
UNIVERSITI MALAYSIA PAHANG 

DECLARATION OF THESIS AND COPYRIGHT 

Author's Full Name : Ainul Azila Binti Che fauzi 

Date of Birth : 21st April 1985 

Title : Binary Vote Assignment on Grid Quorum with Association 

Rule in Distributed Database Systems 

Academic Session Sem 2 2017/2018 

I declare that this thesis is classified as: 

0 CONFIDENTIAL 

0 RESTRICTED 

0 OPEN ACCESS 

(Contains confidential information under the Official 
Secret Act 1 997)* 
(Contains restricted information as specified by the 
organization where research was done)* 
I agree that my thesis to be published as online open access 
(Full Text) 

I acknowledge that Universiti Malaysia Pahang reserves the following rights: 

L The Thesis is the Property ofUniversiti Malaysia Pahang 
2. The Library ofUniversiti Malaysia Pahang has the right to make copies of the thesis for 

the purpose of research only. 
3. The Library has the right to make copies of the thesis for academic exchange. 

Certified by: 

~ ~ 
(Student' s Signature) 

850421036038 
Date: 25 July 2018 

ASSOC. PROF. OR. NORAZIAH BINTI AHI\ D 
ASSOCIATE PROFESSOR 
FACULTY OF COMPUTER SYSTEMS & 
SOFiWARE ENGINEERING 
UNIVERSITI MALAYSIA PAHANG 
LEBUHRAYA TUN RAZAK. 26300 GAMBA 
KUANTAN, PAHANG 
TEL: 09-549 2121 FAX: 09-549 2144 

(Supervisor's Signature) 

Assoc. Prof. Dr. Noraziah Ahmad 
Date: 25 July 2018 



Universiti 
Malaysia 
PAHANG 

SUPERVISOR'S DECLARATION 

I hereby declare that I have checked this thesis and in my opinion, this thesis is 

adequate in terms of scope and quality for the award of the degree of Doctor of 

Philosophy in Computer Science 

(Supervisor's Signature) 

Full Name : ASSOCIATE PROFESSOR DR NORAZIAH AHMAD 

Position 

Date 

: SENIOR LECTURER 

:25 JULY 2018 



Universiti 
Malaysia 
PAHANG 

STUDENT'S DECLARATION 

I hereby declare that the work in this thesis is based on my original work except for 

quotations and citations which have been duly acknowledged. I also declare that it has 

not been previously or concurrently submitted for any other degree at Universiti 

Malaysia Pahang or any other institutions. 

(Student's Signature) 

Full Name : AINUL AZILA BINTI CHE F AUZI 

1D Number : PCC13001 

Date : 25 JULY 2018 



BfNARY VOTE ASSIGNMENT ON GRID QUORUM REPLICATION 
TECHNIQUE WITH ASSOCIATION RULE 

AINUL AZILA CHE F AUZI 

Thesis submitted in fulfillment of the requirements 

for the award of the degree of 

Doctor of Philosophy 

Faculty of Computer Systems & Software Engineering 

UNIVERSITI MALAYSIA PAHANG 

--- ·--... ~--

AUGUST 2018 

! 
T.- :· . . 
lo...., ; : , - i J 

~1 6 j,' ' . '· ~ i J 
-------······~ -· ·--·-

, J '5 CJ•n i 
-~ .·· ! ._, . ., . 



ACKNOWLEDGEMENTS 

Foremost, I would like to express my sincere gratitude to my supervisor Assoc. Prof 
Dr. Noraziah Ahmad for the continuous support of my study and research, for her 
patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in 
all the time of research and writing of this thesis. I could not have imagined having a 
better advisor and mentor for my study. 

I express my deepest thanks to my family, especially to my father, Che Fauzi Bin Che 
Mohamood; my mother, Azizah Binti Yusoff; my sisters, Ainul Liyana and Ainu! Auni 
and my brother, Ahmad Shahril Danial; for their patience and moral support throughout 
my life. Special thanks to my little angels, Aryan and Aryana for always brighten up my 
days and give me strength when J was feeling down. J couldn't do this without all of 

you. 

I also want to thank my fellow mates in Faculty of Computer System and Software 
Engineering UMP for the stimulating discussions. Last but not least, I want to thank all 
best friends in UMP for the sleepless nights we were working together and for all the 
fun we have had in these few years. 

lV 



ABSTRAK 

Salah satu cabaran terbesar yang perlu dihadapi oleh pengguna pada hari ini adalah 
dalam penambah baikan dalam sistem pengurusan data. Organisasi perlu menyediakan 
data terkini kepada pengguna yang mungkin berada pada jarak yang jauh secara 
geografi dan untuk mengendalikan jumlah permintaan data dibahagikan di beberapa 
Iaman dalam persekitaran teragih. Oleh itu, penyimpanan, kesediaan, dan konsistensi 
data adalah isu-isu penting yang perlu diberi perhatian untuk membolehkan akses data 
yang cekap dan selamat dari Iaman web yang berbeza. Salah satu cara untuk menangani 
cabaran ini dengan berkesan adalah dengan menggunakan teknik replikasi. Replikasi 
adalah teknik yang berguna untuk sistem pangkalan data teragih. Melalui teknik ini, 
data boleh diakses dari pelbagai lokasi. Oleh itu, ia meningkatkan ketersediaan data dan 
akses kepada pengguna. Apabila satu pelayan gagal untuk melakukan transaksi, 
pengguna masih boleh mengakses data yang sama di pelayan lain. Teknik-teknik seperti 
Read-One-Write-All (ROWA), Hierarchical Replication Scheme (HRS) dan Branch 
Replication Scheme (BRS) adalah teknik popular yang digunakan untuk replikasi dan 
pengurusan data. Walau bagaimanapun, teknik ini mempunyai kelemahan dari segi kos 
komunikasi, iaitujumlah pelayan replikasi yang diperlukan untuk menyalin data. Selain 
itu, teknik-teknik ini juga tidak mempertimbangkan perkaitan antara data semasa proses 
pembahagian data. Pengetahuan mengenai perkaitan antara data dapat diekstrak dari 

data yang lepas dengan menggunakan teknik-teknik dalam bidang perlombongan data. 
Tanpa strategi yang tepat, replikasi boleh menyebabkan masa untuk melengkapkan satu 
transaksi menjadi tinggi. Dalam penyelidikan ini, Binary Vote Assignment on Grid 
Quorum with Association (BVAGQ-AR) dicadangkan bagi mengendalikan replikasi 
untuk data terbahagi dalam persekitaran pangkalan data teragih dengan menggunakan 
kos komunikasi dan masa memproses yang rendah untuk satu transaksi. Ciri-ciri utama 
BVAGQ-AR ialah teknik ini menggabungkan teknik replikasi dan teknik perlombongan 
data yang membolehkan pengekstrakan pengetahuan yang bermakna dari set data yang 
besar. Teknik BVAGQ-AR terdiri daripada langkah-langkah berikut. Langkah pertama 
ialah menggunakan teknik perlombongan data dengan melaksanakan algoritma Apriori 
dari Association Rules. Ia digunakan untuk mencari perkaitan antara data. Untuk 
langkah kedua, pangkalan data dipecahkan berdasarkan keputusan analisis 
perlombongan data. Teknik ini di kaji untuk memastikan replikasi data dapat dilakukan 
dengan berkesan dalam masa yang sama dapat menjimatkan kos. Kemudian, pangkalan 
data yang dihasilkan selepas proses pembahagian data diletakkan di pelayan yang 
berkenaan. Akhir sekali, selepas proses perletakan data, setiap pelayan mempunyai fail 
pangkalan data tersendiri dan bersedia untuk menjalankan sebarang transaksi dan proses 
replikasi. Akhimya, keputusan eksperimen menunjukkan bahawa BV AGQ-AR dapat 
memastikan konsistensi data dengan kos komunikasi dan masa pemprosesan untuk 
transaksi terendah berbanding dengan teknik BCSA, PRA, ROW A, HRS and BRS. 

v 



ABSTRACT 

One of the biggest challenges that data grids users have to face today relates to the 
improvement of the data management. Organizations need to provide current data to 
users who may be geographically remote and to handle a volume of requests of data 
distributed around multiple sites in distributed environment. Therefore, the storage, 
availability, and consistency are important issues to be addressed to allow efficient and 
safe data access from many different sites. One way to effectively cope with these 
challenges is to rely on the replication technique. Replication is a useful technique for 
distributed database systems. Through this technique, a data can be accessed from 
multiple locations. Thus, replication increases data availability and accessibility to 
users. When one site fails, user still can access the same data at another site. Techniques 
such as Read-One-Write-All (ROWA), Hierarchical Replication Scheme (HRS) and 
Branch Replication Scheme (BRS) are the popular techniques being used for replication 
and data management. However, these techniques have its weaknesses in terms of 
communication costs that is the total replication servers needed to replicate the data. 
Furthermore, these techniques also do not consider the correlation between data during 
the fragmentation process. The knowledge about data correlation can be extracted from 
historical data using techniques of the data mining field. Without proper strategies, 
replication increases job execution time. In this research, the some-data-to-some-sites 
scheme called Binary Vote Assignment on Grid Quorum with Association (BV AGQ
AR) is proposed to manage replication for meaningful fragmented data in distributed 
database environment with low communication cost and processing time for a 
transaction. The main feature of BV AGQ-AR is that the technique integrates replication 
and data mining technique allowing meaningful extraction of knowledge from large 
data sets. Performance of the BVAGQ-AR technique comprised the following steps. 
First step is mining the data by using Apriori algorithm from Association Rules. It is 
used to discover the correlation between data. For the second step, the database is 
fragmented based on the data mining analysis results. This technique is executed to 
make sure data replication can be effectively done while saving cost. Then, the 
databases that are resulted after the fragmentation process are allocated at their assigned 
sites. Finally, after allocation process, each site has a database file and ready for any 
transaction and replication process. Finally, the result of the experiments shows that 
BV AGQ-AR can preserve the data consistency with the lowest communication cost and 
processing time for a transaction as compared to BCSA, PRA, ROW A, HRS and BRS. 

vi 



DECLARA 10 

TITLE PAGE 

ACKNJWLEDGEMENTS 

ABSTI~K 

ABSTI~CT 

TABLJ: OF CONTENT 

LIST OF TABLES 

LIST OF FIGURES 

LIST OF ABBREVIATIONS 

CHAPTER 1 INTRODUCTION 

1.1 Introduction 

1.2 Problem Statement 

1.3 Objectives ofResearch 

1.4 Scopes of Research 

1.5 Organization of Thesis 

CHAPTER 2 LITERATURE REVIEW 

2.1 

2.2 

Introduction 

Theoretical Background 

2.2.1 Data Grid 

2.2.2 Data Mining in Grid 

2.2.3 Data Mining Types 

2.2.4 Mining Frequent Patterns in Association Rules 

Vll 

iv 

v 

vi 

vii 

xi 

xii 

xiii 

1 

1 

3 

5 

5 

6 

7 

7 

7 

7 

9 

I I 

14 



2.2.5 Database Fragmentation 

2.3 Literature Review 

2.3.1 General Data Replication in Grid 

2.3.2 Data Replication with Data Mining Techniques 

2.3.3 Data Replication without Data Mining Techniques 

2.4 Discussion 

2.5 Summary 

CHAPTER 3 METHODOLOGY 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

Introduction 

BV AGQ-AR Overview 

BVAGQ-AR Transaction Manager (BTM) 

3.3.1 Data Mining in BV AGQ-AR 

3.3.2 Data Replication in BVAGQ-AR 

The Coordinating Algorithm for Primary Replica 

3.4.1 Initial Lock 

3.4.2 Propagate Lock 

3.4.3 Primary Replica Processing 

The Cooperative Algorithm for Neighbour Replica 

Replica Management 

3.6.1 Case 1 - A Set Of Transaction V11 Request to Update Instant b at 

15 

18 

19 

20 

26 

32 

38 

39 

39 

39 

43 

45 

54 

57 

57 

57 

62 

65 

66 

One Site i E S(B) 67 

3.6.2 Case 2- Different Sets ofTransactions Where~ and VlJI Request 

Instant bat Different Site i E S(B) 

3.6.3 Case 3- Different Set ofTransactions ~ and VlJI Request to Update 

Instant b at Same Site i E S(B) 

viii 

67 

68 



3.7 

3.8 

3.9 

3.6.4 Case 4- A Set of Transaction~ Request to Update an 

Unavailable Instant c, at Site i E S(B) 

lllustration Examples 

3.7.1 Case 1- Database Mining Management 

3.7.2 Case 2- Database Replication Transaction Management 

Correctness 

Summary 

69 

70 

71 

72 

75 

76 

CHAPTER 4 RESULTS AND DISCUSSION 77 

4.1 

4.2 

4.3 

4.4 

4.5 

Introduction 

Hardw~re and Software Specifications 

BV AGQ-AR Experimental Result 

77 

77 

79 

4.3 .1 Experiment 1: Mining S to Identify J1 and the S(B/ for S' 81 

4.3.2 Experiment 2: A Transaction V 11 Request to Update Instant eat 

Site E 84 

4.3.3 Experiment 3: Different Sets ofTransactions, V11 and Vw Request 

Instant eat Different Site 

4.3.4 Experiment 4: : Different Sets of Transactions, V11 and Vw 

Request Instant eat the Same Site 

4.3.5 Experiment 5: A set of Transaction~ Request to Update an 

Unavailable Instant, i at a Site 

Result and Discussion 

4.4.1 Validity Threats 

4.4.2 Communication Cost Comparison 

4.4.3 Replication Job Execution Time Comparison 

Summary 

IX 

89 

94 

99 

103 

103 

104 

105 

108 



CHAPTER S CONCLUSION 109 

5.1 Introduction 109 

5.2 Conclusion 109 

5.3 Contributions to Knowledge 11 I 

5.4 Future Work I 1 1 

REFERENCES 113 

X 



LIST OFT ABLES 

Table 2.1 Comparative table of replication strategies with data mining 33 

Table 2.2 Comparative table of replication strategies in real time environment 37 

Table 3.1 Transactional data from MyGrants 47 

Table 3.2 Database with binary variable 51 

Table 3.3 Target set 56 

Table 3.4 BV AGQ-AR Primary-Neighbours Grid Coordination 70 

Table 3.5 The BVAGQ-AR PNGC for S(Bx) = {E, 8 , D, F, H} . 71 

Table 3.6 An example ofhow BVAGQ-AR handle database mining 71 

Table 3.7 An example ofhow BVAGQ-AR handle concurrent transactions 74 

Table 4.1 Server component specifications 78 

Table 4.2 System development tools specifications 78 

Table 4.3 BV AGQ-AR Grid Coordination 80 

Table 4.4 Mining S to Identify J1 and the S(B/ for S' 82 

Table 4.5 Experimental result for one transaction at one site 85 

Table 4.6 Experimental result for two transactions update same data at two 
sites 90 

Table 4.7 Experimental result for two transactions at the same server 95 

Table 4 .8 Experimental result for transaction request to update unavailable 
data 100 

Table 4.9 Communication cost comparison 104 

Table 4.10 BV AGQ- AR Improvement in terms of communication cost(%) 105 

Table 4.11 Comparison of job execution time for the minimum number of 
replication servers 106 

Table 4.12 Comparison of job execution time for the maximum number of 
replication servers 107 

Table 4.13 BVAGQ- AR Improvement in terms of job execution time(%) 107 

xi 



Figure 2.1 

Figure 2.2 

Figure 2.3 

Figure 2.4 

Figure 2.5 

Figure 2.6 

Figure 2.7 

Figure 2.8 

Figure 3.1 

Figure 3.2 

Figure 3.3 

Figure 3.4 

Figure 3.5 

Figure 3.6 

Figure 3.7 

Figure 3.8 

Figure 3.9 

Figure 3.10 

Figure 3.11 

Figure 3.12 

Figure 3.13 

Figure 4.1 

Figure 4.2 

Figure 4.3 

Figure 4.4 

Figure 4.5 

Figure 4.6 

Figure 4.7 

Figure 4.8 

Figure 4.9 

LIST OF FIGURES 

Horizontal fragmentation 

Vertical fragmentation 

Hybrid fragmentation 

PDDRA architecture 

The framework ofROWA-MSTS 

All replicas in HRS update data 

All replicas in BRS update data 

Data Replication in BVAG 

Replica selection strategies based on data mining techniques 

BV AGQ-AR methodology illustration 

Set of frequent 1-itemsets 

Set of frequent 2-itemsets 

Set of frequent 1-itemsets 

Generating frequent itemsets using the Apriori algorithm 

Examples of data replication in BVAGQ-AR 

An assignment B for data file k where S(Bk) = { E,B,D,F,H } 

One set oftransaction at one site 

Two set of transactions at two sites 

Two set of transactions at one site 

Two set of transactions at two sites 

An example ofBVAGQ-AR transaction processing 

Five replication servers connected to each other 

Execution time for Experiment 1 

Time diagram for Mining S to Identify J1 and the S(Bf for S' 

Execution time for Experiment 2 

Time diagram when a set of transaction V 11 request to update 
instante at site E 

Execution time for Experiment 3 

16 

17 

18 

23 

27 

28 

29 

31 

40 

43 

48 

48 

49 

52 

59 

61 

67 

67 

68 

69 

72 

80 

81 

83 

84 

88 

89 

Time diagram when different sets of transactions, V JJ and V 1/J request 
instant eat different site. 93 

Execution time for Experiment 4 94 

Time diagram when different sets of transact ions, Vl'l and V tJ! request 
instant e at the same site 98 

xii 



ADW 

AUFM 

BRS 

BSCA 

BVAGQ-AR 

DDBMS 

DDS 

GIG 

GUI 

HRS 

mM 

110 

J&J 

LAN 

NASA 

NRG 

NTM 

PDDRA 

PRA 

ROWA 

ROWA-MSTS 

RSCA 

RSCP 

WAN 

LIST OF ABBREVIATIONS 

Administrator of Data Ware house 

Attribute Usage Frequency Matrix (AUFM) 

Branch Replication Scheme 

Based on Support and Confidence Dynamic Replication 

Algorithm 

Binary Vote Assignment in Grid Quorum with 

Association Rule 

Distributed Database Management System 

Distributed Database System 

Global Information Grid 

Graphical User Interface 

Hierarchical Replication Scheme 

International Business Machines 

Input/Output 

Johnson & Johnson 

Local Area Network 

National Aeronautics and Space Administration 

Neighbour Replication on Grid 

NRG Transaction Manager 

Pre-Fetching Based Dynamic Data Replication Algorithm 

Pre-Fetching Based Dynamic Replication Algorithm 

Read-One-Write-All 

Read-One-Write-All Monitoring Synchronization 

Transactions Systems 

Replication Strategy Based on Clustering Analysis 

Replication Strategy Based on Maximal Frequent 

Correlated Pattern 

Wide Area Network 

xiii 



CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

One of the biggest challenges that data grid users have to face today relates to 

the improvement of the data management. Organizations need to provide current data to 

users who may be geographically remote and manage a volume of requests for data 

distributed around multiple sites in distributed environment. Therefore, the storage of 

data, their availability and consistency are important issues to be addressed in order to 

allow efficient and safe access data distributed to and from users around many different 

sites. One way to effectively cope with these issues is to rely on the replication 

teclmique. The main aims of replication are to manage large volumes of data in a 

distributed manner, expedite data access, reduce access latency and increase data 

availability (Milani and Navimipour, 2016; Wang et al., 2017). 

While data availability is increased because data are stored in more than one 

site, most of the existing replication strategies overlook the possible correlation that 

may occur among different data files in Distributed Database System (DDS). The 

knowledge about data correlation can be extracted from historical data using techniques 

ofthe data mining field. Data mining techniques have been proven to be a powerful tool 

in facilitating the extraction of meaningful knowledge from large data sets (Han et al., 

2011; Zaki and Meira, 2014). In this respect, mining grid data is an interesting research 

field which aims at analyzing grid systems with data mining techniques in order to 

discover new meaningful knowledge to efficiently enhance grid systems in many areas 

(Sanchez et al., 2008). Nevertheless, only few works have used data mining techniques 



to explore file correlations in data grid. Therefore, the present study was initiated on the 

basis of the paucity of published works in this area of research and its potential benefits. 

Database technology has become important in most business organizations. 

Distributed Database System (DDS) has become more affordable and useful driven by 

the advances in telecommunications. A DDS normally consists of a number of separate 

yet interrelated databases located at different geographic sites which can communicate 

through a network. Usually, the system is managed by a Distributed Database 

Management System (DDBMS). Distributed databases reduce cost and increase 

performance and availability; however, the design of DDBMS is complicated. In order 

to make this process feasible, the database distribution process is divided into two steps, 

namely, fragmentation and allocation (Hossein et al., 2015). 

DDS is distributed into separate partitions or fragments. Fragmentation attempts 

to split data into fragments, which should be allocated to sites over the network in the 

allocation stage. A single database needs to be divided into two or more pieces and the 

combination of the pieces yield the original database without any loss of information. 

Each piece that is produced after fragmentation is known as a database fragment. 

Fragmentation is very useful in terms of usage, reliability and efficiency of distributed 

databases. Fragmentation phase is the process of clustering the information accessed 

simultaneously by applications in fragments, while allocation phase refers to the 

process of distributing the generated fragments over the database system sites (Baiao et 

al., 2000, Pazos et al., 2014). 

·To fragment a database, two basic methods are commonly used, namely, vertical 

fragmentation and horizontal fragmentation. In addition to the vertical and horizontal 

fragmentation methods, it is also possible to execute mixed or hybrid fragmentation on 

a class by combining both techniques (Baiao et al., 2000, Hossein et al., 2015). In the 

object model, vertical fragmentation breaks the class logical structure (its attributes and 

methods) and distributes logical structure across the fragments, which will logically 

contain the same objects, but with different structures. On the other hand, horizontal 

fragmentation distributes class instances across the fragments, which will have exactly 

2 



the same structure but different contents. Thus, a horizontal fragment of a class contains 

a subset of the whole class extension (Baiao et al., 2000). 

Each partition or fragment of a distributed database may be replicated (Jemal et 

al., 2014). Changes applied at one site are captured and stored locally before being 

forwarded to and applied at each of the remote locations. Additionally, expensive 

synchronization mechanisms are needed in order to maintain the consistency and 

integrity of the replicated data in distributed environments. Synchronous replication is 

the process of copying data over a storage area network or wide area network so there 

are multiple up to date copies of the data. It is primarily used for high-end transactional 

applications that need instant update. Synchronous replication can be categorized into 

several schemes, namely copying all data to all sites (full replication), all data to some 

sites, some data to all sites and some data to some sites. By contrast, asynchronous 

replication writes data to the primary storage first and then copies the data to the 

replica. Although the replication process may occur in near real time, replication on a 

scheduled basis, for example, every ten minutes, is more common. 

1.2 Problem Statement 

Single centralized database has low availability and reliability because if the 

database site goes down the whole system fails. DDS has high availability and 

reliability. However, DDS introduces high redundancy as more than one site is used and 

also creates low data consistency and data coherency as more than one replicated data 

need to be updated. Hence, this raises the following questions that warrant further 

investigation: 

i. How can high availability of data be achieved? 

ii. How can redundancy be reduced when there is an increase in the data storage 

capacity? 

iii. How are synchronization mechanisms executed in order to maintain the 

consistency of data when changes are made by transactions? 

3 



By storing multiple copies of data at several sites in the system, there would be 

increased data availability and accessibility to users despite site and communication 

failures. The mechanism is important to enable access to data whenever required. 

··• However, the storage capacity becomes an issue as multiple copies of data are 

· replicated on different sites. In this regard, data organization tends to increase the data 

storage capacity. At the same time, expensive synchronization mechanisms would be 

needed to maintain the consistency and integrity of data when changes are made by the 

transactions. In addition, when replication is done without proper strategy, this process 

will increase the data redundancy and waste of space. 

Examples of the simplest techniques that can be used are all-data-to-all sites 

replication scheme or simply known as, the Read-One-Write-All (ROW A) technique 

(Noraziah et al., 201 0) and the Hierarchical Replication Scheme (HRS) (Perez et al., 

2010). Read operations on a data object are allowed to read any copy while write 

operations are required to write all copies of the data object. ROW A and HRS result in 

the imbalance of availability as well as the communication cost of read and write 

operations. The read operations have a high availability and low communication cost 

whereas the write operations have a low availability with higher communication cost. 

Meanwhile, voting techniques (VT) became popular because they are flexible and are 

easily implemented. VT have been applied to the primary cluster for managing 

replicated data. One weakness of these techniques is that writing an object is fairly 

expensive: a write quorum of copies must be larger than the majority of votes. In 

addition, dynamic quorum techniques have also been proposed to further increase 

availability in replicated databases. However, VT and dynamic quorum techniques do 

not address the issue of communication cost. Another technique called Tree Quorum 

(TQ) uses quorums that are obtained from a logical tree structure imposed on data 

copies. TQ has been proposed for persistent consistent distributed database commit in 

peer-to-peer network. Nonetheless, TQ also has some drawbacks. If majority of the 

copies in any level of the tree become unavailable, write operation cannot be executed. 

Several researchers have proposed logical structures on the set of copies in the database. 

To create intersecting quorums, the logical information has been deployed. Such 

technique that uses a logical structure, for example, the Grid Structure (GS) technique, 

executes operation with low communication costs while providing fault tolerance for 

4 



both read and write operations. However, this technique still reqmres for a larger 

nwnber of copies to be made available to construct a quorum. 

It should be noted that all ofthe replication techniques aforementioned are based 

on single file granularity. They are indeed confined to identify popular files based on 

file access patterns observed at application runtime. In many applications, data files 

may actually be correlated in terms of accesses and have to be considered together 

(Hamrouni et al., 20 15). File correlations become an increasingly important 

consideration for performance enhancement in data grid. When the correlations 

between the data are not investigated efficiently, this condition will lead to high job 

processing time for a transaction. Without proper strategies, the execution time for the 

replication process will be high and the system will not work efficiently. 

1.3 Research Objectives 

The present research concentrates on the replication for fragmented database in 

distributed database environment. Binary Vote Assignment Grid Quorum with 

Association Rule (BVAGQ-AR) wac;; proposed to produce higher reliability and 

availability in managing distributed database replication. Hence, the objectives of this 

research are as follows: 

i. To design and develop data replication algorithms in distributed database 

environment with low communication cost and processing time for a 

transaction. 

ii. To enhance the data consistency technique m objective 1 for synchronous 

replication. 

