-based, geometric-based, 

and radon-based were among the features extracted. The voting ensemble allows the best component from each classifier 

to influence the final classification accuracy. Other researchers such as Ruifang et al. [7] classified 11 defect markers by 

using ZF-Net as features extraction or Y. S. Jeong [8] who uses Dynamic Time Warping and Support Vector Machine 

for feature extraction wafer defect classifier. Most of these works show that features were extracted from the RGB image 

with high quality to preserve the details defect markers. However, in this paper, the author wants to explore the classifiers 

with diminishing image quality. One of the diminishing qualities is from RGB to Grayscale conversion.  

ABSTRACT – Automated inspection machines for wafer defects usually captured thousands of 

images on a large scale to preserve the detail of defect features. However, most transfer learning 
architecture requires smaller images as input images. Thus, proper compression is required to 
preserve the defect features whilst maintaining an acceptable classification accuracy. This paper 
reports on the effect of image compression using Fast Fourier Transformation and Discrete 
Wavelet Transformation on transfer learning wafer defect image classification. A total of 500 
images with 5 classes with 4 defect classes and 1 non-defect class were split to 60:20:20 ratio for 
training, validating and testing using InceptionV3 and Logistic Regression classifier. However, the 
input images were compressed using Fast Fourier Transformation and Discrete Wavelet 
Transformation using 4 level decomposition and Debauchies 4 wavelet family. The images were 
compressed by 50%, 75%, 90%, 95%, and 99%. As a result, the Fast Fourier Transformation 
compression show an increase from 89% to 94% in classification accuracy up to 95% compression, 
while Discrete Wavelet Transformation shows consistent classification accuracy throughout albeit 
diminishing image quality. From the experiment, it can be concluded that FFT and DWT image 
compression can be a reliable method for image compression for grayscale image classification as 
the image memory space drop 56.1% while classification accuracy increased by 5.6% with 95% 
FFT compression and memory space drop 55.6% while classification accuracy increased 2.2% 
with 50% DWT compression.    
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Fast Fourier transformation (FFT) is a technique that transforms a spatial domain signal into a frequency domain. As 

an image can be considered a 2D signal in the spatial domain, transforming an image into a frequency domain can be 

done. Processing an image in a frequency domain enables a faster computational work time for image enhancement such 

as salient edges, or shadow smoothing compared to pixel to pixel processing in the time domain. After the transformation 

into the frequency domain, the transformed image consists of both quantized low and high-frequency coefficients [9]. 

These frequency coefficients have allowed for image compression as several quantized high-frequency coefficients had 

a value of near zero. By discarding this near-zero coefficient, the image had been compressed after the image 

reconstruction. However, the image reconstruction should retain most of the image quality as shown in the A. T. G and 

K. Vijayalakshmi [9] with their medical imaging or V. Cheepurupalli et al. [10] with their generic images. 

An image that is compressed using Discrete Wavelet Transformation (DWT) in general will decompose the images 

into approximation, vertical, horizontal and diagonal detail components. The approximation detail component will display 

an approximation of the image at half of the image resolution, while the vertical, horizontal and diagonal detail component 

will display prominent vertical, horizontal and diagonal components of the image. This complete the first level of the 

transformation. This level can be repeated multiple times using the approximation detail component of each level. Figure 

1 shows an example of 2 level DWT image decomposition. A wavelet is used to decompose the image into its components. 

They are several prominent wavelet families such as Haar, Daubechies, Symlets, Coiflets, and Biorthogonal.  

 

 

Figure 1. 2 level DWT image decomposition.  From top left to right: Level 2 approximation, Level 2 vertical, Level 1 

vertical, Level 2  horizontal, Level 2 diagonal, Level 1 horizontal, Level 1 diagonal.  

[Source:https://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Jpeg2000_2-level_wavelet_transform-

lichtenstein.png/300px-Jpeg2000_2-level_wavelet_transform-lichtenstein.png, Retrieved: 22/7/2021 18:00] 

Lahiru D. Chamain and Zhi Ding [11] show that by using DWT-centric compression, they can achieve a more accurate 

classification of JPEG2000 images and faster and more accurate representation over limited bandwidth channel transfer. 

