
Received November 12, 2020, accepted November 18, 2020, date of publication December 3, 2020,
date of current version December 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3042196

An Adaptive Fuzzy Symbiotic Organisms Search
Algorithm and Its Applications
NURUL ASYIKIN ZAINAL , SAIFUL AZAD , (Member, IEEE),
AND KAMAL Z. ZAMLI , (Member, IEEE)
Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Pekan 26600, Malaysia

Corresponding author: Kamal Z. Zamli (kamalz@ump.edu.my)

This work was supported by the MTUN from the Ministry of Higher Education Malaysia, The Development of T-Way Test Generation
Tool for Combinatorial Testing, under Grant UIC19102.

ABSTRACT This paper discusses the development of a Symbiotic Organisms Search Algorithm (SOS)
variant, called Adaptive Fuzzy SOS (FSOS). Like SOS, FSOS exploits three types of symbiosis operators
namely mutualism, commensalism, and parasitism in order to undertake the search process. Unlike SOS,
FSOS is able to adaptively select a single or any combination of mutualism, commensalism, and parasitism
update operator(s) as the search progresses based on the current search status controlled by their individual
probabilities via the fuzzy decision-making. To validate its performance, we have evaluated FSOS to
solve 23 benchmark functions and take a t-way test generation as our case study. Experimental results
demonstrate that FSOS exhibits competitive performance against its predecessor (SOS) and other competing
metaheuristic algorithms.

INDEX TERMS Search-based software engineering, symbiotic organisms search, computational
intelligence.

I. INTRODUCTION
An optimization problem refers to the problem of finding
the best solution from a set of candidate solutions. Gen-
erally, an optimization algorithm exploits a mathematical
function, called the objective function, which is often an
extremum (either maximum or minimum) function for find-
ing an optimal solution while satisfying a set of given con-
straints [1]–[4].

Generally, optimization problems can be solved using
either exact or heuristic methods. Here, an exact method often
offers the best optimal solution for an optimization problem.
However, for many practical optimization problems, they are
non-scalable; especially when the search spaces are large. For
those problems, often heuristic methods are preferred owing
to the resource and timing constraints since the effort grows
exponentially with the increasing problem size. Unlike an
exact method, a heuristic method can find a good enough
solution in polynomial time but does not guarantee optimal-
ity. However, they lack generality and often problem-specific

The associate editor coordinating the review of this manuscript and

approving it for publication was Shun-Feng Su .

because of the fact that they exploit the properties of a given
problem while discovering an optimum solution.

To resolve this issue, many higher-level heuristics, called
metaheuristics, have been proposed in the literature during
the past 30 years. Apart from functioning at a high-level
abstraction than that of heuristic methods, metaheuristics
judiciously provide a mechanism for balancing between the
exploration (roaming around all over the potential search
space) and the exploitation (making use of the known local
best) in order to tackle a wider range of optimization
problems.

Typically, the balance between exploration and exploita-
tion is achieved through adjusting control parameters. For
instance, Particle Swarm Optimization (PSO) [5] algorithm
exploits three parameters, namely inertia weight, social, and
cognitive in order to decide whether to explore or to exploit.
Similarly, the Genetic Algorithm (GA) [6] employs mutation
and crossover rates to decide its course of searching for
action. However, calibrating these parameters manually is
time consuming and a delicate process since there is no one
size fits for all approaches.

Recently, researchers have come out with a family of
parameter-free metaheuristics such as Teaching Learning

225384 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0824-2138
https://orcid.org/0000-0002-6234-7267
https://orcid.org/0000-0003-4626-0513
https://orcid.org/0000-0001-9777-128X


N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

Based Optimization (TLBO) [7], Jaya Algorithm [8], and
Symbiotic Organism Search (SOS) [9] which rule out this
tuning need. Although helpful, parameter-free metaheuris-
tics often rely on a pre-set sequence for exploration and
exploitation. More precisely, parameter-free metaheuristics
iterate the exploration and exploitation update operator in
a deterministic sequence of explore-exploit-explore-exploit
until the maximum iteration is reached. Consider an instance
where the search process is near-convergence. In this case,
repeatable adoption of local search operator is preferable
to obtain an optimal solution. Due to pre-set sequence, the
adoption of the global search operator, instead, would move
the current solution away from the optimal solution. As such,
converge to optimal solution can be potentially hindered.

Addressing these issues, we propose a new adaptive
technique in this paper, which decides whether to per-
form exploration or exploitation within the context of a
recently developed parameter-free metaheuristic algorithm,
called Symbiotic Optimization Search (SOS). In the current
form, SOS splits its searching operations into three phases
in accordance to three update operators (namely mutual-
ism, commensalism, and parasitism) and executes them in
sequence. However, having such a deterministic sequence can
be counter-productive as the search process is not sensitive to
its current search requirements and hence, could not be pre-
scribed in advance. The proposed adaptive Fuzzy based SOS
variant, called Fuzzy Symbiotic Optimization Search (FSOS)
integrates the Mamdani Fuzzy technique to overcome this
issue. The newly proposed variant is able to select a single or
any combination of update operators amongmutualism, com-
mensalism, and parasitism adaptively based on the setting
of their individual probabilities via a fuzzy decision-making
process. Our contributions in this paper can be summarized
as follows:
• A new SOS variant called FSOS, which integrates the
Mamdani fuzzy inference system to permit adaptive
controls between the exploration and exploitation opera-
tions by juggling among three update operators of SOS,
namely mutualism, commensalism, and parasitism.