1.4 Scope of Research 

The scope of the current study was focused only on synchronous replication 

with non-failure cases. In addition, it also did not consider deletion or data replacement 

5 



during the allocation process. BVAGQ-AR Transaction Manager (BTM) was developed 

to integrate the replication process with transaction management in distributed database 

environment. The experiments were tested in five replicated servers because the 

maximum of replicated data objects in BVAGQ-AR technique was equal to 5. 

l.S Organization of the Thesis 

This orientation of this thesis has been organized to give details of the theories, 

algorithms, procedures, observations, arguments, conclusions and recommendations in 

order to meet the objectives of the present study. Chapter 1 generally presents the 

background of the database replication, problem statement, objectives and scope of the 

research. This is followed by Chapter 2 which critically reviews the literature on 

database replication, database fragmentation concept, data grid concept, the data mining 

in grid, data mining tasks, namely, classification, clustering and association rule. In 

addition, details of mining frequent patterns in association rules are explained. 

Furthermore, data mining techniques in data replication and replication model are also 

reviewed which not only discuss the techniques but also include their drawbacks. 

Chapter 3 describes the algorithm of the proposed model while Chapter 4 explains the 

implementation of BV AGQ-AR algorithm and compares the performance with other 

replication techniques. The conclusions of the present research are summarized and 

presented in Chapter 5 which also includes recommendations for future research in this 

area. 

6 



CHAPTER2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews database fragmentation, data grid, data mining in grid, data 

mining types and mining frequent patterns in association rules. Additionally, this 

chapter also examines data replication in grid and data replication techniques with and 

without data mining techniques. Last but not least, a discussion of the topics is 

presented in this chapter. 

2.2 Theoretical Background 

This section provides theoretical foundation of the present research. Key elements 

such as data grid, data mining in grid, data mining types, mining frequent patterns in 

association rules, and database fragmentation are discussed to shed some light on the 

theoretical background ofthe present study. 

2.2.1 Data Grid 

Currently, it is possible to utilize a large number of geographically distributed 

heterogeneous resources owned by different organizations as a result of the rapid 

development of networking technology and web. A wide range of developments on IT

based systems with the recent advances in cloud computing (Asghari, 2016; Chiregi, 

2016; Milani, 2016; Navimipour, 2015; Ashouraie, 2015), grid computing (Navimipour, 

2014; Souri, 2014), and peer-to-peer computing (Chiregi, 2016) have emerged. These 

technologies have facilitated data access and resource sharing (Milani, 20 17; Milani, 

7 



2016). Grid Computing is defined as a type of parallel and distributed system that 

comprises the combination and collaborative uses of resources depending on the 

availability and the capability to satisfy the demands of researchers requiring a large 

amount of communication and computation power (Garg & Singh, 20 17). The grid 

•.. systems have been developed with the purpose of handling a huge amount of data sets 

and distributing them among several grid resources (Nagarajan & Mohamed, 2017). 

Jobs dependency can be based on the data storage. Placing replicas or files locally 

would be desirable in order to improve performance through reduction of file access 

time (Azari, 20 18). 

At present, the size of the data that need to be accessed on the data grid has 

already reached terabytes. Ensuring effective access to such huge and widely distributed 

data is a serious challenge to network and grid designers. Huge volumes of bandwidth 

can be consumed to transfer the file from the server to the client when a user generates 

a request for a file. Additionally, the latency involved could be significant if the sizes of 

the files involved are large (Satyha et al., 2006). 

Data grid is a very suitable technique to process a large number of data (Zhou et 

al., 2008). Grid allows an organization to operate and manage distributed resources as a 

secure and flexible infrastructure because it can grow, shrink and change depending on 

current needs (Linesch et al., 2007). Furthermore, terabytes or petabytes volumes of 

data that are geographically scattered in storage resources are managed, controlled and 

shared in data grid environment (Beigrezaei et al., 2016; Ranganathan and Foster, 2001; 

Hoschek et al., 2000; Moore et al., 1999) to make sure users are able to share data 

which are located in different places, and other resources (Bsoul et al. 2011; Perez et 

al., 2010). 

Grid computing in general is derived from high-performance computing, 

supercomputing and cluster computing where several processors are connected through 

a high-speed interconnect in order to compute a mutual program (Stockinger, 2001 ). 

data grid deals with the efficient management, placement and replication of large 

amounts of data (Stockinger, 2001 ). Many data grid applications are being developed or 

proposed, such as DoD' s Global Information Grid (GIG) for both business and military 

domains, NASA's Information Power Grids, GMESS Health-Grid for medical services, 

8 



data grid for Federal Disaster Relief (Tu et al., 20 l 0), Johnson & Johnson (J&J), China 

Grid, Amazon, Google, and eBay (Linesch et al., 2007). [n addition, data grid 

applications also offer new and more powerful ways of working such as science portals, 

distributed computing for large-scale data analysis or collaborative work (Laura et al., 

2009). 

Dealing with data grid is not an easy job. Some issues must be considered while 

handling and managing the data. Grid allows users to keep a large number of replicas of 

data objects in terms of data management in order to allow for a high degree of 

availability, reliability and performance to make sure the grid meets the requirements of 

users and applications (Laura et al., 2009). Moreover, the size of data managed by data 

grid is endlessly increasing (Perez et al., 201 0). 

In data grid, a large amount of bandwidth could be spent to send the file from 

the server to the client when a user requests a file and the delay or response time 

involved could be high (Charrada et al., 2010; Bsoul et al., 2011). Besides that, 

preserving local copies of data on each accessing site is expensive in terms of cost 

while storing all data in a centralized storage is unreasonable due to remote access 

latency (Shorfuzzaman et al., 2011; Sashi & Thamani, 2010a,b; Shorfuzzaman et al., 

201 0). This may turn out to be a bottleneck in the Internet during the process of 

accessing the files in the grid. Hence, due to the high latency of the Wide Area Network 

(WAN), the core issue is to design the strategy for efficient data access with 

significantly low time complexity in data grid research (Zhao et al., 2008). 

Additionally, in order to manage the data grid, there are some other several issues that 

must be considered. For example, failures or malicious attacks during execution, fault 

tolerance, and scalability of data. These issues can be solved by using the replication 

techniques (Naseera & Murthy, 2009; Charrada et al., 2010; Ounelli et al., 2010; 

Mistarihi et al., 2009; Zhou et al., 2008; Bsoul et al., 2011; Perez et al. , 2010; 

Shorfuzzaman et al., 2011; Shorfuzzaman et al., 2010; Zhou et al., 2010). 

2.2.2 Data Mining in Grid 

It has often been said that we are living in the information age. As a matter of 

fact, we are now actually living in the data age as terabytes or petabytes of data are 

9 



transferred into computer networks, the World Wide Web (WWW), and numerous data 

storage devices every day. This explosive growth of data volume emerges a result of the 

rapid development of powerful data collection and storage tools. Moreover, businesses 

around the world generate massive data sets, including sales transactions, stock trading 

records, product descriptions, sales promotions, company profiles and performance, and 

customer feedback (Han et al., 2012). 

This explosively growing, widely available, and gigantic body of data makes 

this time is truly the data age. One of the biggest challenges that data grid users have to 

face today is the enhancement of the data management. In this regard, the 

understanding of the system features, user behaviour, or frequent patterns can help in 

contributing to both efficient management and better performance (Hamrouni et al., 

2015). Powerful and handy tools are critically needed to discover valuable information 

from the tremendous volumes of data and to renovate the data into systematized 

knowledge. This obligation has led to the existence of data mining (Han et al., 2012). 

Data mining techniques have been proven to be a powerful tool in facilitating 

the extraction of meaningful knowledge, hidden patterns, associations or anomalies 

from large data sets (Hamrouni et al., 20 15). Hence, by mining historical grid data using 

the techniques from the data mining field, valuable knowledge can be mined. The grid 

systems management may able to improve in many areas using the knowledge 

discovered from the data mining because that knowledge can enhance data replication 

strategies. Replication is one way to effectively address the challenges in improving 

data management in data grid. Many surveys were conducted and approaches have been 

proposed (Hamrouni et al., 2015; Mokadem and Hameurlain, 2015; Kingsy et al. , 2014; 

Dayyani et al., 2013, Amjad et al., 2012). Nevertheless, most of existing replication 

techniques are based on single file granularity. Such techniques have indeed failed to 

recognize popular files based on file access patterns and have not taken into account file 

correlations or file access patterns (Hamrouni et al., 20 15). However, in many 

applications, data files may be correlated in terms of accesses and have to be considered 

together. 

In some cases, knowledge about file correlations such as groups of files that are 

always requested together as well as file access patterns must be considered in the 

10 



replication process. Hence, the present research was driven by the idea that hidden 

patterns and associations discovered by data mining techniques would be used to 

identify groups of correlated files always requested together by users, to discover the 

knowledge that could be used for data fragmentation and data allocation in order to 

enhance the data replication techniques. 

2.2.3 Data Mining Types 

Due to the wide variety of data mining techniques and different types of 

information and forms of data presentation, it is necessary to define the limits of the 

applicability and relevance of certain methods according to the provided data and the 

objectives that need to be achieved (V adim, 20 18). Data mining can be classified into 

two types, namely, the predictive and the descriptive (Gullo, 2015; Fayyad et al., 1996). 

Predictive data mining involves the development of a useful model, particularly one 

that can be used to predict future behaviours. These include classification and 

prediction tasks. These tasks are executed by deriving some models that describe their 

data by a set of data objects of which class label is known in order to predict the class of 

objects of which class label is unknown. By contrast, descriptive data mining describes 

data in a clear, efficient, and effective form. An example of descriptive tasks is data 

characterization. The objective of descriptive data mining is to summarize the general 

characteristics of a target class of data and data discrimination as well as association

rule discovery (Gullo, 20 15). 

2.2.3.1 Classification 

The classification task uses a collection of data as the input known as the 

training set. Each data comprise a set of attributes; one of the attributes represents the 

class of the data. The aim is to discover a model for the class attribute as a function of 

the values of the other attributes. Consequently, the model is used to predict the class 

attribute ofthe neglected original data. 

I I 



For example, let us assume that there is a group of records that represent the 

position held by the teachers in a school and each record has the following attributes: (i) 

teacher' s name, (ii) position, (iii) years of service in the school, and (iv) the class 

attribute, which is a Boolean attribute that specifies whether or not the teacher holds the 

position of a homeroom teacher. Additionally, by further assuming that the input 

collection contains the following records: <Shahril, head teacher, 2, no>, <Liyana, 

senior assistant, 7, yes>, <Fauzi, senior assistant, 2, yes>, <Auni, assistant coach, 7, 

yes>, a classification algorithm would possibly find a model as the following set of 

rules: 

"IF position= senior assistant, OR years> 4 THEN homeroom=yes". 

Therefore, given a new record <Azizah, head teacher assistant, 6, yes/no>, the 

model would predict the missing class value as <yes>. 

1.1.3.2 Clustering 

The objectives of clustering is to discover a finite set groups of objects in a set of 

data objects (i.e., clusters) to ensure that the objects in the same cluster are alike or 

similar while the objects belonging to different clusters are different or dissimilar. The 

. degrees of similarity and dissimilarity among the data objects are decided and weighed 

according to a proximity measure. 

Clustering approaches usually define a specific objective function to be optimized 

to correctly define clusters that are compact and well-separated from each other. 

Because this theory normally causes computational problems that is hard to be 

·eptimally solved for large-scale inputs (the so-called NP-hard problems), any particular 

~lustering technique should define the corresponding approximation algorithms to find 

good estimations of the optimal solution. 

Past studies in the literatures had employed different clustering approaches and 

algorithms which differed from each other in terms of the optimization standard, the 

12 



resolution principle, and the computation of the distance between the input objects 

(Gullo, 2015; Aggarwal & Reddy, 20 14). Nevertheless, clustering is divided into two 

main categories, namely, partitional and hierarchical. In general, partitional-clustering 

algorithms compute a single partition of the input dataset. A considerable number of 

partitional algorithms exploit the relocation scheme in which the objects are iteratively 

re-assigned to the clusters until a stop criterion has been met. Such scheme is used as 

the foundation ofthe popular K-Means algorithm (Gullo, 2015; MacQueen, 1967). 

2.2.3.3 Association Rule 

Given a set of records, for example, transactions, with each of them holding a 

number of items from a certain collection. Producing dependency rules is the objective 

of the association rule. These rules are used to predict the occurrence of an item based 

on occurrences of other items. For example, if for marketing reasons, the management 

of a store is keen to understand the best way to expose items to customers in order to 

increase purchases, an analysis of the purchasing history from the past can be made in 

order to find out association rules like {uniform, bag} ~ {stationaries} , which 

informally show that when customers buy a uniform and a bag, it is very likely that they 

would also buy stationery as well. Such a rule can be used in numerous ways. For 

instance, uniforms and bags can be used to improve the sales of stationery such as by 

placing the cameras and tripods close to the stationery or putting uniforms in a 

promotional package that accompanies the bags. 

An initial step, namely, a frequent pattern mmmg, 1s usually required by 

association rule algorithms to correspond to another classical data mining task (Han et 

al., 2007), of which the main goal is to discover the subsets of items that frequently 

occur together in a set oftransactions. For instance, the above example association rule 

{uniform, bag} ~ {stationery} is derived from the initial discovery that uniforms, bags 

and stationery frequently appear together in the purchasing data log. Apriori algorithm 

is the most recognized association rule mining algorithm (Gullo, 2015). 

13 



2.2.4 Mining Frequent Patterns in Association Rules 

Patterns or itemsets that frequently appear m a data set are called frequent 

patterns. For example, a set of items that appear frequently together in a transaction 

such as tripod and camera. This data set is called a frequent itemset. Discovery of 

frequent patterns plays a significant part in mining associations, data correlations, and 

many other exciting relationships among the data. 

Frequent pattern mining in association rules seeks for recurrent relationships in 

a given data set. Frequent itemset mining specifies the discovery of associations and 

correlations between items in large transactional or relational data sets. As a result of 

the enormous amount of data constantly being collected and stored, many industries 

have been drawn to mining the patterns exhibited by their databases. The finding of 

interesting correlation between massive amounts of business transaction records can 

help the decision-making processes such as catalogue design, cross-marketing, and 

client behaviour analysis. 

The basic concepts of data mmmg association rules are called support and 

confidence. These concepts show the practicality and certainty in data discovery rules. 

Rule l: A==> B set up in transaction D, it has support s, where P is percent of A U B in 

transaction D, it is the P (A u B) where A and 8 are itemsets which A ~B. So support is 

defined as: 

support (A => B) = P (A U B) 2.1 

Each discovery mode should be denoted by a certainty measure of its efficiency or 

reliability, so rule 2 is: 

Rule 2: A==> B has confidence c, it is percent both A and B in transaction D. It is 

conditional probability P (A I B), so the certainty measure confidence is defined as: 

confidence (A ~B) = P (A I B) 2.2 

14 



If rule l and rule 2 meet the specified minimum support and confidence, then 

the rules are the strong association rules. 

Rule 3: it is strong association rule, if support ~ min support and confidence ~ min 

confidence. The min support is minimum support, and min confidence is minimum 

confidence. 

2.2.5 Database Fragmentation 

Fragmentation in distributed database is very useful because usually 

applications work with only some of relations rather than in entirety (Connolly, 2015). 

Other benefits of database fragmentation are as follows: 

Easy usage of data: Fragmentation makes most frequently accessed set of data 

near to the users. Hence, these data can be accessed easily as and when required 

by them. 

ii. Efficiency: Fragmentation increases the efficiency of the query by reducing the 

size of the table to smaller subset and making it available with less network 

access time. 

iii. Reliability: Fragmentation increases the reliability of fetching the data. If the 

users located at different locations are accessing the single database, then there 

will be a huge network load. This will not guarantee that correct records are 

fetched and returned to the users. Accessing the fragment of data in the nearest 

database will reduce the risk of data loss and accuracy of data. 

iv. Balanced Storage: A system usually has enormous data. These data consume 

huge storage spaces in servers. By using fragmentation, these data will be 

distributed evenly among the databases in distributed database. 

There are three types of fragmentation, namely, horizontal, vertical and hybrid 

(Connolly, 20 15). Horizontal fragments are subsets of tuples, vertical fragments are 

15 



subsets of attributes and hybrid fragments are the combination of horizontal and vertical 

fragments. 

2.2.5.1 Horizontal Fragmentation 

Fragment I 
Fl 

F2 

F3 Fragment 2 

Table 

1 . ~~-------·L ____ _] ____ ] 
Fragment 3 

Figure 2.1 Horizontal fragmentation 

Figure 2.1 illustrates horizontal fragmentation. Horizontal fragmentation groups 

together the tuples in a relation that are used by the important transactions (Tamhankar 

& Ram, 1998; Connolly, 2015). A horizontal fragment is produced by specifying a 

predicate that performs a restriction on the tuples in the relation. It is defined using the 

Selection operation of the relational algebra. Given a relation R, a horizontal fragment is 

defined as Gp {R), where p is a predicate based on one or more attributes of the relation. 

Horizontal fragmentation involves forming a subset of the global relation by 

selecting tuples based on the value of one or more attributes is which also called scan 

attributes. The type of horizontal fragmentation is known as Primary if the scan 

attributes are contained in the relation being fragmented. However, ifthe scan attributes 

are contained in a relation which owns the relation being fragmented, the type of 

horizontal fragmentation is called Secondary. The benefits of horizontal fragmentation 

are extensive when fragments can be formed such that query or update transactions for 

a relation at a site is largely localized to the fragment at that site (Tamhankar & Ram, 

998; Connolly, 2015). During horizontal fragmentation, rules must be followed to 

16 



ensure completeness, reconstruction and disjointness (Bhar & Barker, 1995; Navathe et 

al., 1984; Sacca et al., 1985; Connolly, 2015). Horizontal fragmentation is most 

effective if the locality of reference can be established by using site-based attributes for 

fragmentation (Tamhankar & Ram, 1998; Connolly, 2015). Horizontal fragmentation 

improves response time, availability and concurrency of transactions. 

2.2.5.2 Vertical Fragmentation 

-
Fl F2 F3 

F1 F2 F3 
.. 

Table 

Fragment 1 Fragment 2 Fragment 3 

Figure 2.2 Vertical fragmentatiOn 

Figure 2.2 shows the illustration of vertical fragmentation. Vertical 

fragmentation groups together the attributes in a relation that are used jointly by the 

important transactions (Connolly, 201 0). A vertical fragment is defined using the 

Projection operation of the relational algebra. Given a relation R, a vertical 

fragmentation is defined as llaJ, .... an (R), where a1, ... , an are attributes of the relation 

R, where n is equal to the number of the attributes. 

Vertical fragmentation involves dividing the attributes of a relation into groups 

and then projecting the relation over to each group. The attributes should not be 

overlapping across the groups with the exception of primary key attributes or tuple ID 

(Tamhankar & Ram, 1998). Vertical fragmentation comes generally with side-effects 

and requires a detailed analysis for establishing its benefits such as improving response 

time, availability and concurrency of transactions. The additional overhead of implicit 

joins will have to be incurred for queries spanning multiple fragments. The use of the 

implicit joins is practical when different applications located at multiple sites share data 

17 



and to merge the two fragmentation approaches to result in hybrid fragmentation 

(Tamhankar & Ram, 1998; Connolly, 20 15). All the updates are executed on the master 

copy while other copies called snapshots are refreshed occasionally. Queries are routed 

to a local copy, if available. This practice improves availability and concurrency of 

query operations and it does not degrade response time for update operations. Vertical 

fragmentation requires consistency analysis at the application level and most suitable 

for networks with high delays and low reliability (Tamhankar & Ram, 1 998; Connolly, 

2015). 

2.2.5.3 Hybrid Fragmentation 

F2 
Ft 

F3 

Fragment 1 
, 

F5 
F4 

Table F6 

Fragment 2 

Figure 2.3 Hybrid fragmentation 

For some applications, horizontal or vertical fragmentation of a database schema 

by itself is insufficient to adequately distribute the data. Instead, mixed or hybrid 

fragmentation is required. A mixed fragment is defined using the Selection and 

Projection operations of the relational algebra. Given a relation R, a mixed fragment is 

defmed as lYp (I1a1. . .. , an(R)) or n a1, ... , an(Up (R)) where pis a predicate based on 

one or more attributes of R and a1, . . . , an are attributes of R. 

2.3 Literature Review 

In this section, literature reviews on general data replication in grid as well as 

data replication with and without data mining techniques are presented. 

18 



2.3.1 General Data Replication in Grid 

The general idea of replication is to store several copies of the same data in 

different sites across the grid. This clearly scales up the performance by reducing 

remote access delay and mitigating single point of failure (Boru et al., 2015). In 

addition, data replication helps overcoming long wide-area data transfer latencies by 

keeping data close to locations where queries are originated (Allcock et al., 2002). 

Indeed, through replication, data grid can achieve high data availability, improved 

bandwidth consumption, and better fault tolerance (Hamrouni et al., 20 15). 

There are three fundamental questions that must be answered in managing 

n:plica placement strategy in data grid (Rang ana than & Foster (200 1 ). The three 

.questions are 

i. When should the replicas be created? 

ii. Which files should be replicated? 

iii. Where should the replicas be placed? 

Different replication strategies have been developed to overcome the problems 

that have been mentioned above (Charrada et al., 2010; Ounelli et al., 2010; Mistarihi et 

al., 2009; Zhou et al., 2008; Zhou et al., 201 0; Ranganathan & Foster, 2001; Al

Mistarihl & Y ong, 2008). 

Depending on the answers, intensive research has been conducted on developing 

data replication strategies. Determining the site from which a particular data set can be 

retrieved most efficiently becomes a critical issue especially as data sets of interest tend 

to be large (Vazhkudai & Schopf, 2003). To address this issue, many replica selection 

strategies have been proposed. Several surveys have been conducted on data replication 

and replica selection strategies (Amjad et al., 2012; Grace & Manimegalai, 2014b; Ma 

et al., 2013; Mokadem & Hameurlain, 2015). 

In replicated systems, synchronization is a one of the issues that needs to be 

concerned with. Synchronization schemes can be classified to be either synchronous or 

19 



asynchronous (Gray et al,. 1996; Daudjee & Salem, 2004). Asynchronous replication 

usually updates replication using separate transaction which can cause inconsistencies. 

Asynchronous replication also causes the receiver to have problems in receiving the 

data from the sender. It works reasonably well for managing replicated data for single 

object updates. However, asynchronous replication fails when involving multiple 

objects with single update (Daudjee & Salem, 2004). 

Therefore, synchronous replication is the answer for constraints that the 

asynchronous brought. Synchronous replication will guarantee data consistency since 

this replication works based on quorum to execute the operations. For any copy that has 

been updated, the updates are applied immediately to all the copies within the same 

transaction (Noraziah et al., 2009). This will ensure that all the copies in any site are the 

same and consistent. A consistent copy in all sites gives advantages to the organization 

as it provides an updated data that is accessible anytime at any place in the distributed 

systems envirorunent. However, synchronous replication requires vast amounts of 

storage capacity as multiple copies of replicated data stored in many sites and expensive 

synchronization mechanism are needed to maintain the consistency of data when 

changes are made. As a result, a proper strategy is needed to manage the replicated data 

in Distributed Database System. 

2.3.2 Data Replication with Data Mining Techniques 

In this section, existing data replication techniques with data mining are reviewed. 

2.3.2.1 Dynamic Replication Based on the Correlation of the File Strategy in 

· Multi-Tier Data Grid Algorithm (BCSA) 

The hierarchical topology provides an efficient and cost-effective technique for 

sharing data, computing and network resources in Dynamic Replication Based on the 

Correlation of the File Strategy in Multi-Tier Data Grid Algorithm (BCSA) (Cui et al., 

2013). In this multi-tier model, tier-0 is called root node. Root node produces and keeps 

all ofthe data. Tier- I is called National Data Center; tier-2 is referred as Regional Data 

Center and tier-n are Research Centers or universities. The nodes between tier-0 and 

20 



tier-(n-1) are the complete computing system from the external users. It can be a single 

machine or a duster. The process starts when a user in tier-n reyuests data. If the data is 

found in the middle tier, either tier-1, tier-2 or tier-(n-1 ), then the middle tier will 

returns the requested data from the layer. Otherwise, the data is returned by tier-0. The 

data will be copied to the middle layer in order to reduce job execution time and 

minimize the network load. Since the data replication can only be processed from up to 

down, the data storage space in each layers gradually decreases. 

The root node consists of three basic parts, namely, information collecting, data 

mining and replication. The information collecting part collects primary data 

information from tier-1, as well as the data access sequence from each node, the data 

access number and etc. The data mining part is primarily used to analyze the data and 

also to discover the correlation between the data files. Replication part, as the name 

suggests, is in charge of the data replication. The middle layer nodes have two 

components called the statistic component and the replication component. Statistic 

component gathers access number of data and sum from the lower layer while 

replication component sends replicating request to the upper layer or duplicate replicas 

to the lower layer. 

The algorithm considers spatial file locality and temporal time locality. It is based 

on the concept of support and confidence. It identifies the correlation between the data 

files through data access number and data access serial. System prefetches the 

frequently accessed files and their associated files, and then sends the files to the 

location near the access site, thereby reducing the job execution time. 

In multi-tier data grid, each node belongs to a special tier. Tier(m) is the number 

of tier where node m is placed. If a node m and n are directly connected, and 

tier(m)=tier(n)- 1, m is therefore the parent of n, and n is the child node. At each fixed 

time interval, the middle layer and the root node gather the statistical information at the 

next layer nodes, and total access numbers ofthe data file . 

Root node collects information from tier-1 layer by using the information 

collection part, identifies the file with access numbers surpassing the threshold and its 

associated file by using data mining part, and then copies the files to the corresponding 

21 



node in the intermediate layer. These files are the files with access numbers surpassing 

the threshold and related files that meet the corresponding support and confidence. 

2.3.2.2 A Prefetching-Based Replication Algorithm (PRA) in Data Grid 

A transaction can request to access different data at different sites. For example, a 

file which has not been requested locally is likely to have been requested at another 

remote site earlier. Neighbouring files can be accessed at the remote site because of the 

spatial locality. Certainly, the remote site should have that file and its neighbouring 

files. That is to say, local site not only has to obtain data from the needed replica, but it 

also has to prefetch data from several replicas of its neighbouring files to improve the 

response time of file requests in future (Tian et al., 2008). 

In Prefetching-Based Replication Algorithm (PRA), when a local site receives a 

tile request but the file is not stored locally, it will search a remote site to transfer the 

required file replica through the Replica Directory Server. The remote site accepts a file 

transfer request from the local site, and transfers the file to that local site. 