While Kutlu H and Avcı E.[12] using a Convolution Neural Network (CNN) -Discrete Wavelet Transform-Long-Short 

Term Memory (LSTM) pipeline to classify brain and liver tumours from Computer Tomography images. The DWT was 

used to compressed the features extracted by the CNN while the LSTM was the classifier. They compared their pipeline 

performance with the k-Nearest Neighbour and Support Vector Machine classifier. J. Sharma et al. [13] studies the effect 

of deeper level DWT decomposition on the classification accuracy. They were using satellite images to classify land used 

or land cover using Minimum Distance Classifier.  

However, rather than evaluate the quality of the reconstructed images either from FFT or from DWT, this paper 

evaluated the effect of the compressed image as an input image for transfer learning models and image classifiers. This 

may be seen as a robustness challenge to the transfer learning model against the diminishing quality of the input image. 

How far can the image be compressed to see a significant classification accuracy drop?  

METHODOLOGY 

Dataset and Image Preprocessing. 

The dataset, a total of 500 images with known defect features, is acquired from Idealvision Sdn Bhd, a machine vision 

company, using their own industrial machine vision platform Jaeger. There are four classes of defect features together 

with a set of the non-defect class involved in this study. The five classes are Burnt Mark (BM), Missing (MS), Scratch 

(SC), Contamination (CT) and Non-defect (GD). Figure 2 shows the defect features for each class. Each class consist of 

100 images that were split into 60:20:20 ratio for Training, Validation and Testing. The images in this study were neither 
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repeated nor augmented. different images were used for each Training, Validation and Testing category. All of the images 

were resized from [4096, 3072, 3] to [299, 299, 1]. The images were converted to grayscale using the average method 

where the value of red, green and blue components was added and divided by 3. The 299 x 299 pixels is chosen in 

preparation for the input requirement of the InceptionV3.  

 

    
a) b) c) d) 

Figure 2. Example of defect features from dataset a) burnt mark, b) contamination, c) scratch, d) missing. 

Image Compression 

In this study, there is 2 type of image compression used. Fast Fourier Transformation (FFT) and Discrete Wavelet 

Transformation (DWT). For both transformations, the images were transformed and their respective coefficient was 

converted into vectors and sorted from the largest to the smallest. From these sorted coefficient vectors, a threshold value 

is calculated according to the compression needed e.g 50%. Thus, from this threshold value, a mask was created whereby 

anything higher than the threshold equates to 1 whilst anything below this threshold value is equated to 0. Then, the mask 

was dot product with the transformed image to only keep the value that is above the threshold. Then the transformed 

image was inverse to the original images with the required compression. This technique is adopted from [14]. The 

compression percentage under investigation is 50%, 75%, 90%, 95%, 99% compression. The diminished quality of the 

images is shown in Figure 3.  

In the case of FFT, the 2D FFT was used as images had always had pixels rows and pixels columns. The FFT runs in 

rows first followed by columns. While in DWT, Daubechies 4(db4) wavelets were used at four levels of transformation 

before the compression process was applied.  

 

     
a) b) c) d) e) 

     
f) g) h) i) j) 

Figure 3. Examples of diminishing quality of the images at a) 50% FFT compression, b) 75% FFT compression, 

 c) 90% FFT compression, d) 95% FFT compression, e) 99% FFT compression, f) 50% DWT compression,  

g) 75% DWT compression, h) 90% DWT compression, i) 95% DWT compression, j) 99% DWT compression, 

Transfer Learning and Image Classification 

In this study features extraction is using InceptionV3 with imageNet transfer learning model and Logistic Regression 

as image classifier model. This particular model is chosen due to its ubiquitous usage in transfer learning methods. 