• An extensive experimental evaluation is performed for
FSOS involving 23 benchmark functions as well as tak-
ing a t-way test suite generation as a case study and
comparing with other analogous metaheuristics.

The rest of the paper is organized as follows. Section II
investigates the existing techniques in brief. For a better
understanding of the proposed technique, in Section III, the
SOS and its variants are discussed elaborately. The proposed
technique is explained in Section IV with adequate details.
Section V and VI describe our experimental setup and anal-
ysis of the acquired results, respectively. Finally, this paper
ends with a concluding remark in Section VII.

II. RELATED WORKS
The metaheuristic algorithms can be broadly classified into
three different classes based on their sources of inspira-
tion, namely nature-based, physics-based, and human-based.

As the name suggests, nature-based metaheuristics are
inspired by several activities of natural living things, includ-
ing animals and birds, and update their operators and manip-
ulate their solutions by mimicking the collective information
sharing strategies of these living things. For instance, the
Firefly Algorithm (FFA) [10] mimics the strategy of how a
firefly shares its location information by flashing the bio-
luminescence to attract other fireflies. Again, the location
sharing strategy of an alpha wolf in the Grey Wolf Opti-
mizer (GWO) [11] imitates the hunting techniques of a grey
wolf. Furthermore, Particle Swarm Optimization (PSO) [5]
imitates the path of flocking birds. Other examples include
Mayfly Optimization Algorithm (MFA) [12], Flower Polli-
nation Algorithm (FPA) [13], Symbiotic Organism Search
(SOS) [9], Laying Chicken Algorithm (LCA) [14], Chicken
Swarm Optimization (CSO) [15], Whale Optimization Algo-
rithm (WOA) [16], and Artificial Bee Colony (ABC) [17].

Physic-based metaheuristics are conceptualized following
the real-world physical phenomena. For instance, a number of
metaheuristics in this class are designed based on observation
on the state of physics, including annealing state in metal
work (Simulated Annealing [18]), fluid flow state (Flow
Regime Algorithm [19]), rain droplets state (Rain Optimiza-
tion Algorithm [20]), and water-dropping state (Intelligent
Water Drops [21]). Again, another set of metaheuristics are
designed based on the law of physics including Central Force
Optimization [22] (Gravitational law) and Charged System
Search [23] (Coulomb’s law, Gauss’s law). Furthermore,
metaheuristics like Quantum Genetic Algorithm [24], Black
Hole Algorithm [25], and Quantum Inspired Social Evolu-
tion [26] are designed based on quantum physics.

Human-based metaheuristics are inspired by the interac-
tion of human beings and their surrounding biological activ-
ities. The most profound algorithm designed following this
phenomenon includes Genetic Algorithms (GA) [6], which is
motivated by Darwin’s Theory of human evolution. Among
the other algorithms in this class, most of them endeavor to
emulate human intelligence of problem solving for discov-
ering better solutions. A few such algorithms are: Harmony
Search [27] (music composition), Brain Storm Optimiza-
tion [28] (brainstorming sessions), Teacher-Learning Based
Optimization [7] (teaching methods), Interactive Autodidac-
tic school (learningmethods) [29], Student PsychologyBased
Optimization (student psychology) [30], and Search Group
Algorithm [31] (human search methods).

Despite having different sources of inspiration, almost
all metaheuristics take advantages of the exploration and
exploitation capabilities for performing the search pro-
cess, which is briefly highlighted previously in Section I.
Balancing these capabilities is crucial as extensive explo-
ration consumes resources; conversely, extensive exploitation
potentially risks the search process (traps in local optima) and
hinder convergence. By judiciously adjusting their control
parameters, metaheuristics can balance their biases towards
exploration (global search) or exploitation (local search)
activities. However, tuning these control parameters is often

VOLUME 8, 2020 225385



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

problem dependent and can sometimes be cumbersome as
improper tuning may lead to poor performance. Addressing
these issues, several metaheuristics are proposed recently
that advocate parameter-free approach, including Interac-
tive Autodidactic School (IAS) [29], Teaching-Learning
Based Optimization (TLBO) [7], and Symbiotic Organism
Search (SOS) [9].

Taking this new approach into consideration, existing
metaheuristics can also be classified as either parameter-
ized or parameter-free metaheuristics. From this perspec-
tive, a metaheuristic can be nature-based but also be a
parameter-free algorithm (e.g. SOS). In the same manner,
a metaheuristic can also be human-based but also be a
parameter-free algorithm (e.g. TLBO). Generally, parameter-
free metaheuristics often employ a preset sequence of the
search process, e.g., explore-exploit-explore-exploit until the
iteration threshold is reached. However, heedlessly following
such a deterministic sequence can be counterproductive given
the fact that exploration and exploitation are dynamic in
nature. Again, any such deterministic sequence can lead to
a stagnation problem, which in turn, increases the probability
of trapping the search process into local optima. Therefore,
to overcome these issues, in this current work, an adaptive
Fuzzy based SOS variant or FSOS is proposed. Exploiting
theMamdani fuzzy inference system, FSOS is able to select a
single or any combination of mutualism, commensalism, and
parasitism update operator(s) adaptively based on the fuzzy
decision-making process.