Simultaneously, the remote site will attempt to search the adjacent files of the requested 

file from its file access sequence database. A message containing the list of adjacent 

files will be sent to the local site too. Finally, the local site will select some adjacent 

files to start the replication process. This process will greatly reduce the response time 

of file access. 

However, the sequence databases need some storage space mainly because as time 

passes by, the size of the databases becomes larger. In order to deal with this issue, the 

old sequences of database can be deleted periodically. Moreover, sequences can also be 

compressed to reduce storage space they occupy without losing any information. 

2.3.2.3 Prefetching-Based Dynamic Data Replication Algorithm (PDDRA) 

Prefetching-Based Dynamic Data Replication Algorithm (PDDRA) is proposed 

based on pre-fetching technique. In order to increase system performance as well as 

decrease response time and bandwidth consumption, it is better for requester grid site to 

prefetch some replicas. These replicas have high probability to be requested in the near 

22 



future. After pre-fetch, when the grid site requests the replicas, it can access them 

locally. Hence, this decreases the access latency and response time (Saadat et al., 20 12). 

Figure 2.4 shows a PDDRA architecture. 

1.S • l..o<•l....va 

a•r.dl-.e-

\ (· ......... .....----' 
: ·. 

I / •• •. . ·· ........ ··< ... \ 
j VU...ol Orpai<Uiioa ('10) I 

Figure 2.4 PDDRA architecture 

Source: Saadat et al. (2012) 

The grid sites are located at the lowest level of the proposed architecture as 

illustrated in Figure 2.4. These grid sites contain Computing and/or Storage Element. 

Virtual Organization (VO) is constituted from multiple grid sites and there is a Local 

Server (LS) for every Virtual Organization (VO). There is a Replica Catalogue (RC) 

that is located at Local Server. The bandwidth available between the sites inside aVO is 

higher than the bandwidth between Virtual Organizations. For that reason, accessing a 

file that is located within the current VO is faster than accessing the file that is placed in 

the other VO. In the upper layer, there is a Regional Server (RS) and each RS consists 

of one or more VOs. Transferring files between Regional Servers takes a long time 

because they are connected via internet. There is also a Replica Catalogue placed at 

each RS which contains a directory of all the files stored in that area. Thus, every time a 

file that is not stored in the current VO is requested, the RC in an RS is enquired to 

determine which VOs hold the required file. 

23 



Assuming that grid site 'G' requests a tile that is not stored local, the RC is 

therefore asked to dictate which sites have the requested file. It is better to pre-fetch 

replicas that are probable to be requested by the requester grid site in the near future to 

make sure reducing access latency, response time and bandwidth consumption. A new 

algorithm and topology for this purpose would thus be proposed in the present research. 

If the requested file is not in the current VO and is stored in some other VOs, a request 

is sent to the RS. Then RS searches on its RC table and determines the locations of the 

requested file in other VOs. In this situation, only the requested file will be replicated. 

Pre-fetching will not be necessary and will not be done in order to prevent high 

propagation delay time and consequently high replication cost because of low 

bandwidth between VOs. Moreover, the present research also assumed that the 

members in a YO would have similar interests of files . Hence, the file access patterns of 

different VOs should not be prefetched for the requester grid site in other VOs, because 

their requirements and access patterns are dissimilar. The proposed algorithm would be 

built on the foundation of an assumption that members in a VO would have the same 

interest in files. In order to predict the upcoming accesses, past sequence of accesses 

have to be stored. By using data mining, files that will be accessed in the near future 

can be predicted from the past file access patterns. There are three phases in PDDRA. 

The first phase refers to storing file access patterns where file access sequences and data 

access patterns are stored in a database. The second one is the phase during which a file 

is requested, and replication and prefetching are performed. During this phase, a grid 

site requests for a file and replication process is executed for it, if necessary. Adjacent 

files of the required file are also prefetched for the requester grid site during this phase. 

Finally, the third phase is called the replacement phase. If there are enough spaces in 

storage element for storing a new replica, the files will be stored, or else an existing file 

will be selected for replacement. 

2.3.2.4 Replication Strategy based on Maximal Frequent Correlated Pattern 
(RSCP) 

Replication Strategy Based on Maximal Frequent Correlated Pattern (RSCP) 

scheme gathers files according to a relationship of concurrent accesses between files by 

jobs and stores correlated files at the same site. In order to discover these correlations, a 

maximal frequent correlated pattern mining algorithm of the data mining field is 

24 



introduced (Siimani et al., 2014). The all-confidence is selected as a correlation 

measure. The proposed scheme to be performed would be as follows: 

i. The file accesses history extraction. In this phase, each site keeps track of its 

access histories for all local files and remote files accessed by the jobs executed 

on it. 

ii. The file accesses history conversion. These file is converted into an extraction 

context (logical file access history). Extraction context is a table consisting of 

Boolean values. The accessed files are considered as items while each of the 

requested file for each job is regarded as one transaction. 

iii. Mining the maximal frequent correlated patterns. A new maximal frequent is 

applied to the correlated pattern mining algorithm in order to discover the 

hidden correlations between files or in other terms the groups of closely related 

files. 

iv. The inputs of the replication algorithm are the maximal frequent patterns that 

have been identified in the previous stage. For each group of correlated files to 

be replicated, the replication of these correlated files will take place only if there 

is enough storage space to hold all the files in the group. Otherwise, replacement 

process will be executed. In this process, the candidate files for deletion are 

selected according to their weight files. If the weight of the replicated group is 

greater than the total weights of candidate files, then they are replaced by the 

replicated group. Otherwise, no replication process would occur. 

2.3.2.5 Replication Strategy based on Clustering Analysis (RSCA) 

Replication Strategy based on Clustering Analysis (RSCA) is a strategy that 

identifies the correlation of client nodes' access files through clustering analysis. 

Afterward, RSCA creates the data files replica based on those sets, which accomplishes 

the objective of prefetching and buffering data. Confirming the correlation among the 

data files according to the access history of users is the goal RSCA. This strategy does 

not only assure the movement of files based on the number of access requests but also 

based on the correlation of the files accessed (Liu et al., 2009). For instance, when a 

user is requesting a data from the department files, that user will also access some other 

25 



files correlated to the department files. Similarly, other users often do the same things. 

However, there are many other files which also belong to the department files. Hence, 

the number of requests made by some users to retrieve a single file is not always above 

the threshold assumed beforehand. In actual fact, the user is interested in not a single 

department file but all the department files and the user expects to access these files 

quickly. RSCA will extract the characteristic of accessed data based on the access 

history of users, and then evaluate the correlation of the data. Then, the correlative file 

class sets of users by using the clustering analysis is produced. Finally, the correlation 

files to the data nodes is replicated. Clearly, the correlative files are numerous and the 

file names of them are not the same. 

2.3.3 Data Replication without Data Mining Techniques 

This section reviews several replication techniques which include Read-One

Write-All Monitoring Synchronization Transactions Systems (ROWA-MSTS), 

Hierarchical Replication Scheme (HRS), Branch Replication Scheme (BRS) and Binary 

Vote Assignment Grid. 

2.3.3.1 Read-One-Write-All Monitoring Synchronization Transaction System 

(ROWA-MSTS) 

Read-One-Write-All Monitoring Synchronization Transactions Systems 

(ROW A-MSTS) have been developed based on the ROW A technique. The ROWA

MSTS techniques handle each site regardless of regardless of whether or not the sites 

are operational and also to communicate with each other. The research used VSFTPD 

(GPL licensed FTP server for UNIX systems) as an agent communication between 

replicated servers (Noraziah et al., 2010). In ROWA-MSTS techniques, replicas 

consistencies are guaranteed by the consistency of execution on one replica; however, 

the client replicas are only updated and cannot provide accurate responses to queries. 

Synchronous replication techniques guarantee that all replicas are maintained 

consistently at all times by executing each transaction locally only after all replicas 

have agreed on the execution order. Hence, a very strict level of consistency is 

26 



maintained. Figure 2.5 shows the framework of ROW A-MSTS in distributed 

environment. 

Figure 2.5 

. 
" " ' " " " " ' ' ... 

~-------------------

The framework ofROWA-MSTS 

Source: Noraziah et al. (2010) 

PC B : !7~ .~5.!71 1.:! 6 

However, this technique practices all-data-to-all-sites replication protocol (i.e., 

all servers will have the same data). There will be huge amounts of data redundancy and 

waste of space. In addition, the execution time for a transaction will be high because the 

primary server has to wait for all other neighbouring servers to proceed with the 

transaction. 

2.3.3.2 Hierarchical Replication Scheme (HRS) Protocol 

Hierarchical Replication Scheme (I-IRS) consists of a root database server and 

one or more database servers organized into a hierarchy topology (Perez et al., 201 0). 

Figure 2.6 shows all replicas in HRS update data. 