However, in this study, the hyperparameter for the Logistic Regression is tuned in search of the best parameters to build 

the model. The tuned parameter was the solver, the regularization strength, and the regularization. “Liblinear” and “lbfgs” 

are the two options for the solver, where it has different algorithms to optimize the solution. The regularization consists 

of “Lasso Regression” and “Ridge Regression” and the regularization strength had 30 different numbers between 0.002 

to 1000 in which smaller values specify stronger regularization. The best parameters from the hyperparameters tuning are 

Ridge Regression regularization with 60 regularization strength and “lbfgs” solver. The image training of the image was 

subjected to 5-fold cross-validation to avoid overfitting. This model, hence, yields 89% classification accuracy in the 

uncompressed image.  
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Primarily, the classification accuracy, precision and recall of testing classification results were used as evaluation 

criteria where classification accuracy indicates the capability of the classifier to accurately predict the images according 

to its class. Meanwhile, classification precision deals with the proportion of the correctly predicted images and the 

predicted images in their class. On the other hand, classification recall deals with the proportion of the correctly predicted 

images and the actual images in its class. 

Hardware and Software 

The training and testing were conducted using a desktop with Intel(R) Core(TM) i9-10900KF CPU @ 3.70GHz   3.70 

GHz processor with 32.0 GB DDR3 RAM and NVIDIA GeForce RTX 2080 Ti graphic card. It was run using Spyder 

Anaconda, a python programming software using Scikit-learn, Keras and Tensorflow libraries. 

Figure 4 shows an overview of the methodology process.  

 

 

Figure 4. Workflow diagram of the methodology involved. 

RESULTS AND DISCUSSION 

Figure 5 shows the comparison of the classification accuracy performance for training, validation and testing of the 

FFT image compression as the compression gets higher from uncompressed image to 99% image compression. From the 

figure, an increasing trend can be noted for the testing classification accuracy. From 89% for the uncompressed image to 

90%, 90%, 92% and 94% for FFT 50%, FFT 75%, FFT 90%, FFT 95% compression respectively with a drop to 86% for 

FFT 99% compression.  

This trend indeed shows the robustness of the InceptionV3 transfer learning model paired with a Logistic Regression 

classifier. Even though the image had been compressed up to 95% of the original image, the model can yield a better 

accuracy from the original image. Furthermore, FFT is a known tool for denoising an image as it can manipulate and 

isolate certain frequency bands. This may have the defect feature become more prominent given the InceptionV3 transfer 

learning model hence the higher classification accuracy at 95% compression. A compression further than that causes more 

blurring on the original images, which diminish the defect features. Another advantage as compressed images requires 

less memory space, where in this case, the memory space required to store FFT95% is on average 56.1% less than the 

original grayscale image (Average memory space: FFT95% 79 kB, Uncompressed 180kb).  
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Figure 5. Classification accuracy performance for training, validation and testing of the FFT image compression 

Furthermore, by referring to Table 1, class analysis can be done. Overall, all classes had precision and recall over 

85%.except for Burnt mark class precision. Taking an average for precision and recall of all classes reveals that 

uncompressed images score 90% precision and 89% recall whilst FFT95% score 94% for both precision and recall. This 

shows that the classification accuracy is relevant with minimum or negligible bias. Burnt Mark class performed the worst 

with 75% precision and 90% recall with uncompressed images and 83% precision, and 95% recall with FFT95%. This 

may be caused by the image being less distinct from other classes.  

Table 1. Comparison of Uncompressed and FFT95% Precision and Recall 

Class 
Uncompressed FFT 95% 

Precision Recall Precision Recall 

Burnt Mark 75% 90% 83% 95% 

Missing 100% 85% 100% 95% 

Scratch 100% 85% 100% 95% 

Contamination 87% 100% 95% 100% 

Good 89% 85% 94% 85% 

 

Figure 6 shows the comparison of the classification accuracy performance for training, validation and testing of the 

DWT image compression as the compression gets higher from uncompressed image to 1% image compression. In terms 

of testing classification accuracy, the percentage seems to be neither increasing nor decreasing at about 90% despite 

higher image compression. The best classification accuracy is at 50% compression with 91% accuracy. Others are 89%, 

90%, 90% 90% at DWT 75%, DWT 90%, DWT 95% DWT 99% compression respectively. 