III. ORIGINAL SOS AND ITS VARIANTS
The following section highlights the main features of SOS
and its proposed variants.

A. ORIGINAL SOS
Inspired by the interrelationship of the organisms in
nature, Cheng and Prayogo developed a population based
parameter-free metaheuristic algorithm, called SOS [9]. The
main feature of SOS is the fact that it integrates three key
search phases, which are inspired from the three basic types
of symbiosis frommutualism, commensalism, and parasitism
as mentioned earlier in Section I.

Themutualism phasemimics the interactions of two organ-
isms that receive the mutual benefits of living together and
thus, increasing their chances of survival in the ecosystem
via complementing each other. Therefore, candidate solu-
tions are calculated by measuring the differences between
the best solution and the average of two organisms, called
Mutual_Vector, which is calculated as in Eq. 1:

Mutual_Vector =
Xi + Xj

2
(1)

where, Xi and Xj are two organisms in interactions. The
intuition behind such an average is that when interac-
tions between two organisms are far, they will produce
unique solutions and thereby, enabling the SOS to explore
new search spaces. Afterwards, both organisms are updated

simultaneouslywith two randomvalues, namelyBF1 andBF2
(taking the value of either 1 or 2) as in Eq. 2 and Eq. 3:

Xinew=Xi + rand (0, 1) ∗ (Xbest−MutualVector ∗ BF1) (2)

where Xinew be the new value for Xi and Xbest be the current
best solution.

Xjnew=Xj + rand (0, 1) ∗ (Xbest−MutualVector ∗ BF2) (3)

where Xjnew be the new value for Xj and Xbest be the current
best solution.

In the commensalism phase, among the two interacting
organisms, only one receives the benefits of interaction while
the other remains unaffected. To be specific, assuming Xj be
the passive receiver and Xi be the active receiver, Xi receives
the benefits from Xj and is enhanced by Eq. 4:

Xinew = Xi + rand (−1, 1) ∗ (Xbest − Xj) (4)

where Xinew be the new value for Xi and Xbest be the current
best solution, which is utilized as a reference point so that the
new candidate solution will exploit around that region only.

In the parasitism phase, only one organism survives while
the other is killed — either the parasite itself or the host.
Here, parasitism operator duplicates one random organism
and modify its characteristics randomly to act as parasite.
This is denoted as XParasite_Vector , as in Eq. 5:

XParasite_Vector = rand (lb, ub) (5)

where, lb be the lower bound, and ub be the upper bound.
Now, when parasite is compared with Xj and the latter is
found to have better fitness, then, Xj is assumed to be immune
from the parasite. Hence, the parasite is discarded or killed.
Conversely, if the parasite has better fitness, then the host, Xj
is discarded or killed and the former undertakes its position.

These three phases are repeated sequentially in every iter-
ation until the stopping condition is met as demonstrated in
Algorithm 1. For a greater insight, a flow chart of SOS is also
presented in Figure 1.

Algorithm 1 The Original SOS Algorithm
Input : the population X = X1,X2, . . .XD,
Output : Xbest and the updated population X = X1,X2, . . .XD,

1. Population Initialization
2. while stopping criteria not met do
3. Mutualism Phase
4. Commensalism Phase
5. Parasitism Phase
6. Get best result Xbest
7. end while

B. REVIEW OF SOS VARIANTS
Owing to its simplicity, SOS has been adopted in many
optimization problems, including optimizing steel rigid frame
design [32], minimizing real power losses [33], and opti-
mizing the scheduling problems [34]–[36]. Again, to cater

225386 VOLUME 8, 2020



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

FIGURE 1. Flow chart of the SOS algorithm.

VOLUME 8, 2020 225387



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

to the needs of its application, many variants of SOS have
been proposed in the literature. According to Ezugwu and
Prayogo [37], these variants can be classified as discrete
SOS, adaptive SOS, modified SOS, and multi-objective SOS.
As the name suggests, discrete SOS refers to the variants that
solve discrete optimization problems. For instance, the Dis-
crete SOS algorithm (DSOS) [36] is such an algorithm, which
is developed by the SOS author himself to solve schedul-
ing problems by reducing fluctuations in terms of resource
usages. Here, a discrete solution is achieved by transforming
the continuous solution spaces of SOS into discrete solution
spaces. Other variants are in [33], authors introduce a fix
function for rounding the solutions into the nearest integers
approaching zero and in [38], a hybrid operator is introduced
to solve the traveling salesman problem.

Recently, adaptive SOS emerged as the need for con-
trolling exploration and exploitation activities dynamically
during the runtime. To-date, much recent work on adaptive
SOS has revolved around manipulating the benefit factors.
In [39], [40], Tejani et al exploit one of the mutualism ben-
efit factor (BF1) with an adaptive variant (ABF1), that uses
the fitness ratio of the current fitness over the best fitness.
In other work, the same author in [41], [42] also explores the
possibility of exploiting both the mutualism benefit factors
with ABF1 and ABF2 using the same ratio. Analogous to this
work, our proposed work employs the concept of adaptive
factors; however, our adaptive factors are not built-in param-
eters like ABF1 and ABF2. Due to these built-in parameters,
the applicability of the algorithm can be restricted to only
certain optimization problems. On the contrary, FSOS can
be applied to almost any optimization problem due to the
fact that it is the FIS — not any built-in parameters— that
performs the selection of the operators.