27 



111111111111111 
/ 

11611111111111 lllilllllflllrlll 

/ 
~~~~111~~~ ~~~~~~ .... 111111~ .. ~~~~ 
0173 £ 5 6 7 0 113 £ 56 7 0 12J £ 5 67 

Figure 2.6 All replicas in HRS update data 

As shown by the architecture of HRS in Figure 2.6, replication process starts 

when a transaction initiates at any block at site 1. The root replica grows in a branching 

way, where the master replica is replicated into several other replicas. By using this 

protocol, all update operations are conducted on a master replica, and then the 

modifications are propagated to all replicas. Once the changes have been made, all the 

data will be replicated into the entire replicas. Finally, all sites will have all the same 

data. In order to maintain consistency among the updates by clients, all blocks are 

propagated and locked during the transaction process. This means that only one client 

can modify the data at a time. 

2.3.3.3 Branch Replication Scheme (BRS) Protocol 

Branch Replication Scheme (BRS) goals are to increase the scalability, 

performance, and fault tolerance. In BRS, each replica is composed of a different set of 

subreplicas organized using a hierarchical topology. BRS uses parallel 1/0 techniques 

(Cortes et al., 2002; Carballeira et al., 2007) to increase the scalability and performance 

of the system for read and write operations. The main features of BRS are root replica, 

parallel replication, flne grain replication, partial replication of popular file fragments 

and parallel data access better resource usage. This technique needs low space per 

storage to support replica. Figure 2. 7 shows data replication in BRS. 

28 



/ 
I 

111111111111111 

/ / 
~~-...:o~.:.-:~ ~~~.;..:..:~~.: ...:~.:~.:~..:.: 
01 2 3456 7 01 23 45 6 7 01 23 • 5 6 7 

Figure 2.7 Data Replication in BRS 

In order to support BRS, the following metadata information for each replica logical 

name must be linked: 

• FR: Parent replica or subreplica (upper level). Root replica parent is itself. 

• CR: Set of children subreplicas. It includes the location of the files that support 

the subreplicas and the portion of data replicated in each of them. Terminal 

subreplicas' children are themselves. 

• BR: Set of subreplicas, usually at the same level, with a common upper level. 

In BRS, replicas are created as close as possible to the clients that request the 

data files. The root replica grows toward the clients in a branching way, where the 

replicas will be broken into several subreplicas. By using this approach, the growing of 

replica tree is driven by client needs. This means that a replica is expanded or attracted 

towards the clients (Perez et al., 201 0). 

In addition, replication does not have to be for the entire replica. Subreplicas can 

be also replicated following the previous conditions. Assuming that accesses to a file 

are not uniformly distributed, the subreplica R; storage node would then become 

29 



overloaded. BRS can replicate only this subreplica to discharge this node. 

Consequently, the growth of the replication tree might not be symmetric and different 

branches could have different depths (Perez et al., 2010). 

In order to maintain consistency among the updates by clients, a mechanism is 

proposed where clients can only modify the data located in the terminal replica, or 

referred as the leaf nodes of the replication tree. Thus, the location of the replica is 

reduced to the location of the deepest subreplicas that support the range of data 

requested by the application. Data update is performed bottom-up, from the children 

replicas to the parent until it reaches the root replica. Only updated blocks are 

propagated. As shown by the example in Figure 2. 10, assuming that block 3 of replica 2 

(located in SITE 5) is written, the consistency algorithm sends block 3 to the replica's 

parent (SITE 2), which sends block 3 again to its parent (SITE 1 ). As the replica in 

SITE 1 is the root, the algorithm stops. Thus, replica updating can be executed by 

minimizing the number of steps (3) and the amount of information sent (only 1 block in 

this example). The amount of data transferred would be a minimum of 8 blocks. 

A problem may occur when a client tries to write in a subreplica which is not 

terminal. This is because such subreplica has been split into other subreplica. In this 

case, the error message ''write not allowed' is sent to the client. This may only happen 

because the client opens the file in the read-only mode. Thus, the client has to open the 

file for writing or updating and search for the replica that contains the data range 

needed by the client. Besides that, like HRS, the drawback in BRS is also because it 

requires many servers. 

2.3.3.4 Binary Vote Assignment Grid (BV AG) 

Binary Vote Assignment Grid (BVAG) is treading a new path in replication that 

helps to maximize the write availability with low communication cost due to the 

minimum number of quorum size required. In addition, the replication is combined with 

transaction technique. 

In BV AG, all sites are logically organized in the form of two-dimensional grid 

structure. For example, ifa BVAG consists ofnine sites, it will logically organize in the 

30 



form of 3 x 3 grid structure. Each site has a premier data file. A site is either operational 

or faiLs to operate and the state of each site is statistically independent from one another. 

When a site is operational, the copy at the site will be available; otherwise, the copy at 

the site will not be available. 

a 

d 

g 

Figure 2.8 Data Replication in BV AG 

Data will be replicated to the neighbouring sites from the primary site. As 

shown in Figure 2.8, site A is a neighbour to site B, if A is logically-located adjacent to 

B. Hence, the total number of data replication, d ..S 5. For simplicity, the primary site of 

any data file and its neighbours are assigned with vote one and vote zero otherwise. 

This vote assignment is called binary vote assignment on grid. A neighbour binary vote 

grid assignment on grid, B, is a function such that B (i) E {0, 1 }, I:Si:Sn where B (i) is 

the vote assign to site i. This assignment is treated as an allocation of replicated copies 

and a vote assigned to the site results in a copy allocated at the neighbour. That is, 

vote = 1 copy. 

Time-efficiency of transaction processing is measured by how fast the fmal 

decision of the transaction (i.e., either to commit or to abort) has been reached. The 

faster the decision is reached, the higher the time efficiency will be (Deris et al., 2003). 

Timeliness in synchronization has not only been impressive in maximizing the usage of 

the system but has also contributed to consistent and reliable computing at the same 

time. BVAG resolves this challenge by alleviating lock with small quorum size before 

31 



capturing update and committing transaction synchronously to the database that 

requires the same update data. The transaction semantic shows that the system 

preserves the data consistency through the synchronization approach. Furthermore, it 

guarantees the consistency because the transaction execution is equivalent to one-copy

serializability. 

2.4 Discussion 

In this section, the replication strategies with and without data mmmg 

techniques discussed in the previous sections will be thoroughly examined. Table 2.1 

presents the summary of comparative analysis of these techniques. 

The PRA strategies predict the future access behaviour of the data. Prediction is 

done according to the past file access sequences of the grid sites. The drawback of this 

technique is that the data mining technique only focuses on sites requests without 

considering their contexts such as the file usage specifically (i.e., which file is requested 

by which job). In addition, the PRA strategy does not distinguish the different requests 

arriving from the different grid sites and consider them as successive file accesses. It 

also uses unlimited data storage and copies all data to all sites which will cause high 

data redundancy and communication cost. 

32 



Table 2.1 Comparative table of replication strategies with data mining 

Replication Data Mining C/D Replication Data storage Data Drawbacks 
Techniques Techniques Replication method copied 
PRA Frequent Decentralized Synchronous - Unlimited All data to • Predict the future access behaviour of data . 

Sequence tested using all sites • Only focuses on sites requests 
Mining simulator • Does not separate the different requests arriving 

from different grid sites. 
PDDRA Tree Mining Decentralized Synchronous Limited Some data • RS are connected via internet - transferring tiles 

to some between them takes long time 
sites • Do not address the issues of communication cost 

in the research. 
• The last phase is the replacement phase - effect 

the data availability and reliability 
BSCA Association Decentralized Asynchronous Limited Some data • Replication only be done from up to down . 

Rules to some • Replication only be executed during the 
sites collecting components process - asynchronous 

replication. 
• Not suitable for systems with critical data . 

RSCA Clustering Centralized Asynchronous Limited Some data • The file groups determined by the clustering 
to some method are disjoint - a file can only belong to a 
sites single equivalence class. 

RSCP Maximal Decentralized Asynchronous Limited Some data • When there is not enough storage space, data 
frequent to some replacement process will take place- effect the 
correlated sites data availability and reliability. 
pattern minin~ 

33 



In PDDRA, when a transaction requests a file that is not stored locally, a request 

will be sent to its Regional Server (RS) . Then, RS will search in its Research Catalogue 

(RC). After that, the replication process can proceed. Each time a transaction requests to 

update an unavailable data, it has to go through this process. The drawback of this 

technique is, as stated by the researcher, RS is connected via internet, transferring files 

between them therefore takes a long time. PDDRA also does not address the issue of 

communication cost in the research. In addition, the final phase in this technique is 

replacement phase in which the old files will be replaced with new ones if there is not 

enough storage space available for data replication. This will affect the data availability 

and system reliability because some data have been deleted. 

The BSCA strategy applies association rules in its replication strategies. 

Association rules are used to rmd the correlations between the data. This technique will 

improve the average response time for the transactions. However, BSCA replication 

process only can be done top-down. The data replication will only be done during the 

process of collecting the components. Hence, this technique does not apply 

synchronous replication. Thus, the technique is not suitable for a system with critical 

data. This is because the value of data in the nodes is not synchronized. In other words, 

the value of data at different nodes will not be the same synchronously. 

The RSCA strategy is based on the clustering data mining technique. A major 

drawback of clustering is that the file groups determined by the clustering technique are 

disjoint. This means that a file can only belong to a single equivalence class (i.e., a 

single cluster). This assumption is actually not always valid since multiple correlations 

between files can arise, for example, a file may be simultaneously correlated with more 

than one group of files. 

The RSCP uses association rules to find the correlations between data. 

However, in this technique, if there is not enough space for data replication, a 

replacement process will be carried out. During replacement process, two average 

weights are calculated, namely, one for the group of files to replicate, and the other for 

the selected group for deletion. If the former is greater than the latter, candidate files are 

replaced by the new correlated group of files. Hence, this technique would not be 

compared with the proposed technique because the present research would not consider 

34 



file deletion. The present research has made an assumption that all data would be 

important and deleting it would affect the data availability. 

Subject to the data used in the data mining process and in accordance with the 

adopted technique, two types of data will be involved: 

i. For prediction data mining techniques, the data used are values of the predictor 

variables as well as the target variable. Prediction of future behaviour and pre

fetching based replication strategies. In this case, when a grid site or user 

requests for a file, these strategies try to predict the subsequent file requests by 

applying data mining in the historical access data. Therefore, predicted file 

requests are replicated in advance before they are actually being requested. The 

main advantage gained is to minimize the significant delay caused by techniques 

of replication on request (i.e., replication done after a request is arrived). 

However, in spite of improvements in accuracy, predictive pre-fetching has 

problems, specifically in terms of incorrect predictions (pre-fetched files that are 

not needed) which can have a direct negative impact on the overall system 

performance. 

ii. For the association rule mining and the sequential pattern mining, there is a bi

dimensional extraction context which is composed either by sites in lines and 

accessed files in columns or jobs in lines and accessed files in columns. 

Actually, jobs executed in the sites may access the files. Therefore, considering 

a history of file access jobs is reasonable choice to infer semantic relationships 

between files. 

In all the techniques that have been thoroughly discussed, the data replication 

part has only been tested using simulation; it has not been done in real time 

envirorunent. Much of the affirmative work has so far resorted to stimulation. Although 

the results have been useful in giving insights into the practical ways of achieving data 

replication with data mining, simulation approach may not give accurate representation 

of the actual case. Such tests would require an external validity hypothesis, which may 

or may not be true, depending on the circwnstances. 

35 



For instance, if the Battle of Waterloo is simulated using tiny soldier and horse 

miniatures, then the hypothetical assumption would be the speed ofthe horse miniatures 

which stands approximately in the same relation with the speed of the soldier 

miniatures on the map as the speed of infantry units mean should match that of the 

speed of cavalry units in the year 18 I 5. Simulation model can be investigated only 

under this hypothetical condition. However, what would have happened if Napoleon 

had chosen a different strategy? Even though the results could arguably still be 

considered as valid, the accuracy of such results may be questionable. There must be 

some differences with real time events because in real time events, other numerous 

constraints and issues would arise. Hence, the effectiveness of these techniques cannot 

be confirmed because of various difficulties and problems which do not exist in 

simulation may occur during the experiments in real time environment. 

A real time experiment can provide more evidence to validate a theoretical 

model, if the theory makes some contestable assumption about some component of the 

target system, and if the experiment includes the real component. Thus, both real time 

experiments and simulations are knowledge-producing research. However, the 

knowledge needed to run a good simulation is not quite the same as the one needed to 

run a good experiment. When reproducing a real world system in the laboratory, the 

relationships describing the behaviour of both systems may not be known in advance. In 

real time experiments, researchers have to make sure that the cases are executed in 

devices that resemble as closely as possible those of the target system. In addition, 

researchers must also ensure that the components of the ' mimetic' device are assembled 

just like those of the target system, and that there is no interference. Therefore, a more 

thorough study of data replication techniques in real time has been done and its 

summary is presented in Table 2.2. 

Two replication techniques, namely, Read-One-Write-All (ROW A) and 

Hierarchical Replication Scheme (HRS), copy all data to all sites. This means that all 

servers will have the same data. Data reliability and data availability are confrnned; 

however, there will be arising issues such as high data redundancy, waste of storage 

space and high processing time for a transaction because of the commitment of the 

transaction at all servers. 

36 



In Branch Replication Scheme (BRS), not all data are replicated to all sites. The 

data will be fragmented and stored at other replication servers. BRS is a better 

technique compared to ROW A and HRS in terms of communication cost and job 

processing time. Binary Vote Assignment Grid (BVAG) also copies some data to some 

sites. This technique requires the lowest number of replication servers which is more 

than or equal to 5. Hence, it has the lowest communication cost compared to BRS, HRS 

and ROWA. However, in BV AG, there is no fragmentation involved despite the fact 

that the degree of concurrency or parallelism in the system can be increased if 

fragmentation is involved. 

Table 2.2 Comparative table of replication strategies in real time environment 

Replication C!D Replication Data Data Drawbacks 
Techniques Replicatio method storage copied 

n 
ROWA Decentrali Synchronous Unlimited All data to • High job execution 

zed all sites time. 

• High 
communication 
cost. 

HRS Decentrali Synchronous Unlimited All data to • High job execution 
zed all sites time. 

• High 
communication 
cost. 

BRS Decentrali Synchronous Limited Some data • High job execution 
zed to some time. 

sites • High 
communication 
cost. 

BVAG Decentrali Synchronous Limited Some data • Low job execution 
zed to some time. 

sites • Low 
communication 
cost. 

However, all these four techniques do not take data correlations into 

consideration. They allocate all data randomly at the servers. This \\ill result in high job 

processing time. It is evident from the summary of the analysis presented that the 

existing replication techniques still needs improvements in order to deliver an 

37 



efficiency system. Moreover, existing replication techniques namely ROWA and HRS, 

synchronously replicate all data to all sites. Even though data availability in 

synchronous replication system is guaranteed, there are still some issues that need to be 

addressed such as job processing time and communication cost. In the present research, 

Binary Vote Assignment on Grid Quorum with Association Rule (BVAGQ-AR) has 

been proposed to overcome these issues. BV AGQ-AR is a replication technique that 

combines with data mining technique which has been tested in real time environment. 

2.5 Summary 

This chapter reviews the database replication, database fragmentation as well as 

data grid. A thorough analysis of data mining, data mining tasks and mining frequent 

itemsets in association rules has also been made. In addition, this chapter also discusses 

data replication techniques such as BV AG, ROWA, BRS and HRS. Besides replication, 

a review on data mining in data replication techniques such as PRA, PDDRA, RSCA, 

RSCP and BSCA has also been presented in this chapter. Finally, a summary of 

comparative analysis of all the techniques is provided. It has been evident from the 

review of related literatures that the current replication techniques would need some 

enhancements to ensure the system's efficiency. Hence, the present research has 

proposed a replication technique called BVAGQ-AR. In this techniques, database 

replication technique is integrated with fragmentation data mining to manage a 

transaction. The proposed technique will be described in the next chapter. 

38 



CHAPTER3 

METHODOLOGY 

3.1 Introduction 

This chapter describes the methodology of the present research. In particular, 

this chapter presents detailed descriptions of the proposed replication technique 

employed in the present research, namely, Binary Vote Assignment on Grid Quorum 

with Association Rule (BV AGQ-AR). In addition, it also presents a step-by-step 

guidance for replica selection strategies based on data mining techniques. Last but not 

least, this chapter provides the example cases which would be expected to happen 

during the transactions in BV AGQ-AR. 

3.2 BV AGQ-AR Ovenriew 

Binary Vote Assignment on Grid Quorum with Association Rule (BV AGQ-AR) 

is a replication technique based on data mining techniques. The main idea of this 

technique is to analyze operational and historical data that can be obtained from grid 

system in order to efficiently discover new meaningful knowledge which is the 

correlation between the data. The knowledge discovered would enable improvement of 

the management of the grid system in terms of data transfer. Hamrouni et al. (20 15) 

have proposed the replica selection strategies based on data mining techniques. By 

following these strategies, BV AGQ-AR has been proposed. These selection strategies 

have the following four main steps: centralization, number of provider, target objectives 

and data mining technique. The taxonomy of replica selection strategies based on data 

mining techniques is illustrated in Figure 3.1. 

39 



Replica selection 
oplimiDtion bucd 

-~ ..... 

Centralizati011 • c-illiad 

........ _.__.;.._;,-,..;;.··X .. :::::,-: ____ _ ;; 
-·-- .. . ~ .. , ....•.• ~----~ -· . . - -- ~; 

Ac«sscost 

Prtdlctlon' .· ~~--- · --· -___ ,~_._ ............... __... _________ _ 

Neural Netw<rl. 
........... ,.__,_ _ ___ , _, ____ _,., ....... , . , 

~IMI'Mirks 

Figure 3.1 Replica selection strategies based on data mining techniques 

Source: Hamrouni et al. (2015) 

As shown in Figure 3.1, the first step would be to choose the centralization. In 

the present research, both centralized and decentralized techniques were used. Data 

mining process was executed in only one server. Details ofthe process involved in data 

mining will be explained in the data mining phase. After analysing the results, the 

server would fragment the database and distribute them into the multiple replication 

servers. For data replication process, the decentralized technique was used because the 

present research has been based on BV AG replication technique. BV AG was used 

because a copy would be allocated only to the neighbouring servers. This means that 

this technique would use the smallest size of quorums compared to other techniques 

reviewed in Chapter 2 ofthis thesis. Hence, BVAG would need low computational time 

to send and receive messages from its neighbouring servers. However, there would still 

be some drawbacks in using the BV AG technique. For instance, this technique would 

copy all files in its replication servers. Hence, data redundancy would still be high. 

40 



Besides that, when a server attempts to commit an update for a transaction, it has to 

send the whole file to its replication servers. This would cause high job processing time. 

The present research aimed to solve this issue by using fragmentation. 

The second step would involve choosing the number of providers. Replica 

selection relying on a certain number of providers could be selected simultaneously. 

There are two types of replica selection, namely, the single replica provider and the 

multiple replica providers. In BVAGQ-AR, the single replica provider was selected for 

the data mining part in order to transfer the total requested data while the multiple 

providers was selected for the data replication part. In case of the multiple providers, 

several sites would concurrently work to send the requested data or their parts to 

minimize the total data transfer time which would provide high-performance access to 

data (Almuttairi et al., 20 13). 

The third step would be the target objectives. In the present research, two targets 

have been considered during the experiments: (1) job execution time and access, and 

(2) the communication cost. These two targets have been chosen in order to achieve the 

first research objective, namely, to design and develop BVAGQ-AR algorithms that 

would emphasize on data mining and data replication in distributed database 

environment with low communication cost and processing time for a transaction. 

Finally, the fourth step would involve choosing the suitable data mmmg 

technique. Data mining technique that has been deployed in this experiment is called 

association rules. The technique was used to discover the correlation between data. 

Apriori algorithm from association rules was used for frequent itemset mining. 

Learning association rules basically means finding the items that appear together more 

frequently than the others. 

In BV AGQ-AR, all sites would be logically organized in the form of a two

dimensional grid structure. For example, if BV AGQ-AR consists of 25 sites, the sites 

would be logically organized in the form of 5 x 5 grid. In this section, BVAGQ-AR is 

proposed by considering the distributed database fragmentation. The notations def'med 

are as follows: 

41 



1. Sis a relation in database; 

11. S' is relation after mining; 

111. s is the instance in S or S '; 

tv. J1 is the frequent itemsets; 

v. J2 is not the frequent itemsets; 

vi. S(B/ is the four sites in the comers; 

vii. S(B/ is the other sites on the boundaries; 

vm. S(B;J is the middle sites; 

tx. Vis a transaction; 

x. Tis a tuple in J1; 

x1. x is an instant in T which will be modified by element of V; 

xn. y is an instant in T which will not be modified by element of V; 

xm. S1is a vertical fragmented relation with instantx derived from J1; 

XiV. S2 is a vertical fragmented relation without instant X derived from J1; 

xv. Pkis a primary key; 

xvi. Pk,x is a primary key with data x; 

xvii. Pk,y is a primary ""ith datay, where y =f x; 

XViii. Sl(Pk.x) and Sl(Pk,y) are a horizontal fragmentation relation derived from J1; 

xix. rJ and 'II are groups for the transaction V; 

xx. A = T7 or t/J where it represents different transaction V (before and until get 

quorum); 

xxi. ~ is a set oftransactions that comes before VlP, while Vl/J is a set of transactions 

that comes after ~; 

xxii. Dis a union of all data objects managed by all transactions VofBVAGQ-AR; 

xxm. Target set = { 1, 0} is a result of transaction V (see Table 3.3 ); 

xxtv. BVAGQ-AR transaction element VA is an element either in different set of 

transactions V11 or VlP; 

xxv. wVA. is write counter for the transaction; 

XXVI. tf, is a transaction that is transformed from VA ; 
Ax X 

XXVll. Vllx represents the transaction feedback from a neighbour site. 

~.r exists if either VA.x or VA.x exists; 

xxviii. Successful transaction at primary site VA. = 0 where VA. E D (i.e., the 
X X 

42 



transaction locked an instant x at primary). Meanwhile, successful transaction at 

neighbour site V(llx) = 0, where llx e D (i.e., the transaction locked a data x at 

neighbour); and, 

XXIX. f~l is the greatest integer function (i.e., n=9, f~l = 5. 

3.3 BVAGQ-AR Transaction Manager (BTM) 

In the proposed BVAGQ-AR, there would be four important phases which are 

illustrated in Figure 3.2. 

Pk : ll'.th t lhla2 Dali.-1 i l>ala4 

t 1 f •• (; 

I 1 1 • • 
il .. I , • , .. . 1: : 
I I I • l 

~· -1 .. ~ ;,_ t 
l 1 1 • 

1 I 1 • 1 • 
1'. ·-1 -

,_ l · 
,. 

J· 
1 l l 1 I • 
'•l- J J 1 j~ ;t . 
J 1 l 1 I • 

Figure 3.2 BVAGQ-AR technique illustrations 

All the processes involved in these phases would be controlled by BVAGQ-AR 

Transaction Manager (BTM). Every transaction would go through the BTM before 

undergoing processing. Each primary or neighbour replica i E S(B) would have its own 

BTM. The BTM is divided into two parts, namely, data mining part and data replication 

part. BTM data mining functions would include: (1) Receiving a preliminary database, 

S from a client; (2) Executing Apriori Algorithm on S ' in order to identify J1 and J2; 

(3) Fragmenting S' into J1 and J2; and, (4) Allocating J1 at replication servers. 

Meanwhile, BTM data replication functions would include: 

43 



i. Accepting transactions from clients either V17 or VlJ!. When VA, A = '7 or 1/J 

coming concurrently, based on the small arrival rate; 

n. Receiving all types of transaction Vil, A. = lJ or 1j; from clients, Vilx from primary 

and neighbour replica. Each transaction would go through the BTM for the 

purpose of the determination of type of replica (either to be as primary or 

neighbour replica processing); 

iii. Performing synchronous commit V,tx after the user has finished update the data, 

neutralizing all flags and unlocking instant x; and, 

tv. If a replica was required to release a lock from another primary replica, BTM 

would abort V.il. at its replica and rollbacks all the transactions. 

The algorithm bvagqar_transaction_managementO of Listing 2 would 

implement the BV AGQ-AR Transaction Manager (BTM) for data replication part. In 

the algorithms, several important variables used would include: 

1. A transStat referring to the status of the transaction. 

n. The unique process id of V,t indicated as pid_ VA would be stored for the purpose 

of transaction processing such as queueing the transaction would recognize 

transaction that would get locked, handle incoming and outgoing transaction, 