 

Figure 6. Classification accuracy performance for training, validation and testing of the DWT image compression 
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The robustness of the transfer learning and logistic regression model is again demonstrated here, albeit the testing 

accuracy is maintained at about 90% accuracy as fewer image data are present in the higher compression images. As in 

terms of memory space, DWT image compression offers better memory space saving compared to FFT image 

compression as they require on average of 80kB, 73kB, 72kB, 66kB, 44kB memory space for DWT 50%, DWT 75%, 

DWT 90%, DWT 95% DWT 99% compression respectively compared to 93kB, 91kB, 84kB 79kB 70kB memory space 

for FFT 50%, FFT 75%, FFT 90%, FFT 95% FFT 99% compression respectively. The lowest average memory space 

required is 44kB but still can yield more than 90% classification accuracy. However, for the best classification accuracy 

performance, the memory space saving is on average 55.8% less than the uncompressed image.  

Table 2. Comparison of Uncompressed and DWT50% Precision and Recall 

Class 
Uncompressed DWT 50% 

Precision Recall Precision Recall 

Burnt Mark 75% 90% 78% 90% 

Missing 100% 85% 100% 90% 

Scratch 100% 85% 100% 90% 

Contamination 87% 100% 91% 100% 

Good 89% 85% 89% 85% 

 

Consequently, class analysis of precision and recall is required to understand the bias. Table 2 are comparing the 

uncompressed image’s precision and recall with the best performance in the DWT compression. From the table, overall 

the precision and recall percentage for both is above 85% except for uncompressed and DWT 50% compression precision. 

Both precision and recall are improving across all classes except for the good class. This improvement shows that DWT 

image compression can remove some bias from the data especially in the defect classes. Focusing on good class, the 

precision percentage is higher from recall. This can be interpreted as that the good class had a minor bias toward false 

negatives. In the case of wafer defect, a minor false negative where an actual good wafer was classified as bad wafer bias 

can be preferable compared to a false positive where a bad wafer is classified as good which may affect the product 

function down the manufacturing line.  

 

   
a) b) c) 

Figure 7. Confusion matrix for testing a) Uncompressed. b) FFT95%. c) DWT 50% 

 (BM = burnt mark, FM = contamination, SCR = scratch, MIS= missing GD = Non-defect.) 

Looking at the confusion matrices of all best classification accuracy best performance shown in Figure 7. Confusion 

matrix for testing a) Uncompressed. b) FFT95%. c) DWT 50%Figure 7, we can see that the misclassification occurs in 

Burnt Mark, Missing, Scratch and Non-Defect classes. While all images in the contamination class had been correctly 

identified. In the uncompressed confusion matrix, two images from the burnt mark class were misclassified as a non-

defect, three images from the missing class were misclassified as burnt mark class, three images from the scratch class 

were misclassified as contamination class and three images from the non-defect class were misclassified as burnt mark 

class. Both FFT and DWT increase the performance of the Missing and Scratch classes with FFT also increase the 

performance of the Burnt Mark class hence the increase in classification accuracy. 

CONCLUSION 

This paper reports on the effect of image compression using fast Fourier transformation and discrete wavelet 

transformation on transfer learning wafer defect image classification. From the experiment reported, fast Fourier 

transformation may be the best choice to classify wafer defects in grayscale as it can improve the accuracy as well as 

lower the memory space required to store the images with 95% FFT compression the image memory space drop 56.1% 

while classification accuracy increased by 5.6%. However, the discrete wavelet transformation too can provide a lower 

memory space requirement without compromising the classification accuracy as memory space drop 55.6% while 

classification accuracy increased 2.2% with 50% compression. This memory saving can be useful if ten of thousands of 

images need to be stored for the classification process. The experiment also shows the robustness of Inceptionv3 transfer 
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learning paired with a Logistic Regression classifier to handle truncated image data whilst delivering more than 90% 

classification accuracy.  
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