Modified SOS refers to those variants that modify its
parameters and/or combine with other metaheuristics. For
instance, a piecewise linear chaotic map based on Chaotic
Local Search (PWLCM-CLS) is embeddedwith SOS tomake
the convergence faster [43]. Here, the effectiveness of the
chaotic maps depends on the search space topology of a par-
ticular optimization problem at hand. In another work [44],
SOS has been modified by restricting the random values
of the commensalism phase in the range of [0.4,0.9]. On a
positive note, the restriction has improved the convergence
speed of SOS. However, on a negative note, such restriction
potentially increases the possibilities of trapping in local as
the range for exploration is capped. In another work in [45],
the parasitism phase of SOS has also been modified to
re-initialize partial population based on the given percentage
of the maximum fitness evaluation in order to enhance its
local search performance. There are another class of vari-
ants where SOS is combined with other algorithms, includ-
ing Simulated Annealing [34], [46] and Quasi-Oppositional
Based Learning [47]. The combination of two or more meta-
heuristics results in a better performance when integrated
algorithms complement each other and thus, heighten their
strength; otherwise, may lead to poor performance. Again,

these combinations may make SOS parameterized meta-
heuristics, which require extensive calibrating of the control
parameters.

Finally, to solve multi-objective problems, many vari-
ants of multi-objective SOS also have emerged, including
Opposition Multiple Objective Symbiotic Organisms Search
(OMOSOS) [48], Chaotic Symbiotic Organisms Search
(CMSOS) [35], and Multi-Objective modified adaptive sym-
biotic organisms search (MOMASOS) [49]. These variants
provide solutions for the problems with multiple criteria deci-
sions making and require a number of trade-offs between two
or more conflicting objectives.

IV. FUZZY SOS
The proposed FSOS is based on the Mamdani fuzzy interfer-
ence system as demonstrated in Figure 2 with three normal-
ized performance inputs. More precisely, the performances
of mutualism, commensalism, and parasitism phases are
assessed after each iteration to measure the productiveness
of each phase. Later, these measurements are utilized in
deriving these probabilities, namely p1, p2, and p3, which are
afterwards utilized in selecting mutualism, commensalism,
and parasitism, respectively.

A. SEARCH PERFORMANCE MEASUREMENT MODEL
Three criteria are used for the performancemeasurement after
completing every iteration based onNormalized Performance
Evaluation (NPE), Fail Success Rate (FSR), and Overall
Success Rate (OSR).

The Normalized Performance Evaluation (NPE) is the nor-
malized measure of the delta difference between the cur-
rent fitness value against the best solution (as proposed by
Shalabi, et al. [50]). NPE can be calculated as in Eq. 6:

NPE =
(F[xi]−Mina)
(Maxa −Mina)

× (NewMaxa − NewMina)

+NewMina × 100 (6)

where F[xi] is the current value, Mina is the minimum value
in the data set, Maxa is the maximum value in the dataset,
NewMina is the new minimum value in the data set, and
NewMaxa is the new maximum value in the dataset. Here,
a low NPE value indicates that the organisms are placed
closely and started to converge towards the best solution or
fall into local optima. A high NPE indicates that the search is
still in the exploring mode.

Fail Success Rate (FSR) represents the percentage of the
ratio of failure and success. FSR can be calculated as in Eq. 7:

FSR =
FailCount

SuccessCount
× 100 (7)

where FailCount is the number of non-improved objective
values in a particular iteration and SuccessCount is the num-
ber of improved objective value in a particular iteration.
As can be observed from Eq. 7, a low FSR value indicates the
percentage of high success while a large FSR value indicates
that the solutions are not improving by the involved phase.

225388 VOLUME 8, 2020



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

FIGURE 2. Fuzzy Input-Output and Membership Rules.

Overall Success Rate (OSR) complements the FSR by
measuring the percentage of the ratio of the number of
improved objective values against the population size, which
can be calculated as in Eq. 8:

OSR =
SuccessCount

EcoSize
× 100 (8)

where SuccessCount holds the same definition as in Eq. 7 and
EcoSize is the population size. According to Eq. 8, a high
OSR value indicates good performance and a low OSR value
indicates otherwise.

Since the aforementioned performance measures (NPE,
OSR, and FSR) are intertwined and interrelated; therefore,
we develop three equations to find the weighted perfor-
mance of them for each phase, called Weighted Performance
Mutualism (WPM), Weighted Performance Commensalism
(WPC), andWeighted Performance Parasitism (WPP). These
weighted performances can be calculated as in Eq. 9 till
Eq. 11.

WPM (Mutualism) = αNPE + βOSR+ γ (100− FSR)

(9)

WPC(Commensalism) = αNPE + βOSR+ γ (100− FSR)

(10)

WPP(Parasitism) = αNPE + βOSR+ γ (100− FSR)

(11)

where, α, β, and γ are adaptively calculated during each
iteration as in Eq.12 till Eq. 14:

α = (1− γ )/2 (12)

β = (1− γ )/2 (13)

γ =
Number of Fitness Evaluation
Maximum Fitness Evaluation

(14)

Here, the maximum value of γ is capped at 0.5 to avoid any
large imbalanced contribution to the weighted performance
measures.

B. FUZZY INFERENCE SYSTEM (FIS)
As mentioned earlier, the proposed FSOS is based on the
Mamdani FIS with 3 crisp inputs, namely WPM, WPC, and
WPP and one output - called BarMovement. Fig. 3 highlights
the overall fuzzy inference system for FSOS.