and identity transaction that would need to abort or commit. 

iii. The login time of VA represented as log_ tVA would be very important in 

determining which transaction supposed to proceed in case timestamping 

method would be required. 

iv. A $_LCount representing the counter lock used to check either the write counter 

or unknown status counter already obtained by a particular replica i E S(B}. It 

would be set to 0 to indicate that Vii. still has not obtained either the write or 

unknown status counter from its neighbour or otherwise it would be set to 1. 

v. The x$erv-Vote would be used to show the locking phases of Vii., vilx or ~X for 

a particular replica i E S(B) where NeighbouriD[iJ=$Serv (server). x$erv_ Vote 

would be set to 0 if data were unlocked and in neutral condition. Meanwhile, 

x$erv_ Vote would be set to 1 when user has already finished updating data x but 

V~ has not finished committing. In addition, x$erv_Vote would be set to 101 

44 



during the phases between obtaining locks until user has finished updating the 

data. 

3.3.1 Data Mining in BV AGQ-AR 

Listing 1 describes the first part ofBVAGQ-AR (i.e., the data mining part). This 

part would involve database mining, database fragmentation and database allocation. 

Listing 1: The BTM Algorithm: Data Mining 
1 primary_replica_processing () 
2 { 
3 /* receive S *I 
4 receive (BTM of S); 
5 convert (BTM of S -7 1,0); /*convertS into binary format*/ 
6 produce Apriori algorithm (S, minsupp) /* minsupp is minimun support 

*I 
7 I* find frequent itemsets */ 
8 It = {frequent items}; 
9 for (k= 2; Jk-1 !=0; k++) { 
10 S' =candidates generated from h-1 

11 /* cartesian product Jk-I x Jk-1 *I 
12 /*eliminate h 
13 for each transaction V inS 
14 do { 
15 /*increment the count of all candidates in S' that are 

16 
17 

contained in S *I 

18 } 

h = candidates in S' with minSupport 
} 

19 /* BTM fragmentS' *I 
20 fragment (BTM of S ' -7 lt.h); 
21 while 1t sl, s2, ... ,sn E J1 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 } 

do 
if Jl ~ 3, 

then allocate at S(Bi 
Else if J1 = 4 

then allocate at S(B/ 
Else if J1 > 5 

then allocate at S(B/ 
End if 

while 1t sl, s2, ... ,sn E h 
do 

allocate at any S(B) 

45 



Data mining technique that has been deployed in this experiment is called 

association rules because the technique was tasked to search for frequent patterns, 

correlations or associations between the data. Apriori algorithm in association rules has 

been used to find the frequent itemsets. Frequent itemset mining would specifY the 

discovery of associations and correlations between items in large transactional or 

relational data sets. The finding of interesting correlation between massive amounts of 

the data transaction records would facilitate the decision-making processes, specifically 

the user behavior analysis. 

Apriori algorithm was proposed by R. Agrawal & R. Srikant in 1994 for mining 

frequent itemsets for Boolean association rules. The name of the algorithm has been 

established on the fact that the algorithm uses prior knowledge of frequent itemset 

properties, which will be explained later. 

Apriori is an iterative method known as a level~wise search where k~itemsets are 

used to explore (k + 1 )-itemsets. The Apriori algorithm can be explained in several 

stages or steps. First, the set of frequent 1-itemsets is discovered by scanning the 

database to determine the count for each item, and assembling the items that satisfy the 

minimum support. The resulting set is represented as L1• After that, L1 is used to 

identify the set of frequent 2-itemsets, L2, which is later used to identify L3. This will 

continue further until no more frequent k-itemsets can be discovered. The process of 

discovering each of the Lk involves one full scan of the database. 

An important property called the Apriori property is used to reduce the search 

space in order to improve the efficiency of the level-wise generation of frequent 

itemsets: 

Apriori property: All nonempty subsets of a .frequent itemset must also be frequent. 

The A priori property is based on the following observation: by definition, if an 

itemset, I, does not satisfy the mirtimum support threshold, min sup, then I is not 

frequent, that is, P(I) < min sup. If an item A is added to the itemset I , then the resulting 

itemset (i.e., I u A) cannot occur more frequently than J. Therefore, I u A is not 

frequent either, that is, P(l U A) < min sup. 

46 



This Apriori property belongs to a special category of properties called 

antimonotonicity in the sense that if a set cannot pass a test, all of its supersets will fail 

the same test as well. It is called antimonotonicity because the property is monotonic in 

the context of failing a test. 

For instance, assummg that there is a transactional data from MyGrants 

transaction database, S, as shown in Table 3. l, transactional data are the data describing 

an event as a result of a transaction. Such data are used to illustrate the Apriori 

algorithm for finding frequent itemsets in S. 

Table 3.1 Transactional data from MyGrants 

Transactional ID (TID) 

Tl 
T2 
T3 
T4 
T5 
T6 
T7 
T8 
T9 

List of item IDs 

II, 13, 14 
12, 13, 15 
12, 13 
II, 12, 14 
13, 14 

12, 14 
13, 14 
12, 13, 14, 15 
12, 13 

1. In the initial step of the algorithm, every item is a member in the set of 

candidate 1-itemsets, C1• The algorithm will scan all of the transactions to total 

the number of occurrences for each item. 

2. Assuming that the minimum support count required is 2, this means that the min 

sup= 2. At this time, support count is used. Thus, the support is 2/9 = 22%. The 

set of frequent 1-itemsets, L~, can then be determined. It consists of the 

candidate 1-itemsets that satisfy the minimum support. In this example, all of 

the candidates in C 1 satisfy minimum support. 

47 



c) L1 
ScanS for ltemset Supp. Compare ltemset Supp. count 
count of count C1support count It 2 
eachCt 

11 2 
with minimum 

12 6 ') support 
12 6 I3 7 

13 7 14 6 
14 6 15 2 
15 2 

Figure 3.3 Set of frequent 1-itemsets 

3. To find the set for frequent 2-itemsets, L2, the algorithm uses the join, L1 1><1 L1 to 

generate a candidate set of 2-itemsets, C2. Figure 3.3 shows that each subset of 

the candidates is frequent. Thus, no candidates are removed from C2 during the 

prune step. 

4. Next, the transactions inS are scanned and the support count of each candidate 

itemset in C2 is accumulated, as shown in the Figure 3.4. 

c2 c2 L2 
Generates ltemset Scan Itemset Sup. Compare Item set Sup. 
C2from {II, 12} Sfor count c2 count 
Lt {Il,l3} 

count 
{11' 12} 1 

support 
{11,14} 2 

candidate of count 
') {II, 14} 

each {Il,I3} 1 with 
{12, I3} 4 

{Tl, 15} c2 {11, 14} 2 minimum 
{12, 14} 3 

{12, 13} {II, 15} 0 {12, 15} 2 
{12, 14} > {12, 13} 4 

support 
{13, 14} 4 ') 

{12, 15} {12, 14} 3 {13, 15} 2 
{13, 14} {12, 15} 2 
{13, 15} {13, 14} 4 
{14, 15} {!3, 15} 2 

{14, 15} 1 

Figure 3.4 Set offrequent 2-itemsets 

5. The set of frequent 2-itemsets, L2, is then determined, consisting of those 

candidate 2-itemsets in c2 having minitnunl support. 

6. The detailed generation candidate 3-itemsets set, C3, is illustrated in Figure 3.5. 

48 



c3 c3 L3 
Genera Item set ScanS to Item set Sup. Compare Itemset Sup. 
tes c3 {12, 13, 14} count the count support count 
from {12, 13, 15} m1mmum {12, I3, 14} 1 count for {12, 13, 15} 2 
L2 support {12, 13, 15} 2 the c3 

> of c3 with 

> mmtmum 
support 

Figure 3.5 Set of frequent 3-itemsets 

7. From the join step, C3 = L2 !><! L2 = {{II , 12, 13} , {II, 12, 14}, {11, 13, 15}, {II , B, 

14}, {12, I3, 14}, {12, !3, 15} }. According to the Apriori property, all subsets of a 

frequent itemset must also be frequent. Hence, it is certainly determined that the 

four early candidates cannot be frequent. Therefore, the candidates are removed 

from C3. This process saves the effort of finding the candidates counts during 

the subsequent scan of S to determine LJ. 

1. Join: C3 = L2 M L2 = {{It, 12}, {11, I3 }, {11 , 15}, {12, 13 },{12, 14 },{12, I5} } 

M {{II , 12}, {II, I3}, {11, 15}, {12, I3 },{12, 14 },{12, 15}} 

= { {11 , 12, 13}, {11 , I2, 15}, {II, I3, 15}, {12, 13, 14 }, {12, 14, 15} }. 

11. Prune using Apriori property: all nonempty subsets of a frequent itemsets 

must also be frequent. Does any of the candidates have a subset that is not 

frequent? 

• The 2-item subsets of {11 , 12, 13} are {11 , 12}, {T1, 13} and {12, 13}. 

All 2-item subsets of {11 , 12, 13} are members of L2. Therefore, {11, 

12, I3 }are kept in C3. 

• The 2-item subsets of {II , 12, 15} are {Il, 12}, {Il, 15} and {12, 15} . 

All 2-item subsets of {II , 12, 15} are members of L2. Therefore, {11 , 

12, 15} are kept in C3. 

• The 2-itern subsets of {II , 13, 15} are {Il, 13}, {Il, 15} and {13, 15}. 

{13, 15} is not a member of L2, and thus, it is not frequent. Therefore, 

{I I, 13, 15} are removed from C3. 

49 



• The 2-item subsets of{I2, 13, 14} are {12, 13}, {12, 14} and {13, 14}. 

{ 13, 14} is not a member of L2, and thus, it is not frequent. Therefore, 

{12, I3, 14} are removed from C3. 

• The 2-item subsets of {12, 13, I5} are {12, 13}, {12, 15} and {13, 15}. 

{ 13, 15} is not a member of L2, and thus, it is not frequent. Therefore, 

{12, 13, 15} are removed from C3. 

• The 2-item subsets of {12, 14, 15} are {12, 14}, {I2, I5} and {14, 15}. 

{14, 15} is not a member of L 2, and thus, it is not frequent. Therefore, 

{12, 14, 15} are removed from C3. 

iii. Therefore, C3= { {11, 12, 13}, {11, 12, 15}} after pruning. 

These results have shown that items II, 12 and 13 always appeared together in a 

transaction, as well as items II, 12 and 15. Hence, these items will be allocated and 

replicated in neighbour servers to make sure transactions can access them together 

faster and more easily. This process was applied to all the data involved in the 

experiments. 

With reference to the algorithm in Listing 1, line 4 initializes the process by 

receiving a preliminary database, S, into one site. S will be converted into binary 

format. Each row corresponds to a transaction and each column corresponds to an 

item. An item can be treated as a binary variable. In other words, if the item is 

present in a transaction, the value should then be 1; if otherwise, the value should 

be 0. 

50 



I 

Table 3.2: Database with binary variable 

b c d e f g h i j k I m n 0 p q r s t 

1 1 l 0 0 0 0 1 0 I 0 0 
0 0 0 I 0 0 0 0 0 0 0 1 

1 0 0 0 0 0 0 0 0 0 
1 0 I 0 0 0 0 0 0 l l 

0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 I 1 0 1 0 0 0 0 
l 0 l 0 0 l 0 l 0 0 l 0 0 1 l 

0 0 0 0 0 l 0 0 
0 0 0 0 l 0 0 1 

1 0 1 0 0 1 0 1 0 0 0 0 

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 I 0 l 0 0 1 l 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 1 
l 0 0 0 0 1 l 0 1 0 

0 0 0 0 0 0 0 0 0 0 l 
0 0 0 1 0 0 1 0 l 1 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 l 0 1 

1 1 0 0 1 0 1 0 0 0 1 0 0 0 I 

1 1 1 0 0 1 0 1 0 0 0 1 1 

For example, a database with binary variable is shown in Table 3 .2. Wand Z 

represent the instances in the database and n is the total number of transactions. 

Support, s, is the fraction oftransactions that contain both Wand Zwhere 

s= a (a, b. c. d) = 7 = 0.35 @ 35% 3.1 

n 20 

Confidence, c, measures how often items in Z appear in transactions that contain W. 

c = a (a, b. c. d) = 

a (a, b) 

7 

10 

=0.7 @ 70% 3.2 

For simplicity, data from row 1 to 5 and column 1 to 6 in Table 3.2 are used as 

an example case. Figure 3.6 shows an illustration of the frequent itemset generation in 

51 

u 
1 

0 

0 

I 

0 

1 

0 
0 
0 

1 

1 

1 

0 

0 



the Apriori algoritlun for the transactions. Line 6 produces the Apriori algorithm 

support threshold. Assuming that the support threshold is 60%, this is equivalent to a 

minimum support count equal to 3 because in this example, the items have to appear 

more than half of the transactions to be taken as a frequent itemset. In large databases, if 

the threshold is 40% or below, all the data will most likely appear together. 

Candidate 
1-Itemsets 

Item 
a 
b 
c 
d 
e 
r 

Count 
5 
3 
2 "-3 
3 
0 

·~ 

Itemsets ~ 
removed 
because oflow 
support 

Minimu m support count= 3 (60%) 

Candidate 
2-Itemsets 

Item set count 
ra bl 3 
{a, d} 3 
{a, e} 3 
{b, d} 3 
{b, e} 1 
{d, e} 1 

Candidate 
3-Itemsets 

I ltemset 
{a, b, d} 

Figure 3.6 Generating frequent itemsets using the Apriori algorithm 

The loop starts at line 8. Initially, every item is considered as a candidate 1-

itemset. After counting their supports, the candidate item sets { c} and {f} are 

discarded because they appear in fewer than three transactions. Lines 9-16 indicate 

the next iteration where candidate 2-itemsets are generated using only the frequent 1-

itemsets because the Apriori algorithm ensures that all supersets of the infrequent 1-

itemsets must be infrequent. Because there are only four frequent 1-itemsets, the 

number of candidate 2-itemsets generated by the algorithm is ( ~) = 6. 

Two of these six candidates, {b, e} and {d, e}, are subsequently found to be 

infrequent after computing their support values. The remaining four candidates are 

frequent, and thus, they will be used to generate candidate 3-itemsets. Without 

support-based pruning, there are (~) = 20 candidate 3-itemsets that can be formed 

using the six items given in this example. With the Apriori algorithm, only candidate 

52 



3-itemsets whose subsets are frequent will be kept. The only candidate that has this 

property is {a,b,d}. The loop will iterate until all the frequent itemsets are determined. 

This technique also has been proposed to make sure data replication can be 

effectively done while minimizing storage. In general, applications work with some 

relations rather than the entire relations. Therefore, working with subsets of a relation is 

better than working as one unit of distribution in data distribution. Thus, not all data 

will be replicated to all sites. 

In line 20, the relation that results from identifying the frequent itemsets, S' 

is fragmented into relation with frequent itemsets, J 1, and relation without frequent 

item sets, J2, using vertical fragmentation. When S' is fragmented, it is divided into a 

number of fragments S'1, S'2, ... ,S'n· 

S' = S '1 US';~···, US'n 3.3 

The fragmentation should be done m such a way that relation S can be 

reconstructed from the fragments: 

3.4 

It is necessary to include the primary key or some candidate key attributes in 

every vertical fragment so that the full relation can be reconstructed from the fragments. 

After the fragmentation process has finished, fragmented database allocation 

process starts at line 21. Line 23 checks if J 1 is less than or equivalent to three, then line 

24 allocates the data at S(B/ because the S(B/ has three replication servers. If the J, is 

equivalent to four, then line 26 allocates the data at S(B/ because the S(B/ has four 

replication servers. If J1 is more than or equivalent to five, then line 28 allocates the 

data at S(Bl because the S(B/ has five replication servers. Lines 30-32 allocate the 

non-frequent itemsets at any the S(B)s. After all data are replicated to their specific 

servers, the replication process can be executed. 

53 



3.3.2 Data Replication in BV AGQ-AR 

Listing 2 describes part of the process for the second phase of BV AGQ-AR 

which is the data replication part. This algorithm shows how BTM works when a 

transaction is initiated at a primary and neighbour server. 

Listing 2: The BTM Algorithm: Data Replication 
I manage_bvaqgar_transaction () 
2 { 
3 while (InComplete) 
4 do 
5 

6 
7 

while (transStat :::f:. "Abort") 
do 

I* receive V;t II V;. II V,, where A = 11, l!J either from client or any BTM of 
X X ,..X 

replica i E S(B) *I 

8 

9 

10 
11 

12 
13 

14 
15 
16 

17 
18 
19 
20 
21 

22 
23 

24 
25 
26 
27 
28 

29 

receive (client@ BTM of i E S(B): VA.x II V;tJ; 
Pid VA = process id of VA. ; 

- X X 

log_tVA.x =login time of V,tx; 
/*recognize replica task either to be as primary or neighbour processing 

for VAx' A = 11, tV *I 
switch { 

case (receive( client@ BTM ofneighbour: VA. II VA II V.. ): 
X X .-x 

primary _replica_yrocessing ( ); 
break; 

case (receive(BTM ofprimary: VAx II VA.)): 
neighbour _replica _processing (); 

break; 
} 

receive (BTM: VA.x' x$erv_ Vote II VA.x' x$erv_ Vote, 
$_LCount,uVA.); 

if (x$erv _Vote = 1) then 
Commit V..:tx; 
endif 
if (x$erv _Vote = 0); 
End if 

/*On receiving transStat = "Abort" from other replica and release its lock* I 

if (receive (BTM: VA.x , E t-; transStat, PrimaryiD)) then 

VA.x E vtP =VA.x; /*current V;txbecomeV;.x E vlJ.I */ 
30 V;tx =V ,u E I~ry; I*V..tx E Vry that BTM received will survive*/ 

31 Abort V..tx; 
32 
33 

34 endif 

Rollback; 
VA.x = 1; /*Target Set is equal to 1, means primary already gets lock*/ 

54 



Each site now has a primary data file . A site is either in operational or failed 

state, and the state (i.e., operational or failed) of each site is statistically independent of 

the others. When a site is operational, the copy at the site is available; otherwise, it is 

unavailable. 

The primary replica for a particular instant x is a replica that accepts the client' s 

request. In BV AGQ-AR model, each replica of S{B) can be a primary or a neighbour 

replica at the same time. Any replica i E S(B) can be chosen as the primary replica, 

while other replicas j E S(B) where i i- j are neighbours. Line 7 receives a transaction 

V.Ax requests to update instant x from any replica of S(B). Lines 8-18 determine that 

replica will be the primary, while others will be the neighbour replica for processing 

VAx · 

If S(B) is the set of replicas with replicated copies being stored corresponding to 

the assignment B for particular instant x, then S(Bx) = {m(ij), m(i-1j), m(i,j-1), 

m(i,j+ 1), m(i+ 1 ,j)}. Two sets of transactions are V11 , which requests instant x from m(i,j) 

replica, and VtJI , which requests instant x from m(i-1 j ) , respectively. The m(ij ) replica 

functions as the primary replica for processing ~' where m(i-1,}), m(ij-1), m(ij+ 1) , 

m(i+ 1,}) are neighbour replicas for processing Vyx E V11 • Simultaneously, m(i-l,j) 

replica functions as the primary replica for processing VtP, while m(i,j-1), m(ij+ 1) , 

m(i+ 1 j) and m(ij) are neighbour replicas for processing VYx E Vl/1 . Both m(ij) and m(i-

1,}) replicas execute two different processing tasks concurrently. The m(ij) replica is 

the primary replica processing v11 and neighbour replica processing for vt/J , whereas the 

m(i-1 j) .replica is the primary replica for processing Vl/1 and neighbour replica for 

processing Vt/J. BVAGQ-AR model considers different sets oftransactions V17 and Vl/1 . ~ 

is a set of transactions that comes before VtP . The effect of BVAGQ-AR transaction is 

defined as the processing of one instance of the transaction. Hence, the following type is 

mapping as V: D ~ Target Set as shown in Table 3.3 

55 



Table 3.3 

Target set 

0 

1 

Target set 

Meaning 

This means that no failure occurred during BV AGQ-AR 

transaction' s execution. By VCt) = 0, where AxE D is the 

instant processed by the transaction at primary site and y = '1· 

lfl, it means that the transaction was successful. (i.e., the 

transaction locked the instant x at primary). Write counter will 

track this value. 

For neighbour site, V(Jlx) = 0, where f-Lx E D 

This means accessing failure. By VCt) = 1, it means that the 

destination server could not perform the job. This is because 

the instant x managed by the primary site is not free and 

already locked. Hence, BV AGQ-AR transaction has not 

executed. 

For neighbour site, V(f-lx) = 1 where f-Lx E D 

All elements of v11 and vl/J may request data object X simultaneously at any site 

of S(B) either at the same or different site. When BTM receives a transaction, line 20 

checks the write counter for that particular replica. Line 22 sets the lock status to 1 

when a user has already finished updating data x but VA. has not finished committing. 

Then, line 23 will commit. If the lock status is set to 0 by line 25, the data are unlocked 

and in neutral condition. Lines 28-34 abort a transaction when the target set of the 

replica is equal to 1 because the replica is locked by other transaction. 

56 



3.4 The Coordinating Algorithm for Primary Replica 

When a primary replica receives a set of transactions from clients, the BTM will 

pass the transactions to primary_replica_JJrocessing algorithm to maintain the data 

availability and consistency of all replicas. 

3.4.1 Initial Lock 

When any user invokes a transaction to update data x , the pnmary replica 

requests a lock for itself by calling initialize_lock function of Listing 3. 

Listing 3: The initialize lock function 
1 initialize _lock () 
2 { 
3 receive V .u; 
4 wV.u ++; 
5 V.u =l ; 
6 x$erv_ Vote =101; VA.x.qt 

7 Abort VA.+lx' ... , VA.+qx ; 
8 } 

Line 3 receives a transaction from V .u. When a transaction gets a lock at its 

primary replica, line 4 sets the Target Set to 1. Line 5 increases the write counter for the 

transaction when it successfully locks its neighbours' replicas. Line 6 is the 

intermediate phases between gets the lock until the user has finished updating data x. 

Line 7 aborts all transactions that come after V A.x· 

3.4.2 Propagate Lock 

The request_lock_synchronous function of Listing 4 is used by the primary for 

propagating a lock to its entire neighbours. 

Listing 4: The Request Lock Synchronous Function 
1 request_lock_synchronous (VA.x' T$Serv, $_LCount, wVA.x' uVA.) 

2 { 
3 /* VA.x still has not obtained the quorum since write counter less than majority and 

a particular 
4 server ; e S(B) still has not obtained the write counter from its neighbour*/ 

57 



Listing 4: Continued 

S if(wV,, < r ~l && , $_LCount ~ 0) then 

6 send (BTM: wV.ilx• PrimarylD); 

7 tell the BTM to request lock from neighbour; 
8 receive (BTM: V11) ; 

9 switch { 
1 0 case (uVil.x = 0): /*Target Set is equal to 0 at neighbour, means data x has 

free lock*/ 
11 wVAx ++; 
12 $_LCount = 1; /*Initiates V,;txalready gets write counter*/ 
13 break; 
14 } 
15 endif 
16 } 

V.ilx propagates its lock to the neighbours' replicas until it gets the majority 

quorum. Recall the Binary Vote Assigrunent on Grid (BVAG) technique (Deris et al., 

2003 ). However, BV AG only covers the voting and a part of the replication process. 

Definition 3.1: A site X is a neighbour to site Y, if X is logically located adjacent to Y. 

A data will replicate to the neighbouring sites from its primary site. The number of data 

replication, d, can be calculated using Property 3.1, as described below. 

Property 3.1: The number of data replication from each site, d 5. 5. 

Proof: Let n be a set of all sites that are logically organized in a two-dimensional grid 

structure form. Then, n sites are labelled m(i, j), 1 ~ i <Fn, 1 ~j < fn. Two-way links 

will connect site m(i,j) with its four neighbours, sites m(i ±l,j) and m(i,j±l), as long as 

there are sites in the grid. It should be noted that four sites on the comers of the grid 

have only two adjacent sites, and other sites on the boundaries have only three 

neighbours. Thus, the number of neighbours of each site is less than or equal to 4. 

Because the data will be replicated to neighbours, the possible number of data 

replication from each site, d, should then be: 

58 



d ~ the number of neighbours + a data from site itself 

~ 4 + 1 = 5. 

For example, as shown in Figure 3.7, data from site A are replicated to site B 

and siteD which are their neighbours. Site E has four neighbours, namely, sites B, D, F 

and H. As such, site E has five replicas. Meanwhile, data from site F are replicated to 

site C, E and I. 

Figure 3.7 Examples of data replication in BV AGQ-AR. 

The primary site of any data file and its neighbours are assigned with either vote 

1 or otherwise, vote 0. This vote assignment is called neighbour binary vote assignment 

on grid. A neighbour binary vote assignment on grid, B, can be expressed as follows: 

59 



B(i) E { 0, I } , I ~ i :::; n 3.5 

there B(i) is the vote assign to site i. This assignment is treated as an allocation of 

:!plicated copies and a vote assigned to the site results in a copy allocated at the 

eighbour, that is: 

I vote = I copy 3.6 

.et, 

3.7 n 

LB = LB(i) 

i =I 

there, L 8 is the total number of votes assigned to the primary site and its neighbours 

nd it is also equal to the number of copies of a file allocated in the system. Thus, L8 = 

If rand w denote the read quorum and write quorum, respectively, to ensure that 

1e read operation always gets up-to-date value, r + w must be greater than the total 

umber of copies (votes) assigned to all sites. The following conditions are used to 

nsure the consistency: 

1) 1 s r s LB, 1 s w s LB 

2) r + w =Ls +I 

Conditions (1) and (2) ensure that there is a nonempty intersection of copies 

etween every pair of read and write operation. Thus, the conditions ensure that a read 

peration can access to most recently updated copy of the replicated data. Condition (2) 

~lates to nonempty quorum intersection property because the total number of read 

uorum and write quorum is more than L8 when there is an increase of one quorum. A 

ata item is not read and written by two transactions concurrently. BVAGQ-AR obeys 

ne-copy serializability under these conditions. Therefore, the replicated data item 

I ways remains consistent at multiple sites. 

60 



If S(B) is the set of sites at which replicated copies are stored corresponding to 

the assignment B, then: 

S(B)= {il B(i)= I, 1 $ i$n} 3.8 

Definition 3.2: For a quorum q, a quorum group is any subset of S(B) which has a size 

that is greater than or equal to q. The collection of quorum group is defined as the 

quorum set. 

If Q(B,q) is the quorum set with respect to the assignment Band quorum q, then: 

Q(B,q) = { G I G c S(B) and IGI:?: q} 3.9 

For example, as shown in Figure 3.8, site E is the primary site of the primary 

data item k. Its neighbours are sites B, D, F and H. Black circles represent other sites 

that do not have the replicated data item k. If an assignment B for the data item k is 

considered as B.t(E) = B.t(B) = Bk(D) = Bk(F) = Bk(H) = 1 and L Bt = Bk(E) + Bk(B) + 

Bk(D) + Bk(F) + Bk(H) = 5, therefore, S(Bk) = {E,B,D,F,H }. 

Figure 3.8 An assignment B for data file k where S(Bt) = { E,B,D,F,H } 

61 



If a read quorum for data file k, r = 2 and a write quorum ·w = LH
1

- r + 1 = 4, 

then the quorum sets for read and write operations are Q(Bk,2) and Q(Bk,4) respectively, 

where 

Q(Bk,2) = { {E,B}, {E,D}, {E,F}, {E,H}, {8,0}, {B,F}, {B,H}, {D,F}, {D,H}, 

{F,H}, {E,B,D}, {E,B,F}, {E,B,H}, {E,D,F}, {E,D,H}, {E,F,H}, 

{B,D,F}, {B,D,H}, {B,F,H}, {D,F,H}, {E,B,D,F}, {E,B,D,H}, 

{E,B,F,H}, {E,D,F,H}, {B,D,F,H}, {E,B,D,F,H}} 

and 

Q(Bk,4) = 

{ { E,B,D,F},{E,B,D,H},{E,B,F,H},{E,D,F,H},{B,D,F,H},{E,B,D,F,H}} 

The loop starts at line 5, if the counter lock for V.:~.x is lower than jd/21 or equal to 

0, then line 6 will tell the BTM to request lock from the neighbour. Line 8 receives 

feedback from the neighbour. If the Target Set is equal to 0 at the neighbor replica, then 

data x has free lock. Lines 11-12 will set the write counter lock to 1, indicating that 

V.:~.xalready gets a write counter. This loop will iterate until V;~,x gets the majority 

quorum. 

3.4.3 Primary Replica Processing 

Listing 5 describes the primary replica processing algorithm. 

Listing 5: The Primary Replica Processing Function 
1 primary_replica_processing () 
2 { 
3 while (TRUE) 
4 do 
5 receive (BTM: ~); 

6 if 3 vl/J then 
7 receive (BTM: Vt/1); 
8 endif 
9 switch { 

62 



Listing 5: Continued 
15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

} 

} 

break; 

case (A = fl, tJl V11 * Vt/J): 

initialize lock ( ); 

Abort Vt/J; 

break; 

break; 

case (VA. = 1): 
X 

Abort Vl/J; 

InComplete=F ALSE; 

break; 

uVA. = 0; /*neutralize unkno"\\ln status counter*/ 
X 

while ((wV;c, <r %1) && (uV,_, <r %1) && (transStat *"Abort"); 

29 do 
30 for V neighbour i e S(B) 

do 31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

CO BEGIN 

Serv= NeighbouriD[i]; /*particular server i E S(B) *I 

$ LCount =0; /* still does not get the write counter for particular 

server i E S(B) *I 

CO END 

if (uV,, >I %1 && (d~ 5)) then 

/*replicas failure more than majority quorum~timestamping method*/ 

for V neighbour i e S(B) 

do 

if ($_LCount =0) /*~ fail get lock sinceVlJ! already hold x lock*/ 

63 



Listing 5: Continued 
41 then 

Execute on server; 42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

send (BTM: VA.x of neighbour, PrirnarylD); 

else 

VAx = VAx E v17 ; 

break; 

end if 

if (Iog_tVA.x of primary< log_tV1x of neighbour) then 

V;t = V;t E 11,., ; 
X X 'I 

/*the earliest transaction survives*/ 

Vl/J= VA.x ofneighbours; 

V1/J 's transStat = "Abort"; 

send (BTYf: VAx E V17 , vljJ ' s transStat, PrimaryJD), to neighbour 

i E S(B) && 

53 $_LCount =0; 

54 else /* VA.x of neighbours will perform transaction*/ 

55 VAx = VA.x E Vl/J; 

56 endif 

57 endif 

58 endif 

59 change the access permission mode of data x; I* user can update data x*l 

60 send (client: V1J 
61 tell client to start modify data object x; 

62 wait until user finishes update; 

63 fragmentS' 7 S1 and S2 

64 fragment S1 7 Sl (Pk .x) and S1(Pk.y) · 

65 x$erv Vote =1 ; 

66 COBEGIN 

67 send (BTM: V;.x , x$erv _Vote), to \:1 replica i E S(B); 

68 COEND 

69 tell \:1 BTM of replica i E S(B) to commit V,tx; 

70 } 

64 



The process starts with line 5 receiving V17 in. If VI/! gets the majority quorum, 

then line 7 receives Vl/1 as the primary replica. In line 10, VAr = 0 means data x at 

primary has free lock. If there are two transactions V17 and V 1/1 requesting to update data 

x at different replicas, both of the transactions will then initiate their lock in lines 12-15. 

If there are two transactions V17 and V tP requesting to update data x at the same replicas, 

line 18 will then initiate the lock for Vr, while line 19 will abort V lJ.> · In line 23 where 

VAx = I, data x at primary is already locked by other transaction. Hence, line 24 aborts 

vl/J. 

When the transaction is not aborted, BTM synchronously propagates Vil.x E v;., 

lock for the purpose to obtain quorum. If t'n gets the majority quorum but still does not 

get the write counter for particular replica because Vl/1 already holds X lock, then line 44 

will tell BTM to request V.A.x login time of neighbour. Otherwise, V17 prepares to perform 

the transaction so that the user can update as shown in line 46. 

~ is the earliest transaction and transaction at neighbour, Vl/J came after the 

transaction at primary. Hence, in line 53, Vl/J is aborted. Lines 54-55 tell BTM of the 

neighbour replica to release the lock so that primary can obtain the quorum. Meanwhile, 

lines 56-57 perform the transaction for V1/J whereas lines 61-63 tell user to modify the 

data object x and wait until the user finishes the update. Then, lines 78-79 fragment the 

database using vertical and horizontal fragmentations. In line 66, the user has already 

finished updating data x but V,;txstill has not finished committing. Hence, lines 68-70 tell 

the BTM to commit the transaction. 

3.5 The Cooperative Algorithm for Neighbour Replica 

When a neighbour replica receives a request from a primary replica, it checks 

whether or not the request can proceed and act accordingly. The 

neighbour_replica_processing algorithm is given in Listing 6. 

65 



Listing 6: The Neighbour Replica Processing Function 

1 
2 
3 
4 
5 
6 
7 
s 
9 
10 

I l 
12 

13 
14 
15 
16 

neighbour_replica _processing () 
{ 
while (TRUE) 
do 

x$erv_ Vote= 0; 
receive (BTM:V1x' PrimaryiD); 

switch { 

} 

case (V~x = 0): 
send (BTM: V11x ) ; 

v. =1 llx 

break; 
case (VIlx = 1 ): 

send (BTM: t{1x); 
break; 

} 

Data x is unlocked and in neutral condition for the particular neighbour site if 

the x$erv_ Vote= 0. For case ~x = 0, the Target Set is equal to 0, which means datax 

at neighbour has free lock. Thus, line 10 tells the BTM of the primary replica that 

V~x return 1, which means that primary gets the lock. For case Vllx = 1, the Target Set is 

equal to l. Therefore, line 14 tells the BTM of the primary replica that ~)s already 

locked by another transaction. 

3.6 Example Cases 

BV AGQ-AR is designed to manage database replication in distributed database 

environment. By using replication, the data reliability and performance are enhanced; 

however, the key issue is that the consistency of the replicated data needs to be 

maintained because once a copy of the data is modified, other copies of the same data 

become inconsistent. 

In this section, examples of cases that occur during real time transactions are 

presented. All elements of V11 and Vl/1 may request instant x simultaneously at any site of 

S(B) either at the same site or a different site. As shown in Figures 3.9-3.12, A, B, C, D 

and E represent the replicated servers that hold primary data a, b, c, d and e, 

respectively. 

66 



3.6.1 Case 1: A set oftransaction Vq Request to Update Instant bat One Site 

i E S(B} 

Vryb • . ·•·.· ' *·' ··.' f···· · .. ·' ·. ~- _;;: ! , - ·~ T - .· " 

;":. :_ . J~ ~ \. ; 

•
. · ... *_ .. _· . . 

- !-~ ........ / I 

~ ~- . ~ ~~ 

~ 
.. · 21§'" _., . - ~ 

..---..' :-< '; ....... ;. ,: 

:c ,'. : . 

Figure 3.9 One set of transaction at one site 

Figure 3.9 shows one transaction request to update data at one site. In this case, the 

transaction requests to update instant b. For sites S(B ={i I B(i)=l' l s i s n}, vlb E v'l] 

will get locked so that VA.b will be executed while V4+1b, ... , VA.+qb wait to be executed 

after VA.b has finished. wVA.bis the write counter for V,tbthat increases when V.lbgets a 

lock. 

3.6.2 Case 2 - Different Transactions where V., and V l/J Request Instant b at 

Different Site i E S(B) 

~bb 

.~
' ' 

."'· 

......... .. '' '; 

~ .• t 

~ 
.. ·- ~ ... . · .. _, , ~ 

. f . ~ -· 
<.: ~ . i; ,· - ' - ' 
~ ~ . . ~i ·~-

Figure 3.10 Two sets oftransactions at two sites 

67 



Figure 3.10 shows two transactions requests to update data at two sites. Vl1 and 

V1/l can either come synchronously or asynchronously. Both transactions, Vl b where "A.= 

11, 'I' get locked, respectively. To make it clearer, assuming that all elements V11b and 

VtJ.rb come to modify instant b at site A and C, respectively. Vl1b locked instant b at site A 

whereas vtJ.rb locked instant bat site c. 

3.6.3 Case 3 - Different Set of Transactions V., and V 1/1 Request to Update 

Instant b at Same Site i E S(B). 

Vryb~~- · -~-~ 
v.~~~~ 

•

.. _· *·.··~---- , - :... . .~: .-. - . - . 

~ --: '- ~ 

1 . " I 

' * ··· *···,···· .. ' -._ . . - .} _;. . - ·. - -
.. .:-· .-:;, . . -

Figure 3.11 Two sets oftransactions at one site 

Figure 3.11 shows two sets transaction requests to update data at one site. 

Different sets of transactions (i.e., V..tb E V11 and V..tb E VtJ!) may request the same 

instant bat site A. Therefore, Vilb E Vl/J is accessing a failure and is queued for the next 

transaction while Vlb E ~ will be executed. The existence of neighbour transaction 

vllb depends on vilb or VAb . When VAb propagates a lock to its neighbour sites i E S(B), 

Vllb will monitor its own status of Target Set either 0 or 1 for instant b and send a 

feedback to V..tb. If V..tb successfully locks the site, the write counter will be increased 

and it will check whether or not VA.b already gets the majority quorum. Consequently, 

V..tb propagates its lock to other neighbours until it gets all quorums. 

68 



3.6.4 Case 4- A Set of Transaction V11 Request to Update an Unavailable Instant 

c, at Site i E S(B) 

Figure 3.12 Two sets oftransactions at two sites 

Figure 3.12 shows one transaction request to update unavailable data at a site. In 

this case, the requested data is c. For sites S(B) = { i I B(i) = 1, 1 ~ i ~ n}, VAc E ~ will 

get locked. Data c is not available at site A; hence, Vlc will check the mapping table to 

search for data c. Then, V1c will get locked. After that, VAc will be executed while 

VA+t , ... , V..t+q wait to be executed after VA has finished. wVil. is the write counter for c c c c 

VA that increases when VA gets a lock. c c 

In BV AGQ-AR transaction model, when several sets of transaction requests to 

update the same instant x, only one transaction is executed at one time. In the case 

where only VA.b E ~ is requesting to modify instant b, the transaction will propagate its 

lock until it gets all locks from replica i E S(B). Transaction V,tb is a transformed 

transaction when ~b gets all the quorums. In this case, after getting all locks from the 

replicas, VAb will change the access permission mode of the instant b and then 

acknowledge the client for an updating process. After the client has updated instant b, 

V..tb is fragmented using vertical fragmentation into S1 and S2. Then, S1 is fragmented 

again using horizontal fragmentation into sl(Pic.x) and sl(Pic,y) · After both fragmentations 

have been completed, V,tb will commit the transaction, sl(Pk,x). 

69 



In cases where more than one transaction request to update data b at different 

sites, the first Vilb that obtains the quurwn will be<.:ume Vilb E V17 and it will be 

transformed into V..:~.b while other \1 vilb will become vilb E vt/J and then aborted. 

V..:~.b acknowledges the client to update the instant b, fragments using vertical and 

horizontal fragmentation and commits the transaction. 

When V-1x gets a lock for a particular data object x, it will be propagated 

synchronously to neighbour sites i E S(B) until it obtains the quorum. A lock is 

propagated based on BVAGQ-AR Primary-Neighbours Grid Coordination (BPNGC) as 

shown in Table 3.4 where N stands for neighbour. 

Table 3.4 BVAGQ-AR Primary-Neighbours Grid Coordination. 

NEIGHBOUR REPLICAS 
PRIMARY REPLICA 

Nl N2 N3 N4 

m(i,j) m(i-1 J) m(i,j-1) m(i,j+ 1) m(i+lj) 

m(i-Ij) m(ij-1) m(i,j+1) m(i+l J) m(i,j) 

m(ij-1) m(i,j +1) m(i+1j) m(ij) m(i-lj) 

m(iJ+l) m(i+l J) m(i,j) m(i-IJ) m(i,j-1) 

m(i+lj) m(i,j) m(i-1 J) m(iJ-l) m(i,j+I) 

3. 7 Illustrative Examples 

In this section, some illustrative examples are presented for the purpose of 

clarifying the algorithms. These examples show how the algorithms works in managing 

database mining and replication transactions. 

BY AGQ-AR of logical design of 5 x 5 grid structure with the neighbours binary 

vote assignment: Bx(E) = Bx(B) = Bx(D) = Bx(F) = B.x(H) = 1 is imposed in all of the 

illustrative examples. Table 3.5 shows the BVAGQ-AR Primary-Neighbours Grid 

Coordination (BPNGC) for S(Bx) = {E, B, D, F, H}. In particular, this table is also used 

for all cases in this section. 

70 



Table 3.5 The 8PNGC for S(Bx) = {E, 8, D, F, H}. 

NEIGHBOUR REPLICAS 

PRIMARY REPLICA Nl N2 N3 N4 

E B D F H 

8 D F H E 

D F H E B 

F H E 8 D 

H E 8 D F 

3.7.1 Case 1 -Database Mining Management 

In Case 1, a transaction, V,, is assumed to have successfully locked replica E and 

its neighbour replicas. This example will describe how database mining and replication 

transaction are managed using BV AGQ-AR technique. 

A transaction requests to access instant e from replica server E. 8TM receives 

V17e from client at replica E. Therefore, replica E is recognized as the primary replica. 

8TM uses initialize_lock function of Listing 3 to get the lock. The first element VA.e E V, 

gets the lock while aborting others. In order to lock its neighbour replicas, BTM will 

use database replication. After successfully locking the neighbour replicas 8, D, F and 

H, respectively, BTM calls the algorithm in Listing 1. 

Table 3.6 An example ofhow BVAGQ-AR handles database mining 

REPLICA E B D F H 

TIME 

t1 unlock( e) unlock( e) unlock(e) unlock(e) unlock( e) 

t2 Begin_transaction 

t3 write lock( e) 

t4 convertS' -7 1,0 

t5 discover Jk-1, k++ 

71 



Table 3.6 Continued 

REPLICA E B D F H 

TIME 

t6 
compare with 

minSupp 

t7 
fragment 

S' -7 J1.h 

t8 eliminate J2 

lock( e) lock( e) lock(e) from lock( e) 

fromE fromE E from E 

allocate J1 at 

t9 S(B/(x = 1, 2 or 

3) 

tlO 
allocate J1 at any 

S(B/ 

proceed with database replication process 

3. 7.2 Case 2: Database Replication Transaction Management 

Figure 3.13: An example ofBVAGQ-AR transaction processing 

72 



In Case 2, it is assumed that the different sets of transactions V17 and VlJI request 

to access particular data file e, at replicas E and B, respectively. This example will 

describe how transaction and replication are managed using BV AGQ-AR technique. 

Figure 3.13 indicates an example of BVAGQ-AR transaction processing where V11 and 

Vl/1 request to access particular data file e, at replicas E and B, respectively. 

On receivingV17e, V71+1e, .. . , Vn+qe from clients, BTM uses Algorithm 2. 

Therefore, replica E is recognized as the primary replica E. Then, BTM calls Algorithm 

2 and uses initialize_lock function of Listing 3 to determine which element among the 

set of transactions that gets the lock. The first element V,te E ~ gets the lock while 

aborting others. V,te E V17 propagates lock synchronously to other replicas, as shown in 

Table 3.4, by using the request_lock_synchronous function of Listing 4. Replicas B, D, 

F and H received V,te E ~ through Algorithm 2. Next, the BTM calls Algorithm 3 after 

recognizing VA.e E V71 to be processed by the neighbour replica. Neighbour replicas B, D, 

F and H use Algorithm 3 for the feasibility check whether or not to perform and send a 

feedback to primary replica E. On receiving VIle from neighbour replicas, once again 

replica E uses Algorithm 2. The BTM of replica E proceeds to Algorithm 3 to check 

whether or not VA.e E V71 gets the quorum. If V,te still has not obtained the quorum, it then 

repeats sending request to neighbour replicas by using Algorithm 3 while neighbour 

replicas i E S(B) use Algorithm 2 and 3 on receiving V,te from primary replica E. 

The same procedure and algorithms as described above are used. The case 2 

above is related with additional new invoking set of transactions where vlPe' vljl+le • •. . , 

Vl/J+qe request to update data e, at replica B. The first primary replica that obtains 

majority of the quorum is denoted as V.A.e and proceeds with the transaction. If V.A.e E ~ 

from primary replica E first arrives at replica D, thus V,te E ~ obtains majority of the 

quorum. Therefore, V,te E v17 of replica E becomesV,te . 

Primary replica E proceeds with Algorithm 3 and aborts VAe E V l/1 of primary 

replica B. VAc E v17 of primary replica B imposes Algoritlun 2 to release the lock, then 

rollbacks and sets its lock. Next, primary replica E proceeds with V,te through Algorithm 

3, acknowledges the client and waits for the user to finish updating. After that, V,te 

73 



fragments the relation to get S1 (Pk.e> using vertical fragmentation which is then followed 

by horizontal fragmentation through Algorithm 2. Finally, primary replica E and all its 

neighbour replicas synchronously commit by Vil.e using Algorithm 2. Table 3.7 shows 

an example of how BV AGQ-AR handles the concurrent transactions V..1.e e V11 and V.Ae e 

V l/1 at primary replica E and B. 

Table 3.7 An example ofhow BVAGQ-AR handle concurrent transactions. 

REPLICA/ 
E B D F H TIME 

tl unlock( e) unlock( e) unlock( e) unlock( e) unlock( e) 

t2 
begin 
transaction 

t3 
write lock(e) begin 
counter w(e)=l transaction 

t4 wait 
write lock(e) 
counter_ w( e)= 1 

t5 
propagate 
lock:B 

t6 
propagate propagate 
lock:D lock:D 

t7 
lock( e) 
fromE 

t8 
get lock:7 propagate 
counter_ w( e )=2 lock:F 

t9 
propagate lock( e) 

lock:F fromB 

tl 0 
propagate get lock:F 
lock:H counter w( e )=2 

t I I 
propagate lock( e) 
lock:H from E 

tl2 
get lock:H propagate 
counter w( e )=3 lock:E 

t13 
obtain quorum propagate 
release lock:3 lock:H 

abort 
rollback, 

Vil.e E Vl/J tl4 lock( e) 
& rollback, fromE 
lock(e) from 8 

tl5 update e 

74 



Table 3.7 Continued 

REPLICA/ 
E B D F H 

TIME 

t 16 
fragmentS' 
into S ·,and S '2 

S't is 

tl7 
fragmented 

into S' 1 (Pil,x) 

and S' 1 (Pk.y) 

commit commit commit commit commit 
tl8 V;_e E Vry VAe E Vry VAe E v1j VAe E ~ V;.e E ~ 

tl9 unlock( e) unlock( e) unlock( e) unlock( e) unlock( e) 

3.8 Correctness 

Assertion: If the transaction gets all locks from replicas i E S(BJ, then the transaction 

will be executed successfully. 

Proof: The only way that a transaction gets a lock in initiate lock is when V;.x = 1 with 

V;.x E Vll. After V;.x E V71 is successful in initiating lock at a server, then, VA.+lx' ... , 

v .. Hqx which are the elements that exist in v1} will be queued. To get majority of the 

quorum, wV;.x2': r;.l is required. This means that the primary server needs to get majority 

of the Jocks from its neighbour servers by calling request lock from the neighbour 

servers. Each of the neighbours i E S(B) will send a feedback to the primary server to 

notify it whether or not each neighbour server is in free lock. If the primary gets 

majority of the locks of instant x, this means that V-tx = ~x = V11 where V..:tx gets a 

quorum. Next, the primary will send error notification to other neighbours i E S(B) in 

the quorum. Consequently, when V..tx E V..p releases its lock, V-tx E ~gets the lock 

from every neighbour i E S(BJ. After V-tx gets majority quorum, relation S is 

fragmented into S1 and S2 using vertical fragmentation. S1 is then fragmented again into 

sl(Pk,x) and sl(Pil.y) but this time, using horizontal fragmentation. When the user finishes 

updating the instant, V.il.x commits (sends the fragmented data) to V neighbour i E 

75 



S(BJ. Therefore, all replicas of S(Bx) will perform and execute the transaction 

successfully. 

3.9 Summary 

In this chapter, a technique called BVAGQ-AR that combines data mining and 

data replication in managing database replication in DDS has been described. In this 

technique, a preliminary database is mined before fragmented. After that, the 

fragmented database is replicated to its neighbour sites so that replication can proceed. 

Users will be able to update an instant only after their transactions succeed in obtaining 

majority of the quorum. After a user updates an instant, the relation with that instant is 

fragmented using vertical and horizontal fragmentation. After the fragmentation, the 

values that are left are only the primary key and the instant that needs to be updated. 

Finally, the transaction is committed to all sites. A series of experiments have been run 

in order to provide proof in support of this theory and to show that this technique is the 

best compared to existing techniques which have been reviewed in Chapter 2 of this 

thesis. Details of the experimental results are discussed in Chapter 4. 

76 



CHAPTER4 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter details the implementation of the synchronous database replication 

which describes the algorithms and example of cases as described in Chapter 3 of this 

thesis. In addition, this chapter also provides evidence that BVAGQ-AR has been able 

to mine useful knowledge from huge database and also support database fragmentation 

in order to allocate the database at servers. It also presents evidence that supports 

synchronous replication process for the database. In the experiments conducted, a 

transaction updating a tuple in a relation has been considered, in which the replication 

manager Locking only the relation containing such tuple. Finally, the chapter compares 

and contrasted the results of the present study which has employed the BVAGQ-AR 

technique with other replication techniques. 

4.2 Hardware and Software Specifications 

From the perspective of users, the functionality offered by BV AGQ-AR 

application is for database replication. Nevertheless, for this implementation, 

BVAGQ-AR application is tested in different sites under the local area network (LAN). 

The implementation of BV AGQ-AR requires minimum hardware and software 

specifications. Each replication server component has its hardware specification as 

shown in Table 4.1 . 

77 



Table 4.1 Server component specifications 

Hardware 

Processor 

Memmy 

Cache 

Hard Disk 

Chip Set 

Network Card 

Specifications 

Intel (R) Core ((TM) 2 Quad CPU Q9650 

@3.00 GHz 2.99 GHz 

4.00 Gigabytes 

3624 Megabyte 

300 Gigabytes 

ATI Radeon HD 3450- Dell Optiplex 

Intel (R) 82567 LM-3 Gigabit Network 

Connection 

The implementation of the BV AGQ-AR Transaction Manager (BTM) was 

carried out by using PIIP scripting language and deployed in Windows 8.1 Professional. 

Table 4.2 shows the system development tools specifications for this implementation. 

Table 4.2 System development tools specifications 

System Development Software Specifications 

PHP Version 5.6 

SQLyog Commwtity Edition 12.4.3 

MySQL Server 

.Net Framework 

Sql connector 

Windows 8. 1 

Wamp Server 

Version 5.6 

Version2.0 Redistributable Package 

(x64) 

Version 5 .1.42 

Professional 

Version 3.0.6 64 bits 

The experiments were executed in three and five replication servers. The 

minimum and maximum numbers of replication servers used in the present research 

were three and five, respectively. This is because they were the minimum and 

maximum numbers of replication servers in BVAGQ-AR. In order to evaluate the 

performance of the proposed architecture. BVAGQ-AR Replication Manager was 

78 



developed. This tool was used for calculation of the job execution time and comparison 

of results with existing techniques. 

4.3 BV AGQ-AR Experimental Results 

In this section, the experiments for managing transaction and replication are 

described. The experiments involve the phases that have been described in Section 3.4, 

Chapter 3 of this thesis. Different cases were considered in the experiments. 

To demonstrate BV AGQ-AR transaction, nine servers logically organized in 

3 x 3 were considered based on BV AGQ-AR two-dimensional logical design. A total of 

nine servers were used because the number of replicated data, d, can be 3, 4 or 5. 

Hence, a total of nine servers were chosen in order to get maximum replicated data, d = 

5 in the experiments. Five replication servers were deployed as shown in Figure 4.1. 

Each server or node was connected to one another through a fast Ethernet switch hub. 

There were two parts of the experiments. The first part of the experiment involved data 

mining, data fragmentation and data allocation process while the second part involved 

data replication. Five cases of experiments for the replication process were conducted. 

These cases will be explained later in Sub-sections 4.3.1-4.3.6 ofthis chapter. 

Theoretically, each of the neighbour replication servers and the primary 

replication server should be connected to each other logically as shown in Figure 4.1 . 

Each server was assigned with vote 0 or 1 . Vote 0 means the server would be free and 

therefore unlocked; hence, the server would be able to proceed with a new transaction. 

By contrast, vote I means the server would be busy; in other words, the server would 

already be locked. Hence, new transaction cannot be initiated on that server. 

79 



Figure 4.1 Five replication servers connected to each other. 

The Binary Vote Grid Coordination is presented in Table 4.3. Replica B with IP 

172.21.202.163, replica D with IP 172.21.202.162, replica E with IP 172.21.202.169, 

replica F with IP 172.21.202.168 and replica H with IP 172.21.202.2167. 

Table 4.3 BV AGQ-AR Grid Coordination 

Primary Neighbours 

B: D: E: F: H: 

172.21.202.163 172.21.202.162 172.21.202.169 172.21.202.168 172.21.202.167 

D: E: F: H: B: 

172.21.202.162 172.21.202.169 172.21.202.168 172.21.202.167 172.21.202.163 

E: F: H: B: D: 

172.21.202.169 172.21.202.168 172.21.202.167 172.21.202.163 172.21.202.162 

F: H: B: D: E: 

172.21.202.168 172.21.202.167 172.21.202.163 172.21.202.162 172.21.202.169 

H: B: D: E: F: 

172.21.202.167 172.21.202.163 172.21.202.162 172.21.202.169 172.21.202.168 

80 



4.3.1 Experiment 1: Mining S to Identify J 1 and the S(B/ for s• 

In Experiment 1, the first part of the process was tested. The processes involved 

in this experiment were data mining, data fragmentation and data allocation. The aim of 

the first part of this experiment was to mine the preliminary data in order to obtain the 

frequent itemsets. The frequent itemsets were then fragmented and allocated to the 

neighbour servers. When meaningful data were allocated together, this would help the 

transaction to access the data easily. Hence, the time needed to complete a transaction 

would be shorter. This experiment recorded the BV AGQ-AR Replication Manager 

execution time to identify J1, fragmented the S according to Sand allocated the data to 

S(B/ where e = 1,2 or 3. The result captured from BVAGQ-AR tool is shown in Figure 

4.2. 

Figure 4.2 

800 

700 

600 

sao 
400 

200 +------------------------
100 

0 

Load Database Convert Binary 

Execution time for Experiment I 

Frequent 
ltemsets 

Fragment & 
Allocate 

Figure 4.2 shows the execution time for Experiment 1. The execution time to 

load S was 23.543 milliseconds (ms). Meanwhile, it took 41.544 ms to convert the S 

into binary format and 7 58.132 milliseconds to execute A priori algorithm in association 

rule to identify S ', respectively. Finally, the execution time to fragmentS' into f and .f 

as well as the allocation off in S(Bf was 153.422 milliseconds. The total job 

execution time for the first part ofExperiment 1 was 976.641 ms. 

81 



Table 4.4 Mining S to Identify J1 and the S(Bf for S · 

REPLICA E B D F H 

TIME 

tl unlock( e) unlock( e) unlock( e) unlock( e) unlock( e) 

t2 
begin 

transaction 

t3 "Write lock(e) 

t4 convert S ~ 1 ,0 

t5 discover Jt-1, k++ 

t6 
compare with 

minSupp 

t7 
fragment 

s· -7 Jj,J] 

t8 eliminate Jz 

t9 lock(e) from E 
lock( e) from 

lock(e) from E lock(e) from E 
E 

tlO Obtain all lock 

allocate J1 at 

til S(B)" 

(e = I, 2 or 3) 

tl2 
allocate J2 at any 

S(Bl 

proceed with database replication process 

From Table 4.4, at time equal to I (tl), instant eat all servers were unlocked. At 

t2, the transaction began at server E. At t3, server E was locked by a transaction. Hence, 

write counter for server E was equivalent to 1. At 14, a preliminary database, S was 

loaded in server F; and converted into binary format. Apriori algorithm was executed to 

discover Jk-1, k++ at t5. After the discovery of the frequent itemsets, S' was fragmented 

into J1 and J2. At t9, server E propagated its lock at all of its neighbour servers. After 

obtaining all locks from its neighbour servers at 110, J, was allocated at S(Bf where e = 

1, 2 or 3. At tl2, h was allocated at any available S(Bf. A time diagram about the 

whole process for these five replication servers is shown in Figure 4.3. 

82 



[~}-··· 
[~}-··· 
[~}-··· 

.............................. ., .............. ._ ............... : ... . 
0 

I I I I 
I I I I ...... - • "' •• •! ................. -~ ........... . . - ~ ............. ·:· •• ~ 

0 

0 0 

• " .......... : ............... , •••••••••••• ~ ................... ·l· ••. 

0 
0 • 0 0 

J ' I I 
• t I I 

······ :····---·-··r·······--·-·r···········r···········r··· 
G ...... ! .......... , ........ -.... 0............ . ............ , .. . 

[~}-··· 

G······ 
[~J-· --· 

G······ 
0····--

I I I I 
t I I I 
I I I I 

I I I 1 

·····················~·········· · ····-················· I I • I 
I I I 
I I 

0 
I I I I 

•••••••••• j ••••••••••••• J •••••••••••• J ••••••••••••• ~ ••• 
I I I I 
I I I I 

I 0 

0 
I o 0 
I I I I 

····· ·····1·············1············1·············r··· 
' 0 

I I o 

·········-~········-···-,·- ········· -,··· ·· ·······-~·-· 

0 
I 

··········~·-·········· · ~·· ······ · ·· -~·············~--· . . 

G 
' 0 0 0 
I I I ' 
I I I I 

······ ··-·······r····------·-··r···--·--·····ro··----·-·· ··1· ··· 
~--··-· .......... ·····------- --········· --·--······ .. . 

GG®G0 

~ 

C/} 

s.. 
c.8 

(].) ,-... 
co 
"-' 
C/} 

(].) 

~ ...... 
('f) 

"'0 00 
@ 

........ --. 

..c 
-~ 

(].) 
"'0 -0 ..... 
C/} 

0.0 c:: 
'2 ·-~ 
'""' c.8 
E 
eo:! 

'""' 0.0 
~ 

:0 
(].) 

E 
f= 

(') 

..,f 
(].) 
1-o 
;::! 
0.0 ·-C,.I., 



4.3.2 Experiment 2: A Transaction V 11 Request to Update Instant eat Site E 

In Experiment 2, the replication part of the technique was tested. The goal of 

this experiment was to solve Case I as described in Sub-section 3.6. I, Chapter 3 of this 

thesis. For this experiment, a transaction, ~. requested to update instant eat site E. The 

aim of this experiment was to check if BY AGQ-AR would be able to manage a 

synchronous database replication through the transaction for this case and to record the 

job execution time for the replication process of this case. The result captured from 

BVAGQ-AR tool is shown in Figure 4.4 . 

.--- . 

80 
-----··· ··--·~--···~-· -----·-

70 

60 -
50 -
40 f---

30 -

20 -

10 -

0 • • • • 
Initiate Propagate Propagate Propagate Propagate Check Fragment 

lock lock B lock D lock F lock H quorum and 
commit 

Figure 4.4 Execution time for Experiment 2 

Figure 4.4 shows the execution time for Experiment 2. The time taken for~ to 

initiate lock atE was 3.905 milliseconds (ms). Meanwhile, it took 3.691 ms, 4.472 ms, 

4.371 ms, and 3.675 ms to propagate lock to server B, server D, server F and server H, 

respectively. Execution time to check quorum was 0.448 ms. Finally, the time taken to 

fragment the database and commit the transaction was 67.712 ms. Hence, the total job 

execution time for Experiment 2 was 88.274 ms. 

84 



Table 4.5 Experimental results for one transaction at one site 

REP-
LICA E B D F H 

TIME 
tl unlock( e) unlock( e) unlock( e) unlock( e) unlock( e) 
t2 begin_ transac begin_tra begin_ transac be gin_ transac begin_ transac 

tion nsaction tion tion tion 
t3 v11e write 

lock( e), 
counter w( e) 
=I 

t4 v11epro-

12agate lock:B 
t5 V11)ock(e 

) from E 
t6 V11eget lock:B, 

counter_ w(e) 
=2 

t7 ~epropagate 

lock:D 
t8 V17)ock(e) 

fromE 
t9 ~eget lock:D, 

v1Je counter-w( 
e)=3 

tl 0 ~epropagate 

lock:F 
tll V11)ock(e) 

fromE 
t12 ~eget lock:F, 

counter w(e) 
=4 

tl3 v1Je propagate 
lock:H 

tl4 V17e Iock(e) 
fromE 

t15 v1Je get 
lock:H, 
counter_ w( e) 
=5 

tl6 ~eobtain 
guo rum 

t17 v'le update e 

85 



Table 4.5 Continued 

REPLI E B D F H 
CAl 
TIME 
t18 Sis 

fragmented 
into s, and s2 

t19 sl is 
fragmented 

intO Sl(Pk,r) 

and 51 Pk, 

t20 commit VA. commit commit V,t commit VA.e commit V4e e 

V,te E ~ 
e 

E~ E vl1 E v11 E~ 
t21 unlock( e) unlock( e) unlock( e) unlock( e) unlock( e) 

As shown in Table 4.5, at time equivalent to 1 (t 1), instant e at all servers were 

unlocked. At t2, the transaction began. 

At t3, there was a transaction, V11e that requested to update instant e at server E. 

The transaction initiated lock. Hence, write counter for server E was now equal to I . 

At t4, Vfle propagated lock at its neighbour server B, V17elock(e ) from server E. 

Thus at t6, the transaction achieved in getting locked from server B which then resulted 

in write quorum to be equal to 2. 

Next, ~e propagated lock at server D at t7 and at t8, V71e locked (e) from E. 