As fuzzy rules can be expressed as linguistic constraints
that are easy to understand and maintain, Mamdani inference
is often preferred over Sugeno [51]. Furthermore, we opt
for triangular/trapezoidal based membership functions over
Gaussian type membership owing to its superior perfor-
mance [52]. Based on three linguistic terms of low, medium,
and high, all weighted performance measures (WPM, WPP,
and WPC) share the identical membership functions defined
as: low (0-10), partial low, and medium (10-20), absolute
medium (20-40), partial medium, and high (40-50) and abso-
lute high (above 50) respectively.

Meanwhile, the following 8 fuzzy rules are used in the
fuzzification process:

Rule 1: When the performance of the commensalism phase
is high while the mutualism phase experiences low per-
formance and the parasitism phase experiences mod-
erate/low performance, the search is converging, and
therefore, requires more exploitations.

Rule 2:When the performance of the commensalism phase is
medium while the mutualism receives low performance
regardless of the performance of the parasitism phase,
the search needs a few exploitations.

Rule 3: When the performance of the commensalism
phase is high while the mutualism phase is performing

VOLUME 8, 2020 225389



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

FIGURE 3. Fuzzy Inference System for FSOS.

moderately and the parasitism phase is performing mod-
erate/low, the search almost nearing a possible solution,
and therefore, requires a moderate number of exploita-
tions with a few explorations to avoid being trapped into
local optima.

Rule 4: When the performances of all the phases are high,
it can be assumed that all phases are still performing,
and therefore, the search needs to continue exploration
and exploitation activities.

Rule 5: When the performance of the mutualism phase is
medium while the commensalism phase receives low
performance, the search still not nearing any possible
solution, and therefore, requires more explorations with
a few exploitations.

Rule 6: When the performance of the mutualism phase
is high while the commensalism phase is perform-
ing moderately and the parasitism phase is performing
moderately/highly, the possibility of discovering an opti-
mum solution increases, and therefore, requires a mod-
erate amount of explorations with a few exploitations to
inquire the possible solutions.

Rule 7: When the performance of the mutualism phase
is high while the parasitism phase experiences low
performance and the commensalism phase experiences
moderate/low performance, the search is still not near-
ing any possible solution, and therefore, requires more
explorations.

Rule 8:When the performances of all the phases are low and
no noticeable phase performance is observed, the search
needs more explorations as it might be trapped into local
optima.

A single output, called bar movement value is defined for
defuzzification. Triangular membership functions are chosen
as the Bar Movement defuzzification with five overlap-
ping (and equal-width) linguistic terms. Concerning over-
lapping, we start the overlapping at their center points

FIGURE 4. Bar Movement after Defuzzification Process.

using middle intensification (MIDI) and middle weakening
(MIDW), where the performance of the fuzzy system is at
best as proposed by Mizumoto [53]. Given the aforemen-
tioned design choices, the selection of the output will be based
on the center of gravity in the range of −50 to 50.

Taking inspiration from the work of Cheng and
Prayogo [54], a bar controller is employed for self-adjusting
the probability of executing mutualism, commensalism, and
parasitism in the next iteration phase. For instance, if the
bar movement result is +20, then the bar will move 0.20
steps to the right from the center. This can be translated
as the probability of executing the mutualism phase in the
next iteration is 100% (P1 = 1.0), commensalism phase
is 80% (P2 = 0.8) and parasitism phase is 40% (P3 = 0.4),
respectively. Fig. 4 demonstrates a bar movement after the
defuzzification process.

C. FSOS IMPLEMENTATION
The complete pseudo-code of the FSOS algorithm is pre-
sented in Algorithm 2. In this algorithm, line 3 defines the
FIS input-output membership rules after defining the required
data structures in line 1 and 2. Afterward, a random popu-
lation is initialized and their fitness values are calculated to
discover the initial best solution.

225390 VOLUME 8, 2020



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

Line 5 marks the start of the search process to find the
best solution, Xbest . Three random numbers are generated at
the beginning of every iteration, namely Rn1, Rn2, and Rn3
accordance with mutualism, commensalism, and parasitism
phases, respectively within the range of [0,1].

For enforcing the execution and evaluation of the
mutualism, commensalism, and parasitism phases, in the first
iteration, the values of P1, P2, and P3 are set to 1. From the
subsequent iteration, this restriction is lifted and individual
phases are selected based on their respective random num-
bers, which are mentioned earlier. For instance, if Rn1<P1,
the mutualism phase is selected (see line 7); whereas, the
commensalism phase is selected if Rn2<P2 (see line 12), and
the parasitism phase is selected if Rn3<P3 (see line 17).

Algorithm 2 The General Adaptive SOSAlgorithmBased on
Fuzzy Inference System
Input : the population X = X1,X2, . . .Xn
Output : Xbest and the final population Xf = X f1 ,X

f
2 , . . . ,X

f
n

1. Define population size, max fitness evaluation
2. Define ofmember functions for the linguistic variables
3. Define fuzzy rules
4. Initialize populations and calculation Xbest
5. while true do
6. Generate 3 random number, Rn1,Rn2 and Rn3
7. if Rn1 < P1 then
8. for i = 1 to population size do
9. Mutualism Phase

10. end
11. end
12. if Rn2 < P2 then
13. for i = 1 to population size do
14. Commensalism Phase
15. end
16. end
17. if Rn3 < P3 then
18. for i = 1 to population size do
19. Parasitism Phase
20. end
21. end if
22. Calculate NPE,FSR, and OSR for each phase
23. Calculate α, β, and γ
24. Calculate WPM,WPC, and WPP
25. Fuzzify based on WPM,WPC, and WPP
26. Deffuzzify and use bar movement for the next