Thus, at t9, the transaction achieved in getting locked from server D which then resulted 

in write quorum to be equivalent to 3. 

After that, ~.,. propagated lock at server Fat tlO and at til, V'1)ocked (e) from 

server F. Thus, at tl2, the transaction achieved in getting locked from the server F 

which then resulted in write quorum to be equivalent to 4. 

Then, V11epropagated lock at server Hat t13 and at tl4, ~)ocked (e) from H. 

Thus at t15, the transaction achieved in getting locked from server H then resulted in 

write quorum to be equal to 5. 

86 



At t16, V17eobtained all quorums and then instant e was updated at t17. At tl8, 

the relation S was fragmented into S 1 and S2 using vertical fragmentation. At t/9, the 

relation S1 WaS fragmented again USing horizontal fragmentation intO S1(Pk,x) 

and Sl( Pk,y). 

Finally, at t20, V.il.e E V17 was committed and at t21 , instant eat all replica servers 

would be unlocked and were ready for the next transaction to take place. A time 

diagram about the whole process for these five replication servers is illustrated in 

Figure 4 .5. 

87 



(E' 0 
tC\B) 1\.J' 

f:\0) 
I~ 

~FI 1\..J 

~H) 
I~ 

03GJ~8~~0E0BEGBEGEGG0 
' ' . . . . . . . . 
' . ' ' I • " . ' ' I I I ------ : ~ • ' ' • Ill • 

• • ----- --~ -- -- --- -! ·---- ----!-- --- ----:--- ------:------- - ~- - -- -- .. - ~------ --7----- ---:------- ---:---- -- ---:---- -- -- - ~ --- --- --: .---
I 

. 
II • I I II II t • I I I ' • 

• • ....... _., ____ --·~- ........ --·~ •.. ···--~···- .. --.. : , ............. '7 ... .... ..... ~·-· --- --~····· -· .. ~· ..... ···.-:--·------:--·--·· ..... ~-- ·--· --~ ............................ ··-:" ...... ·-·.. • • . . 

• io • l I io Ill I + 

' ·-- ------:- .. --·--- -:--- - - -- ---: --------~- -- - ----:--- - - --- -:------- -7" - -- --- -~ '---- --- ~- --- - - - -:·--- --··7·--- ---- ~ --------! ·--- ---·'-··-·-·-·:------ .. ·-: • • 

• . 
• t --- -- --l- ----~ - - ~ - ------- i--- · ----r-- -- ---.... :-- ---- - - -~ --------:- ---- ·-- T ------ --r- ~·-- ~-~ r~ .... · · · -·: • · --·-·-- fw- ....... · --( ·--· --- -:-- -- · · ·- ·l ·-- · ·- · -; t • 

Figure 4.5 Time diagram when a set of transaction V 1J request to update instant e at site E 

88 



4.3.3 Experiment 3: Different Sets of Transactions, V 11 and V 1/J Request Instant e 

at Different Site 

The goal of Experiment 3 was to solve Case 2 as described in Sub-section 3.6.2, 

Chapter 3 of this thesis. For this experiment, Vry and VlJI requested to update instant e at 

two different servers, E and F, at the same time. The aim of this experiment was to 

check if BVAGQ-AR would be able to manage a synchronous database replication 

through the transaction for this case and to record the job execution time for the 

replication process of this case. The result captured from BVAGQ-AR tool is shown in 

Figure 4.6. 

70 

60 

50 

40 

30 

20 

10 

0 

Initiate PropagatePropagatePropagatePropagate Check PropagatePropagate Fragment 
lock lock B lock D lock E lock H Quorum lock E Lock H and 

commit 

Figure 4.6 Execution time for the Experiment 3 

Figure 4.6 shows the execution time for the primary server E. Vr, took 4.168 ms 

to initiate lock. The time taken for Vry to propagate its lock at server 8 and server D 

were 4.454 ms and 4.311 ms, respectively. The system failed to propagate lock at server 

E and server H because V 1/1 already locked the servers. The time taken to check quorum 

was 0.394 ms. Because ~ had obtained majority ofthe quorum, VtJ! released its lock. 

89 



After that, server V11 successfully propagated its lock at server E and server H, which 

took 5.145 and 5. 1 03 ms, respectively. Finally, the time taken to fragment the database 

and commit the transaction was 63.551 ms. Therefore, the totaJ job execution time for 

this experiment was 86. 126 ms. 

Table 4.6 Experimental results for two transactions updating the same data at two sites 

REP-
LICA E B D F H 
TIME 
tl unlock( e) unlock(e} unlock{e} unlock( e) unlock( e) 
t2 begin_transa begin_ transac begin_ transa begin_ transa begin_ transa 

ction tion ction ction ction 
- - · 

t3 ~e write vl/Je write 
lock( e), lock( e), 
counter w counter w 
(e}=I (e)=I 

t4 ~e propagat vl/Je propaga 
e lock:H te lock:B 

t5 vl/Je lock(e) ~elock (e) 
from F fromE 

t6 vl1e get vl/Je,ql get 
lock:H lock:H, 
counter_ w(e counter w(e 
)=2 )=2 

t7 vl1e propagat vl/Je propaga 
e lock:F te lock:D 

t8 "Vr,e fail to vl/Je lock(e) 
get lock:F, from F 
counter_ w(e 
)=2 

t9 vl1e propagat vl/Je get 
e lock:B lock:D, 

counter w 
(e) =3 

tlO "Vr,e fail to get obtain 
lock:B, majority 
counter w quorum 
(e =2 

til vl1e release vl1e release 
lock lock 

tl2 Vwe lock(e) vl/Je lock(e) 
fromF fromF 

90 



Table 4.6 Continued 

REPL E B D F H 
ICA/ 
TIME 
t 13 vi/Je get 

lock:E and 
H, 
counter w 
(e)=S 

t14 update e 

t15 Sis 
fragmented 
into sl and 
s2 

t16 sl is 
fragmented 

intO Sl ( Pk,x ) 

and Sl Pk, 

t17 commit V..:~. commit VA.e commit V..:~. commit VA.e commit V..:~.e e e 
E Vt/Je E Vt/!e E Vt/!e E Vt/Je E Vt/!e 

tl8 unlock( e) unlock( e) unlock( e) unlock( e) unlock( e) 

As shown in Table 4.6, at time equivalent to 1 (tl), instant eat all servers were 

unlocked. At t2, the transaction began. 

At t3, there were two transactions, Vr,e and V t/Je that requested to update instant e 

at the same time. Both of the transactions initiated lock. At this time, the target set for 

each server had changed to l which means that the server was busy. Hence, write 

counter for both server E and server F was now equivalent to 1. 

At t4, V., propagated lock at its neighbour replica Hand V.1. propagated lock 
••e 'Pe.q1 

at its neighbour replica B. Because target set for both server Hand server B was 0, the 

servers were free for the transaction. 

At t5, V, locked (e) from Eat server H, and V,,, locked (e) from server Fat 
••e.q1 'Pe,q1 

server B. Thus at t6, both transactions obtained the lock from their neighbours. Hence, 

the write quorum for each transaction was equal to 2. 

91 



Next, V., propagated lock at server F at t7. At the same time, 
·re.q 1 

V.,, propagated lock at ~erver D . Because V,,, had already locked instant e at server 
'Pe.q t 'Pe.q 1 

F, the target set for the server was now equal to I . Hence, V., fai led to obtain lock 
·re,q 1 

from server F. At t9, V.,, locked (e) from server D and write counter for V,,, was 
'P~ql 'P~ql 

now equal to 3. 

Then, at t I 0, V.,, obtained majority of the quorum. Thus, at t II V., released 
'Pe.q1 ·•e.ql 

its lock from server E and server H. At tl2, V.,, locked (e) from server Fat server E 
'Pe.ql 

and H and write counter for V.,, now was equal to 5. Therefore, instant e was 
'Pe.q l 

updated at server Fat t14. 

At tl5, the relationS was fragmented into S1 and S2 using vertical fragmentation. 

The relation sl was then fragmented again at tl6 into sl(Pk,x ) and sl(Pk,y) using 

horizontal fragmentation. 

Finally, at ti 7, VA. E V.,e was committed to all sites and at tl8, instant e at all 
e.ql .,., 

replica servers would be unlocked and ready for the next transaction to take place. A 

time diagram about the whole process for these five replication servers is presented in 

Figure 4.7. 

92 



~GG8~0~G8B~BBBGGEB 
(~ 

. . . . ' ' . . ' 
. 

; . . . ; ' . . ; - ------~-------·-:--------~· ... ··-. ' 

® 
. 
0 I o 

' I l I I I I l I I 1 1 I t I 

' • : ---····: ., ··---··-:--··---·~---------:--·-··--~--------~-------·~-·-------:--···---~---·---~·-·--···~------·--: ' ill 

® I I I t I I I I 
I I I I I I I I I I I I I I t 

• • ~- -- -----} ------- - t----- ---;.- -------: · -- ------:---- -----:------- - -:- .. ... --- ---~--- -----:-- ----- --:---- ---·-- ~ ---- ---- ' • lilt 

0 
. . . ' 

• • • i------·· : • t -------: • •·--··---(·-- -----: • • • • • • 

® • • ' ------- : ·- ---- - --~ - - - - - - ---~-- - -----~-- - --- --~-- - -- ---: • '--------~- --- - --- =- - - - - ---- ~- ---· --· • ' . 

Figure 4.7 Time diagram when different sets of transactions, V 11 and V 1/J request instant e at different site 

93 



4.3.4 Experiment 4: Different Sets of Transactions, V" and V 1/1 Request Instant e 
at the Same Site. 

The goal of Experiment 4 was to solve Case 3 as described in Sub-section 3.6.3, 

Chapter 3 in this thesis. For this experiment, V11 and Vw requested to update instant eat 

the same server, E, at the same time. The aim of this experiment was to check if 

BV AGQ-AR would be able to manage a synchronous database replication through the 

transaction for this case and to record the job execution time for the replication process 

of this case. The result captured from BV AGQ-AR Replication Manager is shown in 

Figure 4.8. 

,.----------------···-------------------, 
70 ~--------------------------

60 +-----------------------

50 +------------------------
40 +--------------------------
30 +-------------------------
20 +--------------------------
10 

0 ~~-~-----~~--~~-~--L--~----~ 
Initiate Propagate Propagate Prop3gate Propagate Check Database 

lock lock B lock D lock H lock F Quorum fragment 
=5 and 

commit 

Figure 4.8 Execution time for Experiment 4 

Figure 4.8 shows the execution time for the primary server E. ~ took 3.833 ms 

to initiate lock. It took Experiment 4 longer than the other experiments because at this 

time, another transaction, Vl/J was attempting to lock server Eat the same time. The first 

transaction to arrive,~. would successfully lock the server. The time taken to 

propagate lock to server B, server D, server H, and server F were 3.983 ms, 3.972 ms, 

5.082 ms, and 4.593 ms, respectively. It took 0.728 ms to check quorum. Finally, the 

time taken to fragment the database and commit the transaction was 63.918 ms. 

Therefore, the total job execution time for this experiment was 86.109 ms. 

94 



Table 4.7 Experimental result for two transactions at the same server 

REPL E B D F H 
ICA/ 
TIME 
tl unlock( e) unlock( e) unlock( e) unlock( e) unlock( e) 

t2 begin_ begin_ begin_ begin_ begin_ 
transaction transaction transaction transaction transaction 

t3 ~ewrite 
lock(e), 
counter_ w( e) 
=1 
vl/1 write 
lock( e), 
failed. 

t4 ~e propagate 
lock:B 

t5 V11e lock(e) 
from£ 

t6 Vrye get 
lock:B, 
counter_ w(e) 
=2 

t7 Vrye propagate 
lock:D 

t8 ~e lock(e) 
fromE 

t9 Vrye get 
lock:D, 
~e counter_ 
w(e)=3 

tl 0 ~e propagate 
lock:H 

tll V11e lock(e) 
fromE 

tl2 Vrye get 
lock:H, 
counter_ w( e) 
=4 

t13 ~e propagate 
lock:F 

tl4 V11e lock(e) 
fromE 

t15 v11e get 
lock:F, 
counter w( e) 
=5 

95 



Table 4.7 Continued 

REPLI E B D F H 
CAl 
TIME 
tl6 v11e obtain 

uorum 
tl7 Vr,e update e 

tl8 Sis 
fragmented 
into S1 and S; 

tl9 sf is 
fragmented 

intO Sl(Pk,x) 

and 51 Pk 

t20 commit VA.e commit V..t commit V,t commit VA.e commit VA.e e e 

E~ E V71 E~ E~ E~ 
t21 unlock( e) unlock( e) unlock( e) unlock( e) unlock( e) 

As shown in Table 4.7, at time equivalent to 1 (tl), instant eat all servers were 

unlocked. At t2, the transaction began. At t3, there were two transactions, V11e and 

VtP, requested to update instant e at server E. Because transaction V11e successfully 

initiated lock, write counter for server E was now equivalent to 1. 'When the write 

counter was 1, VtP could not proceed with the transaction and would be aborted. 

At t4, V11e propagated lock at its neighbour replica 8 and at t5, ~e locked (e) 

from server E. Thus, at t6, the transaction achieved in getting locked from server B, 

which then resulted in write quorum to be equal to 2. 

Next, ~e propagated lock at server D at t7 and at t8, V11e locked (e) from E. 

Thus, at t9, the transaction achieved in getting locked from server D, which then 

resulted in write quorum to be equivalent to 3. 

After that, V11e propagated lock at server Hat t!O and at tll, ~e locked (e) from 

server H. Thus, at t12, the transaction achieved in getting locked from server Hand the 

write quorum was equivalent to 4. 

96 



Then, V11e propagated Jock at server F at t 13 and at tJ 4, V11e locked (e) from 

server F. Thus, at t15, the transaction achieved in getting locked from server F and the 

write quorum was equivalent to 5. 

At t16, V11e obtained all quorums and then instant e was updated at t/7. At tl8, 

the relationS was fragmented into S1 and 5h using vertical fragmentation. At t19, the 

relatiOn 81 WaS fragmented again intO Sl(PI<,x) 

fragmentation. 

and S1 (Pk,y ) using horizontal 

Finally, at t20, V4., E V11 was committed and at t21, instant e at all replica servers 

would be unlocked and ready for the next transaction to take place. A time diagram 

about the whole process for these five replication servers is presented in Figure 4.9. 

97 



~ 
I E I 
~ 

1'8'1 
~ 

!::\ 
I D I 
'-:__,} 

1::\ 
I F I 
'-:___) 

r.-:\ 
I H i 
~ 

~~G0~8~=:J~EE B3~0BBG3E l'2•1 ! 
t I I I . ' . . 1 I I t I I f . . ; . 1 I I t f t I I I I 1 I f I t t 

I • · · · · · · · ·: f • · · · · · -- : I t -------. I I t • I I I 

. 
• • ······· t--------: •--------;.--------~- ------- 7------- ~ ------- -t-- ---- --t--------;.--------:~ --------;---------r-- ------;---·····:---------; ---- - -- -: • • 

1 I • I I I I t I I I 

4 t • II 

' ; 0 o U 0 0 - ~-------~ - - u uu +--------:--•••••--: ·- -- - - - - ~ 0 0 

oU 

0 0 ~- 0 

u 

0 0

" 

0 ~-non--~-- u 

0 0 0 ~- ---- H~ 0 0 0 0 0 

o• 

0

:

0 0 0 0 

o O 

0 

. ; 

0 0 0 0 0 

•• -~•noo --~ 0 0 0 0 

Ou < ' t 
I I I I I f I I I I I I I . 

I J " t t f 
t I I I t ' I I it f I I t I I I I I I 

• • ---- .•• ~-------~-- ---- - --:----------~--------:· ----- --~ - -- ---· '"!"- ------ - ~---- - ·- . !'" ------ --!'- .... - - ~ ' -- --.--- ~ ----.- - - ~ -- ----. -~--- ----~--.-.-.- -~ · - -------~ . 

• • -- --- ... ;..------ --:----.--- -i---------t--------:---------~ ..... -- -- -r ----- ·- i t~~ -~----i-.- --- .- ..:-- ~- - -·- -:·. ------ . r--- --- ~ - ~- ------ -:------- --r -. ----. -; • • 
' t • f I I f I I I j t I • I ' 

Figure 4.9 Time diagram when different sets of transactions, ~ and Vl/J request instant eat the same site 

98 



4.3.5 Experiment 5: A Transaction V YJ Request to Update an Unavailable 
Instant, i at a Site 

The goal of Experiment 5 was to solve Case 4 as described in Sub-section 3.6.4, 

Chapter 3 of this thesis. For this experiment, the case tested was when a transaction, ~, 

requested to update instant i at server E. The aim of this experiment was to check if 

BV AGQ-AR would be able to manage a synchronous database replication through the 

transaction for this case and to record the job execution time for the replication process 

of this case. The result captured from BV AGQ-AR Replication Manager is shown in 

Figure 4.10. 

45 .-------------------------------------------------------------

40 +------------------------------------------------------
35 +------------------------------------------------------
30 +------------------------------------------------------
25 +------------------------------------------------------
20 +------------------------------------------------------
15 +------------------------------------------------------
10 +------------------------------------------------------
5 

0 
Initiate lock Propagate Release lock Propagate Propagate 

lock I E lock F lock H 

Figure 4.10 Execution time for Experiment 5 

Check Fragment and 
Quorum commit 

Figure 4.10 shows the execution time for Experiment 5. ~ took 4.941 ms to 

initiate lock. However,~ requested to update datay which were not available in server 

E. Hence, server E would send the request to the server with data y which was server 1. 

The time taken to propagate lock to server I was 8.964 ms. Once Vry locked server J, 

server E would release its lock and become available for another transaction. The 

execution time to propagate lock to server F and H were 4.878 ms and 4.898 ms, 

respectively. The time taken to check quorum was 0.473 ms. Finally, the time taken to 

fragment the database and commit the transaction was 42.152 ms. Thus, the total job 

execution time for this experiment was 66.306 ms. 

99 



Table 4.8 Experimental result for transaction request to update unavailable data 

REPL E B D F H 
I CAl 
TIME 
tl unlock(i) unlock{i) unlock{i) unlock{i) 
t2 begin_ begin_ begin_ begin_ 

transaction transaction transaction transaction 
t3 v17i write lock{i), 

counter w(e)= 1 
t4 v17i checks data 

map 
t5 U . lock: I 
t6 v11i releac;e lock ~i write lock(i), 

counter w{i)= 1 
t7 v11i propagate 

lock:F 
t8 ~i lock(i) from 

I 
t9 ~i get lock:F, 

counter w(i)=2 
tlO v11i propagate 

lock:H 
tll v11i lock{i) 

from I 
tl2 ~t get lock:I, 

~i counter_ w 
(i -3 

tl3 v11i obtain 
guo rum 

t14 ~i update i 

tl5 S is fragmented 
into 81 and 82 

t16 Sds 
fragmented into 

Sl(Pk,y) and 

sl Pk.x 

t17 commit t71 . E commit ti1 . E commit V1 . E 
I t I 

u u v. 
tl8 unlock{i) unlock{i) unlock(i) 

As shown in Table 4.8, at time equal to 1 (tl), instant e at all servers were 

unlocked. At t2, the transaction began. 

100 



At t3 , there was a transaction, V11 i requesting to update instant i at server E. 

Because transaction V11i successfully initiated lock, write counter for server E was now 

equal to I. 

However, at t4, because data i were not available at server E, it would check the 

data mapping system to find the server with the specific data. At 15, ~i locked server I 

because it was holding the data i. V17i released its lock at server E at t6 and now the write 

counter at Server 1 was equal to 1 . 

At 17, V17 i propagated lock at its neighbour server F and at t8, \'ni locked (i) from 

I. Thus, at t9, the transaction achieved in getting locked from server F which then 

resulted in write quorum to be equal to 2. 

Next, \'ni propagated lock at sen'er H at 110 and at t 11, V17 i locked (i) from I. 

Thus, at t 12, the transaction achieved in getting locked from server H which then 

resulted in write quorum to be equal to 3. 

At t13, V11 i obtained all quorums and then instant i was updated at t/4. At tl5, 

the relationS was fragmented into S1 and S2 using vertical fragmentation. At tl6, the 

relation S1 Was fragmented again into Sl( Pk.y) 

fragmentation. 

and sl(Pk,x) USing horizontal 

Finally, at t 17, VA.; E ~ was committed and at t/8, instant i at all replica servers 

would be unlocked and ready for the next transaction to take place. A time diagram 

about the whole process for these five replication servers is presented in Figure 4.11. 

101 



~GG~GG~GG3G3BBBBBB 
I I • • I I 

® . . . ; I I I • I • • . • I • • : ,_--- ----~- - ----. -~ - ---- ---:--- -- -- --:-- ---- ---:- -- -------:- ---- --- -;---- --- - -~- -------~-- --- - --~- --- ----:------- --· 
I I I I I I I I • I 

CD ' . . ' . 
• • -------+--------: ' • • . 

I I I I I I .. ... ... - - .. .... 

0 . . . . . . "' ' . . . 
' ' 6 I ~ I ' I I I 1 I f " • • • ' ' '-------~--------!------ - -:-- - -- -- --: · -- ---- --:-- - -----~----- - - - "!--- - --- - ~ - -- - ---~ --- ---- -~--------~--------: ' ' 

t • I I I 

(~ I I I I I I I I <I I I I . ' --- ----~-- - -- -- -:----------:---------:- -- --- - --:-- - - --- - --:------ - --:--------: ·--- - ----~ - -- -- ---:- - ---- ---:---- - -- - -:----- --- : , . . 

I , 
I 

Figure 4.11 Time diagram when a set of transaction~ request to update an unavailable instant, i at a site. 

102 



4.4 Results and Discussion 

The proposed BV AGQ-AR has been compared with other replication techniques in 

terms of the total job execution time for a transaction and communication cost. In this 

section, the total j ob execution time to update data and communication cost between five 

existing techniques, namely, BSCA, PRA, HRS, BRS and ROWA, are compared with the 

proposed technique. 

4.4.1 Validity Threats 

Several validity threats can be associated with these experimental studies. A few 

threats have been identified and their effects on the results are elaborated. 

First, the benchmark choice represents an essential threat. The experimental 

benchmarks from other studies in literature have been adopted. However, it cannot be 

guaranteed these benchmarks would represent the actual software and hardware 

configurations in real world. Nevertheless, the benchmarks are derived from configurations 

of different software programs. 

Second, a comparison with other techniques is another threat. Other replication 

techniques with data mining such as BSCA and PRA are tested using simulation tools. The 

present research focused on testing the replication technique in real time DDS because 

simulation cannot capture the problems that arise in real time environment. Nevertheless, 

the comparison is valid because all the techniques compared have been tested using the 

same software and hardware in real time environment. 

Finally the choice for the total number of replica servers can also pose as threat. In 

the present research, the total number of servers was equal to Jn x Jn to complete the 

grid structure. However, depending on each technique, the communication cost for the 

minimum and maximum numbers of replica servers has been identified for comparison 

with this proposed technique. 

l03 



4.4.2 Comparison of Communication Costs 

Table 4.9 shows the comparison of communication costs for BSCA, PRA, ROWA, 

HRS, BRS and BVAGQ-AR with the total number of sites, n = 9, 25, 36, 49 and 64, 

respectively. 

Table 4.9 Comparison of communication costs 

Replication Number of sites (n) 

technique 9 25 36 49 64 

BSCA 3 ~d'S. 9 3 ~ d~ 25 3 ~d~ 36 3 ~d~ 49 3 ~ d:S 64 

PRA 3 to oo 3 to oo 3 to oo 3 to oo 3 to oo 

ROWA 9 25 36 49 64 

HRS 9 25 36 49 64 

BRS 8 to oo 8 to oo 8 to oo 8 to oo 8 to oo 

BVAGQ-AR 3~d"S. 5 3~d~5 3~d~5 3~d~5 3~d~5 

Table 4.9 shows that BSCA, PRA and BV AGQ-AR have the lowest 

communication cost, where d would be equal to the number of servers. The minimum 

number of copies of replicated data in BSCA, PRA and BVAGQ-AR would only be 3. 

However, the maximum number of copies of replicated data in BCSA and PRA would be 

high. This is because in BCSA, all data would be copied at least at one site while in PRA, 

the data would be copied at a server every time should a user request data which would be 

unavailable at that server. Hence, the replication data would be increased from time to 

time. 

Unlike BCSA and PRA, even though the number of replicated servers in BVAGQ

AR were 9, 25, 36, 49 or 64, the replica copies of each data would only be replicated in the 

5 neighbour servers. BRS has the second lowest communication cost where a minimum of 

8 copies would be needed. However, there could exist as many replica copies as possible. 

This is because the replication server in BRS would be driven through client' s request. 

104 



Table 4.10 fmprovement shown by 8 V AGQ-AR in terms of communication cost(%) 

REPLICA 9 25 36 49 64 

SERVERS 

BSCA 44.44 80 86 89.8 92.19 

PRA 0 to (f) 0 to lXl 0 to oo 0 to ·XJ 0 to oo 

ROWA 44.44 80 86 89.8 92.19 

HRS 44.44 80 86 89.8 92.19 

BRS 33.33 12 8.33 6.12 4.69 

Table 4.10 shows that, in 9 servers environment, BV AGQ-AR has improved 

33.33% compared to BRS techniques while in 25, 36, 49, and 64 servers environment, 

BVAGQ-AR has improved 12%, 8.33%, 6.12%, and 4.69% compared to BRS techniques, 

respectively. PRA, ROWA and HRS would have the same communication costs because 

all of the techniques applied all-data-to-all-site replication scheme. In addition, in 9 servers 

environment, BVAGQ-AR has improved 44.44% compared to ROWA and HRS 

techniques while in 25, 36, 49, and 64 servers environment, BV AGQ-AR has improved 

80%, 86%, 89.8%, and 92.19% compared to ROWA and HRS techniques. Jn conclusion, 

BVAGQ-AR has the lowest communication cost compared to those of BSCA, PRA, 

ROW A, HRS and BRS. 

4.4.3 Replication Job Execution Time Comparison 

Two series of experiments were executed in order to identify the job execution time 

for each technique. The ftrst experiment was executed using the minimum number of 

replication servers for each replication technique. Table 4.11 shows the comparison of job 

execution time for the ftrst experiment. 

105 



Table 4.11 Comparison of job execution time for the minimum number of replication 
servers 

Replication Min. Initiate Propagate Obtain Database Total 

Techniques number Lock Lock (ms) Majority Fragmentation time 

of (ms) Quorum & Commit taken: 

servers (ms) (ms) 

BSCA 3 4.044 48.481 3.864 39.743 88.404 

PRA 3 4. 136 46.998 3.882 41.695 96.711 

ROWA 9 4.275 144.522 8.187 I 05.259 262.243 

HRS 9 3.956 147.227 7.870 98.875 257.928 

BRS 8 4.523 64.268 8.112 60.254 137.157 

BVAGQ- 3 3.905 16.369 3.890 42.384 66.548 

AR 

Table 4.11 shows the execution time comparison between BSCA, PRA, ROW A, 

HRS, BRS and BVAGQ-AR in their minimum replication servers. The results, as shown in 

Table 4.12, have provided evidence that BVAGQ-AR would require the shortest duration 

of time to complete a transaction. A complete transaction took only 66.548 ms to finish. 

The second and the third in the order of the duration of execution time are BCSA with 

88.404 ms and PRA with 96.711 ms, respectively. PRA would take longer time due to user 

prefetching data from other servers. Next is BRS, which would take 137.157 ms to 

complete the replication process. ROW A and HRS would take the longest of execution 

time with more than 250 ms. As shown in Table 4.12, there are huge differences in the 

total job execution time between BSCA and PRA with those of ROWA, BRS and HRS. 

This is because the data in ROW A, BRS and HRS were not mined because the original 

techniques did not consider the data correlation. 

The second experiment was executed using the maximum number of replication 

servers for each technique. Table 4 .12 shows the comparison of job execution time for the 

second experiment. 

106 



Table 4.12 Comparison of job execution time for the maximum number of replication 
servers 

Replication Min. Initiate Propagate Obtain Database Total 

Techniques number Lock Lock (ms) Majority Fragmentation time 

of (ms) Quorum & Commit taken: 

servers (ms) (ms) 

BSCA 9 4.097 75.272 8.433 105.172 192.974 

PRA 9 3.974 81.250 9.214 97.170 191.608 

ROWA 9 4.275 147.498 8.002 107.912 267.687 

HRS 9 4.152 146.136 9.107 107.536 266.931 

BRS 9 4.480 64.864 8.835 93.993 172.172 

BVAGQ- 5 4.280 23.808 3.950 51.830 83.868 

AR 

Table 4.12 shows the comparison of execution time between BSCA, PRA, ROW A, 

HRS, BRS and BV AGQ-AR for maximum replication servers. The results, as shown in 

Table 4.13, have provided evidence that BV AGQ-AR would require the shortest duration 

of time to complete a transaction as the number of maximum replication servers in this 

technique was only five. BV AGQ-AR took only 83.868 ms to complete a transaction. The 

second lowest execution time is PRA with 191.608 ms. This is followed by BSCA, which 

took 192.974 ms. Next is BRS, which took 185.172 ms to complete the replication process. 

ROW A and HRS each took the longest execution time which was more than 250 ms. 

Compared to other techniques, BRS would need less time to complete a transaction 

because the data in this technique were fragmented and allocated at several different sites 

while other techniques replicated all data to all sites. 

Table 4.13 

REPLICA 

SERVERS 

Minimum 

Maximum 

Improvement shown by BVAGQ-AR in terms ofjob execution time(%) 

BSCA 

31.19 

56.54 

PRA 

24.72 

56.23 

107 

ROWA 

74.62 

68.67 

HRS 

74.20 

68.58 

BRS 

51.48 

51.23 



As shown in Table 4.1 3, BY AGQ-AR has improved 31.19% compared to BCSA 

when experiment was executed using minimum number of replication servers and has 

shown 56.54% of improvement using maximum number of replication servers. This is 

followed by PRA where BVAGQ-AR has improved 24.72% using minimum number of 

replication servers and has shown 56.23% of improvement using maximum number of 

replication servers. The improvement in BSCA and that of PRA have made a huge 

difference because in BY AGQ-AR, the minimum and maximum numbers of replication 

servers would be 3 and 5, respectively, while in BSCA and PRA, they would be 3 and 9, 

respectively. BYAGQ-AR has improved 74.62% compared to ROWA and 74.20% 

compared to HRS using minimum number of servers, while showing 68.67% and 68.58% 

of improvement using maximum number of replication servers, respectively. There has not 

been much difference in the results because ROW A and HRS used 9 replication servers in 

both experiments. Finally, BY AGQ-AR has improved 51.48% compared to BRS using 

minimwn number of replication servers and has shown 51.23% of improvement using 

maximum number of replication servers. The percentages are much higher in ROW A, 

HRS and BRS compared to those of BSCA, PRA and BV AGQ-AR because ROW A, HRS 

and BRS did not take into consideration the correlations between the data. For BSCA, PRA 

and BYAGQ-AR, the data mining process has been executed before proceeding with the 

data replication process. Hence, the processing time for each of them would be shorter. In 

conclusion, BVAGQ-AR has the lowest job execution time to complete a transaction 

compared to those ofBSCA, PRA, ROWA, HRS and BRS. 

4.5 Summary 

This chapter presents detailed descriptions and the summary of the results from the 

prototype of the BY AGQ-AR technique. A detailed performance evaluation has been 

shown as well. Results have clearly shown that managing replication and transaction in 

fragmented database through proposed BYAGQ-AR would be able to preserve data 

consistency and availability with the lowest communication cost and the shortest duration 

of time for job execution compared to those of BSCA, PRA, ROW A, HRS and BRS. 

However, BV AGQ-AR technique has a few limitations. Hence, much improvement would 

still need to be made. This will be discussed in the next chapter. 

108 



CHAPTERS 

CONCLUSION AND FUTURE WORKS 

5.1 Introduction 

This work has proposed a replication technique called Binary Vote Assignment 

Grid Quorum with Association Rule (BVAGQ-AR) to produce data consistency with low 

communication cost and short processing time in managing replication for fragmented 

distributed database. In order to achieve the purpose of this research, a data mining 

technique has been integrated with the replication process. This chapter summarizes the 

key findings of the present research. It also includes some suggestions for future work in 

each of the areas covered during this research. 

5.2 Conclusion 

The aims of the present research was to design, implement and evaluate. From the 

analysis in Chapter 2, it has been evident that there is much room for improvement in the 

existing techniques. The objectives ofthis research were as follows: 

i. To design and develop data replication algorithms in distributed database 

environment with low communication cost and processing time for a transaction. 

u. To enhance the data consistency technique in objective l for synchronous 

replication. 

109 



fn order to achieve the first objective of this research, an algorithm called Binary 

Vote Assignment Grid Quorum with Association Rule (BVAGQ-AR) was proposed as 

described in Chapter 3. BVAGQ-AR would only consider the neighbours to obtain a data 

copy. Hence, the number of replication servers would be limited. The neighbours would be 

assigned with vote one and zero. A copy would be allocated to a site if and only if the vote 

assignment to the site would be equal to one. 

In BVAGQ-AR, not only data replication would be considered but the present 

research was also concerned about the correlations between the data. Hence, the 

granularity for this proposed algorithm would be higher than the existing algorithm and the 

data would be replicated at the suitable servers. In addition, the existing replication 

techniques would tend to abort the transaction that failed to get a majority of the quorum in 

the first place. While in this proposed algorithm, it would place the second transaction in 

the queue and it could continue to precede with its transaction once it succeeded in 

obtaining a majority quorum. 

These second and third objectives have been achieved and presented in Chapter 4. 

A series of experiments were conducted in order to prove this technique could preserve 

data consistency. After that, an analysis of BVAGQ-AR has been presented in terms of 

communication cost. lt shows that BV AGQ-AR technique has provided a convenient 

approach to achieve data consistency for distributed database replication in real time 

environment by allowing only one transaction to be executed at one time. When a 

transaction committed its process, it would update the data in all its replication servers at 

the same time. Therefore, at the end of the process, all servers would have the same data. 

After comparing BV AGQ-AR with Pre-Fetching Based Dynamic Replication Algorithm 

(PRA), Based on Support and Confidence Dynamic Replication Algorithm (BSCA), Read

One-Write-All (ROW A), Hierarchy Replication Scheme (HRS) and Branch Replication 

Scheme (BRS), it has been shown that BVAGQ-AR is one of the techniques that would 

require the lowest communication cost for an operation. 

Handling database update operations with less computational time becomes crucial 

for synchronous replication in real time. BVAGQ-AR has resolved this by setting the lock 

with small quorum size before updating and committing transaction synchronously to the 

sites having the same fragmented data. Because this technique has used small size of 

II 0 



quorum, less computational time would be needed to send and receive messages from the 

neighbours' replicas. In addition, maintaining data consistency would also be easier 

compared to other techniques hecause RVAGQ-AR has low communication cost. This is 

because less computational time would be required for the locking of the small quorum 

size in synchronization process. 

5.3 Contributions to Knowledge 

This research has provided novel contributions to knowledge in the related areas. 

Firstly, the present research has provided evidence that the data replication technique 

called Binary Vote Assignment Grid Quorum with Association Rule (BVAGQ-AR) could 

be employed with low communication cost and short replication processing time. 

BV AGQ-AR would apply some data to some sites mechanism. The data would only be 

replicated to the neighbour servers. Hence, BVAGQ-AR would use a maximum number of 

only five replication servers. In addition, the data would also be fragmented before being 

allocated at the replication servers. This technique also has been proven to have the 

shortest duration of job processing time compared to those of ROWA, HRS and BRS 

because the data in BVAGQ-AR has been mined to find the frequent itemsets. 

Secondly, the combination of BV AGQ-AR replication technique and the 

transaction management has formed a reliable system. This technique would be able to 

manage a synchronous database replication in real time environment. 

Finally, the BV AGQ-AR Transaction Manager (BTM) would solve the problem of 

distributed concurrency transactions in databases. BTM would allow only one transaction 

to be executed at one time. When a transaction commits its process, it would update the 

data in all its replication servers at the same time. Thus, at the end of the process, all 

servers would have the same data. 

5.4 Future Work 

BVAGQ-AR can be improved in many different ways. Currently, BVAGQ-AR 

does not support handling fragmented database replication transaction management by 

considering failure cases. In the future, it is anticipated that BVAGQ-AR would be able 

l 11 



take this challenge to handle fragmented database failure case and fault tolerance such as 

system crashes, statement fai lure, application software errors, network failure and media 

failure in real time distributed database system in real time environment. 

The prototype tool has few fields to update data into the different replication 

servers. To make this more user-friendly, various forms of module can be introduced. In 

the present research, only two modules were developed to test the algorithm. Therefore, 

many modules can be added in the future to improve this prototype. It also can be tested in 

Big Data environment. 

In the future, research in this area can also make a significant improvement for 

commercial usage. BV AGQ-AR can also integrate with cloud computing service focus in 

Infrastructure-as-a-Service (IaaS) because Iaas is used to support operations, including 

storage, hardware, and servers while networking components can also be introduced. 

BVAGQ-AR can also be combined with Soft Set Theory for further analysis of the data. 

112 



REFERENCES 

Al-Ekram, R. and Holt, R. 20 I 0. OSSR: Optimal Single Site Replication. Parallel and 
Distributed Processing with Applications (!SPA). 433-441. 

AI-Mistarihi, H.E., and Yong, C. 2008. Replica Management in Data Grid. International 
Journal of Computer Science and Network Security. 8: 22 - 32. 

A1-Mistarihi, H.H.E., and Yong, C.H. 2009. On Fairness, Optimizing Replica Selection in 
Data Grids. IEEE Transactions on Parallel and Distributed Systems. 20 (8): l I 02-
lilt. 

Amir, L. A., Helder, M. R., Nooruldeen, A. D., Qaderd, N. 2018. A Data Replication 
Algorithm for Groups of Files in Data Grids. Journal of Parallel and Distributed 
Computing. 113: 115-126. 

Amir, S. S. and Rahmaniab, M. 2018. Systematic Survey of Big Data and Data Mining in 
Internet ofThings. Computer Networks. 139: 19-47 

Amjad, T ., Sher, M., Daud, A. 2012. A Survey of Dynamic Replication Strategies for 
Improving Data Availability in Data Grids. Future Generation Computer System. 
28 (2): 337-349. 

Amza, C., Cox, A., and Zwaenepoel, W. 2003. Conflict-Aware Scheduling for Dynamic 
Content Applications. Proceedings of the 4th USENIX Symposium on Internet 
Technologies and Systems. 

Aouiche, K. Darmont, J. Boussard, 0. Bentayeb, F. 2005. Automatic Selection of Bitmap 
Join Indexes in Data Warehouses. Data Warehousing and Knowledge Discovery. 
64 - 73. 

Apers P.M. G. 1988. Data Allocation in Distributed Database Systems. ACM Transaction 
on Database System, 13: 263- 304. 

Asghari, S. and Navimipour, N. J. 2016. Review and Comparison of Meta-Heuristic 
Algorithms for Service Composition in Cloud Computing. Majlesi Journal of 
Multimedia Processing. 4(4): 28 - 34. 

Ashouraie, M. and Navimipour, N. J. 2015. Priority-Based Task Scheduling on 
Heterogeneous Resources in the Expert Cloud. Kybernetes. 44(10) 1455-1471. 

Baiao, F., Mattoso, M., Zaverucha, G. 2000. Horizontal Fragmentation in Object 
DBMS: New issues and Performance Evaluation. Proceeding of IEEE International 
Conference on Performance, Computing, and Communications. 108- 114. 

Barr, M. and Bellatreche, L. 2010. A New Approach Based on Ants for Solving the 
Problem of Horizontal Fragmentation in Relational Data Warehouses. Proceeding 
of International Conference on Machine and Web Intelligence. 411 - 415. 

113 



Beigrezaei, M., Haghighat, A. T., Meybodi M. R., Runiassy, M. 2016. PPRA: A New Pre
Fetching and Prediction Based Replication Algorithm in Data Grid. Proceeding of 
International Coriference on Computer and Knowledge Engineering. 257 ~· 262. 

Berman, F., Hey, A. J. G. and Fox, G. C. 2003. Grid Computing: Making the Global 
Infrastructure a Reality. Wiley Series in Communications Networking & Distributed 
Systems. 

Bernstein, P., Hadzilacos, V., and Goodman, N. 1987. Concurrency Control and Recovery 
in Database Systems. Addison-Wesley. 

Bemstein,P., and Goodman, N. 1983. The Failure and Recovery Problem for Replicated 
Databases. Proceedings of the 2nd Annual ACM symposium on Principles of 
Distributed Computing, 114 - 122. 

Bhar, S. and Barker, K. 1995. Static Allocation in Distributed Object Base Systems: A 
Graphical Approach. Proceeding of International Conference on Information 
Systems Data Management. 92- 114. 

Birman, K. P. 1985. Replication and Fault-Tolerance in The ISIS System. Proceedings of 
the 1Oth A CM symposium on Operating Systems Principles. 79 ~ 86. 

Boru, D., Kliazovich, D., Granelli, F., Bouvry, P., Zomaya. A. 2013. Energy-Efficient Data 
Replication in Cloud Computing Datacenters. Proceeding of IEEE Globecom 
Workshops. 446-451. 

Bsoul, M., Al-Khasawneh, A., Eddien Abdallah, E., and Kilani, Y. 2011. Enhanced Fast 
Spread Replication strategy for Data Grid. Journal of Network Computer 
Application. 34 (2): 575- 580. 

Budiarto, S.N., Tsukamoto, M. 2002. Data Management Issue in Mobile and Peer to Peer 
Environment. Data Knowledge Engineering. 41: 183 - 204. 

Buyya, R. and Venugopal. 2005. A Gentle Introduction to Grid Computing and 
Technologies. Computer Society of India. 29(1): 9- 19. 

Carballeira, F.G., Carretero, J., Calderon, A., Garcia, J.D., and Sanchez, L.M. 2007. A 
Global and Parallel File System for Grids. Future Generation Computer Systems. 
116-122. 

Ceri, S. and Pelagatti, G. 1984. Distributed Databases: Principles and Systems. New York: 
McGraw-Hill. 

Charrada, B. F., Ounelli, H. and Chettaoui, H. 2010. An Efficient Replication Strategy for 
Dynamic Data Grids. Proceedings of IEEE International Conference on P2P, 
Parallel, Grid, Cloud and Internet Computing. 50- 54. 

Charrada, B. F., Ounelli, H. and Chettaoui, H. 2010. Dynamic Period vs Static Period in 
Data Grid Replication. Proceeding of IEEE International Conference on P2P, 
Parallel, Grid, Cloud and Internet Computing. 565- 568. 

114 



Chiregi, M. and Navimipour, N. J. 2016. A New Method for Trust and Reputation 
Evaluation in the Cloud Environments Using the Recommendations of Opinion 
Leaders' Entities and Removing The Effect Of Troll Entities. Computers in Human 
Behavior. 60: 280-292. 

Connolly, T. and Begg, C. 2015. Database System a Practical Approach to Design, 
[mplementation and Management, International Edition, Fifth Edition, Pearson 
Education. 

Cui, Z., Zuo, D., Zhang. Z. 2013. Based on Support and Confidence Dynamic Replication 
Algoritlun in Multi-Tier Data Grid. Proceeding of International Journal of 
Computational Information Systems. I 0: 3909 - 3918. 

Daudjee, K., and Salem, K. 2004. Lazy Database Replication with Ordering Guarantees. 
Proceedings of Data Engineering. 424-435. 

Davidson, B., Molina, H. G. and Skeen, D. 1985. Consistency in a Partitioned Network: A 
Survey. ACM Computing Surveys. 11 (3): 341 - 370. 

Deris, M.M., Abawajy, J.H., Taniar, D., Mamat, A. 2009. Managing Data using Neighbour 
Replication on a Triangular-Grid Structure. International Journal of High 
Performance Computing and Networking. 6 (1): 56-65. 

Deris, M. M., Evans, D. J., Saman, M. Y., Noraziah A. 2003. Binary Vote Assignment on 
Grid for Efficient Access of Replicated Data. International Journal of Computer 
Mathematics, 80 (12): 1489- 1498. 

Deris, M.M., Mamat, R., Noraziah, A., Suzuri, H.M. 2003. High Service Reliability for 
Cluster Server Systems. Proceeding of IEEE International Conference on 
International Conference on Cluster Computing. 280-287. 

Doraimani, S. 2007. Filecules: A New Granularity for Resource Management in Grids. 
Master thesis. University of South Florida, USA. 

DuJlrnann, D., Hoschek, W., Jaen-Martinez, J. and Segal, B. 2001. Models for Replica 
Synchronization and Consistency in a Data Grid. Proceeding of IEEE Symposium 
on High Performance on Distributed Computing. 67-75. 

Foster, C. K. and Tuecke. S. 2001. The Anatomy of the Grid: Enabling Scalable Virtual 
Organizations. International Journal of High Performance Computing 
Appllications. 15 (3): 200- 222. 

Foster, I. and Kesselman, C. 1999. The Grid: Blueprint for a New Computing 
Infrastructure. Morgan Kaufmann. 

Gao, L., Dahlin, M., Zheng, J., Alvisi, L. and Iyengar, A. 2010. Dual-Quorum: A Highly 
Available and Consistent Replication System for Edge Services Dependable and 
Secure Computing. Proceeding of IEEE Transactions on Dependable and Secure 
Computing. 7 (2): 159- 174. 

I 15 



Gao, M. D., Nayate, A., Zheng, J. and Iyengar, A. 2005. Improving Availability and 
Performance with Application-Specific Data Replication. Proceeding of IEEE 
Transaction on Knowledge and Data Engineering. 17 (1 ): 106 - 200. 

Golding, R. A. t 992. Weak-consistency group communication and membership. Ph.D. 
thesis, Computer and Information Sciences Board, University of Cal~fornia, Santa 
Cruz. 

Grace, R.K. and Manimegalai, R. 2014a. Data Access Prediction and Optimization in Data 
Grid Using SVM and AHL Classifications. International Review Computers and 
Software. 9(7): 1188- 1194. 

Grace, R.K. and Manimegalai, R. 2014b. Dynamic Replica Placement and Selection 
Strategies in Data Grids A Comprehensive Survey. Journal of Parallel and 
Distributed Computing. 74(2): 2099-2108. 

Gray, J., Helland, P., O 'Neil, P. E., and Shasha, D. 1996. The Dangers of Replication and 
A Solution. Proceedings of ACM SJGMOD International Conference on 
Management of Data. 173 - 182. 

Gullo, F. 2015. From Patterns in Data to Knowledge Discovery: What Data Mining Can 
Do. Physics Procedia. 62: 18-22. 

Harnrouni, T., Slimani, S., Charrada, F. B. 2015a. A Critical Survey of Data Grid 
Replication Strategies Based on Data Mining Techniques. Proceeding of Procedia 
Computer Science. 51: 2779-2788. 

Hamrouni, T., Slimani, S., Charrada, F. B. 2015b. A Survey Of Dynamic Replication and 
Replica Selection Strategies Based on Data Mining Techniques in Data Grids. 
Proceeding of Engineering Applications of Artificial Intelligence. 48: 140- 158. 

Han, J., Cheng, H., Xin, D., Yan, X. 2007. Frequent Pattern Mining: Current Status and 
Future Directions. Data Mining and Knowledge Discovery. 15: 55- 86. 

Han, J., Kamber, M., Pei, J. 2011. Data Mining: Concepts and Techniques. A-forgan 
Kaufmann Publishers. 

Han, J., Kamber, M., Pei, J. 2012. Data Mining: Concepts and Techniques. Reprint. 
Morgan Kaufmann Publishers 

Harandi, M . T., Hou, J., Gupta, I. 2011. Transaction with Replication. Nikita Borisov, 
University of fllinois. 

Hoschek, W., Jaen-martinez, J., Samar, Stockinger, A., Stockinger, H. 2000. Data 
Management in An International Data Grid Project. Proceeding of ACM 
International Workshop on Grid Computing. 77-90. 

Hossein, R., Parand, F., Riahi, D. 2016. Hierarchical simultaneous vertical fragmentation 
and allocation using modified Bond Energy Algoritlun in distributed databases. 
Applied Computing and Informatics. 

116 



IBM. 1999. 082: Replication Guide and Reference. New Orchard Road, Armonk, NY 
10504 (USA). Number SC26-9642-00. 

Jemal, H. A. and Deris. M. M. 2014. Data Replication Approach with Consistency 
Guarantee for Data Grid. IEEE Transactions on Computers. 63: 2975 - 2987. 

Jin, H., Cortes, T ., and Buyya, R. 2002. High Performance Mass Storage and Parallel I/O: 
Technologies and Applications. IEEE Press/Wiley. 

Joseph, J. and Fellenstein, C. 2004. Grid Computing. Pearson Education. 

Kemme, B. and Alonso, G. 1998. A Suite of Database Replication Protocols Based on 
Group Communication Primitives. Proceeding of International Conference on 
Distributed Computing Systems. 156- 163. 

Ko, S.Y., Morales, R., Gupta, I. 2007. New Worker-Centric Scheduling Strategies for 
Data-Intensive Grid Applications. Proceedings of the International Conference on 
Middleware. 121 -142. 

Krishnamurthy, S., Sanders, W. H. and Cukier, M. 2003. An Adaptive Quality of Service 
A ware Middleware for Replicated Services. Proceedings of IEEE Transactions on 
Parallel and Distributed Systems. 14 (11): 1112- 1125. 

Ladin, R., Liskov, 8., Shrira, L. and Ghemawat, S. 1992. Providing High Availability 
Using Lazy Replication. Proceedings of ACM Transactions on Computer Systems. 
10 (4): 360-391. 

Laura C. V., Schuldt, H., Breitbart, Y. and Schek, H. J. 2009. Replicated Data 
Management in The Grid: The Re:GRIDiT Approach. Proceedings of ACM 
Workshop on Data grids for eScience. 7- 16. 

Linesch, M. 2007. HP.: Grid- Distributed Computing at Scale an Overview of Grid and 
the Open Grid Forum. Copyright © Open Grid Forum 2006, 2007. All Right 
Reserved GFD-Il2. 

Ma, H., Schewe, K.D and Kirchberg, M. 2006. A Heuristic Approach to Vertical 
Fragmentation Incorporating Query Information Databases and Information 
Systems. Proceedings of International Baltic Conference on Databases and 
Information Systems. 69 - 76. 

Ma, J., Liu, W. and Glatard, T. 2013. A Classification of File Placement and Replication 
Methods On Grids. Future Generation Computer System. 29(6): 1395- 1406. 

Milani, B. A. and Navimipour N. J. 2016. A Comprehensive Review of the Data 
Replication Techniques in the Cloud Environments: Major Trends And Future 
Directions. Journal of Network and Computer Applications. 64: 229-238. 

Milani, A . S. and Navimipour, N.J. 2016. Load Balancing Mechanisms and Techniques in 
The Cloud Environments: Systematic Literature Review and Future Trends. 
Journal of Network and Computer Applications. 71: 86-98 

117 



Milani, B. A. and Navimipour, N.J. 2017. A Systematic Literature Review of the Data 
Replication Techniques in the Cloud Environments. Big Data Research. I 0: 1-7 

Mistarihi, H.E. and Yang, C. 2008 Replica Management in Data Grid. International 
Journal Computer Science Network Security. 8(6): 22- 32. 

Mokadem, R. and Hameurlain, A. 2015. Data Replication Strategies with Performance 
Objective in Data Grid Systems: A Survey. International Journal of Grid and 
Utility Computing. 6( 1 ): 30 - 46. 

Moore, R., Barn, C., Marciano, R., Rajasekar, A., Wan, M. 1999. Data-Intensive 
Computing in the Grid: Blueprint for a New Computing Infrastructure. 105- 29. 

Mulk., V. N. and Mohamed, A. M. 2017. A Prediction Based Dynamic Replication 
Strategy for Data Intensive Applications. Computers & Electrical Engineering. 57: 
281-293 

Naseera, S., and Murthy, K.V.M. 2009. Agent Based Replica Placement in a Data Grid 
Environment. Proceedings of International Conference on Computational 
Intelligence, Communication Systems and Network. 426- 430. 

Navathe, S. B. and Ra, M. 1989. Vertical Partitioning for Database Design: A Graphical 
Algorithm. SIGMOD Record. 14: 440-450. 

Navathe, S., Ceri, S., Wiederhold, G. and Dou,J. 1984. Vertical Partitioning Algorithms for 
Database Design. Proceedings of ACM Transaction Database System. 9: 680-
710. 

Navimipour, N. J. and Milani, F. S. 2014. A Comprehensive Study of the Resource 
Discovery Techniques in Peer-To-Peer Networks. Peer-To-Peer Networking and 
Applications. 8(3): 474-492 

Navimipour, N. J., Navin, A. H., Rahmani, A. M., Hosseinzadeh M. 2015. Behavioral 
Modeling and Automated Verification of a Cloud-Based Framework to Share The 
Knowledge and Skills Of Human Resources. Computers in Industry. 68: 65-77 

Nicola, M. and Jarke, M. 2000. Performance Modeling Of Distributed and Replicated 
Databases. Proceedings of IEEE Transactions on Knowledge Data Engineering. 
12(4): 645-672. 

Noraziah, A., Deris, M.M., Ahmed, N.A., Norhayati, R., Saman, M.Y., Zeyed, M.Y. 2007. 
Preserving Data Consistency through Neighbour Replication on Grid Daemon. 
American Journal of Applied Science. 4(10): 748-755. 

Noraziah, A., Abdalla, A. N. and Roslina M.S. 2010. Data Replication Using Read-One
Write-All Monitoring Synchronization Transaction Systems in Distributed 
Environment. Journal of Computer Science. 6 (10): 1033- 1036. 

Noraziah, A., Ainul Azila, C.F, Roslina, M.S., Noriyani, M.Z. and Beg, A.H. 2010. Lowest 
Data Replication Storage of Binary Vote Assignment Data Grid. Proceedings of 
International Conference on Networked Digital Technologies. 466-473. 

118 



Noraziah, A., Deris, M. M., Norhayati, R., Rabiei, M. and Shuhadah, W.N.W. 2008. 
Managing Transaction on Grid-Neighbour Replication in Distributed System. 
International Journal ofComputer Mathematics. 86 (9): 1- 10. 

Olston, C. and Widom, J. 2000. Offering a Precision-Performance Tradeoff for 
Aggregation Queries over Replicated Data. Proceedings of the International 
Conference on Very Large Data Bases. I - 12. 

Oracle Corporation. I 998. 500, Oracl8i Advanced Replication, Oracle Technical White 
Paper. 

Pedone, F., \Viesmann, M., Schiper, A., Kemme, B. and Alonso, G. 2000. Understanding 
Replication in Databases and Distributed Systems. Proceedings ofthe International 
Conference on Distributed Computing Systems. 464-474. 

Perez, J. M., Carballeira, F. G ., Carretero, J., Calderon, A., and Fernandez, J. 2010. Branch 
Replication Scheme: A New Model for Data Replication in Large Scale Data Grids. 
Future Generation Computer Systems. 26: 12-20. 

Plattner, C. and Alonso, G. 2004. Ganymed: Scalable Replication for Transactional Web 
Applications. Proceedings of the International Conference on Middleware. 155 -
174. 

Ram, S. and Narasimhan, S. 1994. Database Allocation in A Distributed Environment: 
Incorporating A Concurrency Control Mechanism and Queuing Costs. 
Management Science. 40: 969- 983. 

Ram, S. and Narasimhan, S. 1995. Incorporating The Majority Consensus Concurrency 
Control Mechanism into the Database Allocation Problem. ORSA Journal of 
Computing. 7:244-256. 

Ranganathan, K. and Foster, I. 2001. Identifying Dynamic Replication Strategies for A 
High-Performance Data Grid. Proceedings of the International Grid Computing 
Workshop, Springer. 2242: 75-86. 

Ranganathan, K. and Foster, I. 2001. Identifying Dynamic Replication Strategies for a 
High-Performance Data Grid. Proceedings of Second International Workshop on 
Grid Computing, Springer-Verlag. 75-86. 

Ren, K., Li, Z., and Wang C. 2010. LBDRP: A Low-bandwidth Data Replication Protocol 
on Journal-based Application. Computer Engineering and Technology. 89 - 92. 

Ritu Garg, R. and Singh, A. K . 2015. Adaptive Workflow Scheduling in Grid Computing 
Based on Dynamic Resource Availability. Engineering Science and Technology. 
18(2): 256-269. 

Sacca, D. and Wiederhold, G. 1985. Database partitioning m a cluster of processors. 
Transaction Database System. 10: 29 - 56. 

119 



Sanchez, A., Montes, J., Dubitzky, W., Valdes, J.J., Perez, M.S., Miguel, P.D. (2008). Data 
Mining Meets Grid Computing: Time To Dance. In: Data Mining Techniques in 
Grid Computing Environments. John Wiley & Sons. I - 16. 

Sashi, K., and Thanamani, A. S. 2010. Dynamic Replica Management for Data Grid. 
International Journal of Engineering and Technology. 2 ( 4). 

Sashi, K., and Thanamani, A.S. 2010. A New Replica Creation and Placement Algorithm 
for Data Grid Environment. Data Storage and Data Engineering. 265-269. 

Sathya,S. S., Kuppuswami, S. and Ragupathi, R. 2006. Replication Strategies for Data 
Grids. Proceedings of International Conference on Advanced Computing and 
Communications. 123- 128. 

Satio, Y. and Shapiro, M. 2005. Optimistic Replication. Proceedings of ACM Computing 
Survey. 37 (1 ): 1 -44. 

Schneider, F. B. 1993. Replication Management Using The State-Machine Approach. 
Distributed systems (2nd Edtition), ACM Press/Addison· Wesley Publishing. 

Shorfuzzaman, M., Graham, P., and Eskicioglu, R. 2010. Distributed Popularity Based 
Replica Placement in Data Grid Environments. Proceedings of International 
Conference on Parallel and Distributed Computing, Applications and 
Technologies. 66- 77. 

Shorfuzzaman, M., Graham, P., and Eskicioglu, R. 2011. QoS-Aware Distributed Replica 
Placement in Hierarchical Data Grids. Proceedings of IEEE International 
Conference on Advanced Information Networking and Applications. 291 - 299. 

Stockinger, H. 200 l. Distributed Database Management Systems and the Data Grid. 
Proceeding of IEEE Symposium on Mass Storage Systems and Technologies. 1 - 1. 

Souri A. and Navimipour, N. J. 2014. Behavioral Modeling and Formal Verification of a 
Resource Discovery Approach in Grid Computing. Expert Systems with 
Applications. 41(8): 3831-3849. 

Stockinger, H., Samar, A., Allcock, B., Foster, 1., Holtman, K., and Tierney, B. 2001. File 
and Object Replication in Data Grids High Performance Distributed Computing. 
Proceedings of IEEE International Symposium. 76 - 86. 

Tackett, J.J., Gunter, D., and Brown, L. 1995. Special Edition Using Linux. Que 
Corporation USA. 

Tamhankar, A.M., Ram, S. 1998. Database Fragmentation and Allocation: An Integrated 
Methodology and Case Study. Proceeding of IEEE Transactions Systems, Man and 
Cybernetics, Part A: Systems and Humans, 28 (3): 288-305. 

Tang, M., Lee, B.S., Tang, X. and Yeo, C.K. 2006. The Impact on Data Replication on Job 
Scheduling Performance in the Data Grid. International Journal of Future 
Generation of Computer Systems. 22: 254-268. 

120 



Terry, D., Demers, A., Petersen, K., Spreitzer, M., Theimer, M. and B.Welsh. 1994. 
Session Guarantees for Weakly Consistent Replicated Data. Proceedings of 3rd 
International Conference on Parallel and Distributed Information Systems. 140 -
149. 

Thomas, R. H. 1979. A Majority Consensus Approach to Concurrency Control for 
Multiple Copy Databases. Proceedings of ACMTransactions on Database Systems. 
4 (2): 180 - 209. 

Tian, T., Luo, J., Wu, Z., Song. A. 2008. A Pre-Fetching-Based Replication Algorithm in 
Data Grid. Proceedings of the 3rd International Conference on Pervasive 
Computing and Applications. 526 - 531. 

Tu, M. 2006. A Data Management Framework for Secure and Dependable Data Grid. 
Ph.D. dissertation. University ofTexas, USA. 

Tu, M., Li, P., I-Ling Yen, Thuraisingham, B., and Khan, L. 2010. Secure Data Objects 
Replication in Data Grid. Proceedings of IEEE Transactions on Dependable and 
Secure Computing. 7 (1): 50-64. 

Vadim, K . 2018. Overview of Different Approaches to .Solving Problems of Data Mining. 
Procedia Computer Science. 123: 234-239 

Vazhkudai, S., Schopf, J. 2003. Using Regression Techniques to Predict Large Data 
Transfers. International Journal on High Performance Computer Application. 
17(3): 249- 268. 

Wang, J., Wu, H., Wang, R. 2017. A New Reliability Model in Replication-Based Big 
Data Storage Systems. Journal of Parallel and Distributed Computing. 108: 14-
27. 

Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., and Alonso, G. 2000. Database 
Replication Techniques: A Three Parameter Classification. Proceedings of IEEE 
Symposium on Reliable Distributed Systems. 206- 215. 

Yin, J., Alvisi, L., Dahlin, M. and Lin, C. 1999. Volume Leases for Consistency in Large
Scale Systems. Proceedings of IEEE Transaction on Knowledge and Data 
Engineering. 11 (4): 536- 576. 

Yu, H. and Vahdat, A. 2002. Design and Evaluation of a Conit-Based Continuous 
Consistency Model for Replicated Services. Proceedings of ACM Transactions on 
Computer Systems. 20 (3): 239-282. 

Yuan, Y., Wu,Y., Yang, G. and Yu, F. 2007. Dynamic Data Replication based on Local 
Optimization Principle in Data Grid and Cooperative Computing. Proceedings of 
International Conference on Grid and Cooperative Computing. 815 - 822. 

Zaki, M.J. and Meira, W. Jr. 2014. Data Yiining and Analysis: Fundamental Concepts and 
Algorithms. Cambridge University Press. 

121 



Zhang, C. and Zhang, Z. 2003. Trading Replication Consistency for Performance and 
Availability: an Adaptive Approach. Proceedings of the International Conference 
on Distributed Computing Systems. 687-695. 

Zhao, W., Xu, X., Wang, Z., Zhang, Y. and He, H. 2010. A Dynamic Optimal Replication 
Strategy in Data Grid Environment. Proceedings of International Conference on 
Internet Technology and Applications. 1 - 4. 

Zhao, W., Xu, X., Xiong, N., and Wang, Z. 2008. A Weight-Based Dynamic Replica 
Replacement Strategy in Data Grids. Proceeding of IEEE on Asia-Pacific Services 
Computing Conference. 1544 - 1549. 

Zhou, W., Wang L., and Jia, W. 2004. An Analysis of Update Ordering in Distributed 
Replication Systems. Future Generation Computer Systems. 20 (4): 565 - 590. 

122 