P1,P2, and P3
27. Get best result Xbest
28. if fitness evaluation >= maximum fitness

evaluation then
29. exit from loop
30. end
31. end
32. return Xbest and Xf

After executing these phases, their performances are
measured in terms of NPE, FSR, and OSR according to
Eq. 6, 7, and 8 respectively as mentioned in line 22. Again,
their weighted performances are calculated in terms ofWPM,
WPC, and WPP using Eq. 9, 10, and 11, respectively
(see line 24). These weighted measures are fed into the FIS to
produce the bar movement output to acquire the probabilities
of P1, P2, and P3 for the next iteration (see lines 23-26).
In line 27, Xbest is updated for every iteration. This pro-
cess continues until either of the following stopping con-
ditions is met: the maximum number of evaluations have
been completed or the max fitness evaluation is reached
(see lines 28-29).

V. FSOS EVALUATION
For evaluating the performance of the FSOS in a comprehen-
sive manner, two separate sets of experiments are performed
for: i) benchmarking its performance against other analo-
gous metaheuristics and ii) identifying its performance in
solving combinatorial test suite generation problems, which
are detailed in Section A and B, respectively. As far as our
computing platform for conducting all these experiments is
concerned, we have adopted a PC running Windows 10 with
the specifications as depicted in Table 1. All the results
reported in this paper are acquired after 30 independent runs.
The source code of our implementation is available upon
sending a request to the corresponding author.

A. BENCHMARKING WITH OTHER METAHEURISTICS
The first set of experiments takes 23 standard bench-
mark functions into consideration, where 7 among them
are unimodal functions, 6 are multimodal, and the rest
are fixed-dimension multimodal functions. The performance
of the proposed algorithm, FSOS is benchmarked against
its predecessor, SOS and other parameter-free metaheuris-
tics, including Jaya [8], TLBO [7], Sine Cosine Algorithm
(SCA) [55], and Chaotic Fruit fly Optimization Algorithm
(CFOA) [56]. For ensuring a fair comparison during the
experimental evaluations, the following actions are taken
into considerations: only parameter-free metaheuristics are
chosen since FSOS falls into that class, the population size is
fixed to 30 for all of the experiments, unless otherwise explic-
itly mentioned, and the maximum fitness function evaluation
is set to 50,000 for all the compared algorithms. The result of
less than 10−250 will be considered as zero.

B. COMBINATORIAL TEST SUITE GENERATION
The second set of experiments deals with a case study involv-
ing a combinatorial test suite generation problem. Consider-
ing NP-complete, the combinatorial test suite generation is
an optimization problem with the aim of generating the min-
imum t-way interactions, where t represents the interaction
strength. The rationale behind t-way combinatorial testing is
that not every parameter contributes to every fault, and many
faults can be exposed by interactions involving only a few
parameters [57].

VOLUME 8, 2020 225391



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

TABLE 1. Hardware and Software Requirements.

FIGURE 5. BMI Calculator System.

Considering a hypothetical BMI calculator with 3 param-
eters, namely sex, height, and weight and with 2 values each,
a test suite generation problem is designed in this paper as
depicted in Fig. 5. If, for a system with k parameters with v
values each, the number of all possible combinations is vk ;
in this manner, there are 8 or 23 possible exhaustive com-
binations in our example. By using the interaction strength
(t = 2), the test cases needed for the BMI calculator can be
reduced to 4 tests only.

Mathematically, the t-way test suite generation problem is
often associated with covering array (CA). Assuming afore-
mentioned notations for a uniform value, a t-way test suite
generation problem can be written as, CA(N; t, vk ) where
N is the test cases with t interaction strength for k number
of parameters with v values. When t = 2, k = 4, and
v = 3, the aforementioned expression can be rewritten as:
CA(N; 2, 34), which represents a 2-way test generation for
a system of 4 parameters with 3 values each. Similarly,
CA(N; 3, 46) refers to a 3-way test suite generation
of 6 parameters with 4 values each. Conversely, when
the values of v are non-uniform, we called the test suite
as a Mixed covering Array (MCA), where an expression,
MCA(N; 2, 513822) denotes the 2-way test suite generation

for 1 parameter with 5 values, 8 parameters with 3 values,
and 2 parameters with 2 values.

In our experiments, 16 different configurations combining
both CA and MCA are taken into account similar to that
of the earlier work in [58]: CA(N; 2, 34), CA(N; 2, 313),
CA(N; 2, 1010), CA(N; 2, 1510), CA(N; 2, 510), CA(N, 2,
810), CA(N; 3, 36), CA(N; 3, 46), CA(N; 3, 56), CA(N; 3, 66),
CA(N; 3, 57), CA (N; 3, 106),MCA(N; 2, 513822),MCA(N; 2,
716151463823),MCA(N; 3, 524232),MCA(N; 3, 101624331).
Analogous to the first set of experiments, FSOS is also

compared against its predecessor, SOS and other parameter-
free metaheuristics (see Section V-A). However, unlike the
first set of experiments, the population size for all the con-
sidered algorithms is set to 10 with maximum of 5000 fitness
function evaluations.
C. STATISTICAL ANALYSIS
The performance of FSOS will be analyzed usingWilcoxon’s
signed ranked test [59] against other algorithms. The absolute
values of the difference between the mean scores of the two
algorithms di, for ith out of n solutions, will be ranked.
In the case of ties, the average ranking of the result will be
applied [60]. Referring to Eq. 15, R+ will be the sum of
ranks for the outperformed solutions of the FSOS with other

225392 VOLUME 8, 2020



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

TABLE 2. Description of Unimodal Benchmark Functions.

tested algorithms respectively, whereas, the underperformed
solutions are denoted by R- as in Eq. 16. When the difference
of di = 0, the rank will be divided equally between the sums.
If an odd number of them is present, one is ignored:

R+ =
∑

di>0
rank (di)+

1
2

∑
di=0

rank (di) (15)

R− =
∑

di>0
rank (di)+

1
2

∑
di=0

rank (di) (16)

When T = min(R+, R−) is less or equal to the value of the
distribution of Wilcoxon for n degrees of freedom [61], the
null hypothesis of equality of means is rejected. This means
that the proposed algorithm outperforms the other one.

VI. RESULTS AND DISCUSSIONS
In accordance with the experimental setup, the results are also
discussed in two different sections as below:

A. BENCHMARKING TEST RESULTS
The acquired results of the FSOS for 23 benchmark functions
are presented in Table 5 (for unimodal functions), Table 6 (for
multimodal functions), and Table 7 (for fixed-dimensionmul-
timodal functions) alongside other compared parameter-free
metaheuristic algorithms. The last three rows in the tables
summarize the other results presented there, which are: no.
of global minimum found, average ranking, and overall rank-
ing. Here, the first measure is counted by comparing a mean
value of a function with the value mentioned in the ‘‘Min’’
(representing the global minimum solution) column for that
respective functions for all the compared algorithms. The
count is only increased when a match is found. Herein, the
mean is taken into account over the best value for eliminating

the possibility of discovering an optimum solution by chance.
Again, average rankings are calculated by taking the ranks of
the functions into consideration where the ranks are deter-
mined by sorting the means. Similarly, the overall rankings
of the compared metaheuristics are determined by sorting the
average rankings.

1) UNIMODAL FUNCTIONS
Referring to the experimental results of the unimodal func-
tions in Table 5, FSOS outperforms other contenders and
secures the 1st position followed by SOS, TLBO, SCA, Jaya,
and CFOA. The reason that SOS performs better than most
of the other compared algorithms (except FSOS) owing to
the improved balance between the exploitation and explo-
ration activities. As pointed out earlier in Section III that
the mutualism and commensalism phases in SOS enable the
search procedure to discover diverse solutions in the search
space, and thereby, improving the exploration ability of the
algorithm. On the other hand, the parasitic phase enables
the search procedure to exploit the current best and thus,
improving the exploitation ability of the algorithm. A close
competitor of SOS in terms of ranking is TLBO. Similar to
SOS, TLBO presets its search operator sequence from teacher
phase for exploration (based on global best) and student phase
for exploitation (based on peer values). Unlike SOS, TLBO
does not provide a fine grain local search operator resembling
the mutation-based SOS parasitism operator. For this reason,
in some cases, TLBO performs poorly for some benchmark
functions.

With only one search operator, Jaya performs poorly. The
same observation is also true for SCA and CFOA. Therefore,
all these three contenders along with TLBO score 0 as far

VOLUME 8, 2020 225393



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

TABLE 3. Description of Multimodal Benchmark Functions.

as discovering global minimum (see Table 5) for all the
unimodal functions. On the other hand, FSOS and SOS dis-
cover 2 global minimum solutions for F1 and F3 respectively.
Side by side, a comparison of FSOS and SOS demonstrates
the superiority of the former in terms of discovering optimum
solutions for more functions. FSOS obtain the first rank
for almost all individual functions except F6; whereas, SOS
ranked 1 for only two functions, namely F1 and F3. Hence,
the average ranking of FSOS is 1 and it is considerably ahead
of SOS.

In Table 5, the standard deviation is also calculated from
the discovered Xbest to indicate the consistency of the dis-
covered solutions. For 7 unimodal functions, FSOS attains
the lowest standard deviation in 4 cases (F1, F2, F3, and F4),
whereas, SOS attains the same in 4 cases (F1, F2, F3, and F7),
TLBO in 3 cases (F1, F3, and F5), and Jaya in 1 case (F6).
These results prove the consistency of the FSOS in finding
the solutions. Again, in 4, 3, and 2 cases where identical
solutions are for FSOS, SOS, and TLBO, respectively and
therefore, receive 0.000E+00 standard deviation (see Table
5). For TLBO, none of these cases are the global minimums;
whereas, for FSOS and SOS, in 2 cases both attain the global
minimums, namely F1 and F3.

2) MULTIMODAL FUNCTIONS
The acquired results of multimodal functions are presented
in Table 6. It is noteworthy to mention that unlike unimodal
functions, multimodal functions have multiple optimum
solutions. However, in our experiments, all the compared
metaheuristics endeavor to discover the global optimum
solution. Nevertheless, if there are multiple global opti-
mum solutions due to having equal fitness values, discover-
ing one of those solutions would be considered as mission
accomplished.

Similar result trends as unimodal functions (see
Section V1-A1) are observed for multimodal functions.
However, the Jaya algorithm improves and secures the 4th

position leaving behind SCA. The rest of the ranks remain
identical as unimodal functions. However, the number of
global minima found has increased to 3 for FSOS and SOS.
On the contrary, the other contenders still fail to discover
any global optimum solution from 6 functions. Although,
SOS manages to outperform FSOS in the case of F13 or
Generalized Penalized 02 function; on the contrary, FSOS
outperforms SOS in the case of F12 or Generalized Penalized
01 function. In other cases, both attain identical mean values;
and hence, ranked identically as 1st.

225394 VOLUME 8, 2020



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

TABLE 4. Description of Fixed-Dimension Multimodal Benchmark Functions.

In the case of standard deviations in Table 6, FSOS and
SOS both attain minimum standard deviation, 0.00E+00
in 3 cases (for F9, F10, and F11) and TLBO attains in 2 cases
(for F10 and F11). However, none of these two cases are the
global optimum solutions; whereas, 2 among 3 cases are the
global optimum solutions for FSOS and SOS indicating their
performance consistencies.

3) FIXED-DIMENSION MULTIMODAL FUNCTIONS
As the name suggests, unlike multimodal functions, fixed-
dimension multimodal functions are considerably less com-
plex due to having a fixed number of dimensions. Therefore,
almost all compared algorithms — except CFOA — attain
competing results, and their ranks also changed extensively,
unlike the last two sets of functions. The highest performance
improvement is exhibited by the Jaya algorithm as presented
in Table 7. Although, for unimodal andmultimodal functions,
Jaya fails to discover the global optimum solution even once;

however, for the current set of functions, it discovers 4 global
optimum solutions for F16, F17, F18, and F19. Similarly,
TLBO discovers the global optimum solutions for 3 cases
and SCA discovers for 2 cases, where both of them failed
before in case of unimodal and multimodal functions. Fixed
dimensions of the searching spaces are facilitating these
metaheuristics in finding the global optimum solutions.

On the contrary, the performance of SOS declines the most
and slips to rank 5, only ahead of CFOA. Again, slightly
losing for a few functions, specifically for 3 functions (F20,
F21, and F23), on a positive note, FSOS still manages to get
the first overall ranking followed closely by Jaya, TLBO, and
SOS. Observing the average ranking in Table 7, it can be
stated that all top 5 metaheuristics exhibit competing results
and their differences are marginal. However, thanks to the
FIS, which facilitates FSOS in attaining the highest perfor-
mance by selecting the phases following a fuzzy decision
making process.

VOLUME 8, 2020 225395



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

TABLE 5. Results of Unimodal Benchmark Functions.

4) CONVERGENCE CHARACTERISTICS
In terms of convergence characteristics for the unimodal
functions as shown in Figure 6, an intense competition can
be observed between the SOS and FSOS. On the other hand,
TLBOmanages to converge fairly along with Jaya. The other
metaheuristics, namely SCA and CFOA converge last by
taking nearly 1000 iterations. Although, seen to start con-
verging first; however, CFOA get stuck in local optimum and
is unable to recover. Among FSOS and SOS, that latter is
seen to have a slightly faster convergence as compared to
the former for F1 and F4 functions. Again, they demonstrate
neck to neck convergence rates for F2, F3, and F6 functions.
On the contrary, FSOS has better convergence for F5 and F7
functions. Even though, there is no notable difference in terms
of convergence rate between SOS and FSOS; however, since
FSOS continues exploiting even after converging that makes
FSOS attaining more precise results than SOS (see Table 5).

Analogous to the convergence characteristics of unimodal
functions, CFOA is also seen to start converging faster than
other algorithms for multimodal functions as depicted in
Figure 7. However, CFOA then get stuck in local optima,
hence, exhibiting poor performance (see Table 6). A compet-
itive convergence characteristic is observed between the SOS

and FSOS where the latter dominates the former for F9, F10,
and F11 functions; and, the former leads for F8, F11, and F12
functions.

In the convergence curves of fixed-dimension multimodal
functions, which are presented in Figure 8, all the compared
algorithms manage to attain competitive results by demon-
strating their unique abilities and characteristics, which make
none of the algorithms to stand out themost. Although, CFOA
manages to converge the earliest for F15 and F16 functions;
however, according to the results presented in Table 6, it fails
to attain the sharpest results. Among the other metaheuristics,
SOS has a better convergence rate for F21 and F22 functions;
whereas, TLBO performs better for F20 function while Jaya
performs better for F19 and F21 functions. In comparison
to the other metaheuristics, FSOS is seen to have a better
convergence rates for 3 functions, which is the highest among
all, for F14, F18, and F23.

B. COMBINATORIAL TEST SUITE GENERATION TEST
RESULTS
The acquired results for covering array and mixed covering
array are presented in Table 8 and Table 9, respectively.
In these tables, the last three rows summarize the other results,

225396 VOLUME 8, 2020



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

TABLE 6. Results of Multimodal Benchmark Functions.

which are: no. of most minimal found, average ranking, and
overall ranking. Herein, the last two measures are similar to
that in Section VI-A. However, in the case of the first mea-
sure, the number of most minimal found is counted for each
compared metaheuristic taking the mean values into account
due to the fact that no absolute global optimum solutions are
reported for the assessed case study. Again, the mean values
are employed for the same reason that we have mentioned in
Section VI-A.

As of the results of test suite generation for covering array
listed in Table 8, FSOS generates the most minimal test
suite size by discovering the minimum test cases for 7 out
of 12 test scenarios, namely S1, S2, S4, S6, S8, S10, and
S11. On the contrary, for 4 scenarios, namely S1, S3, S9, and
S12, SOS generates the most minimal test cases and TLBO
generates for 2 scenarios (S1 and S5) while Jaya generates
for 1 scenario (S7). The other two metaheuristics, SCA and
CFOA fail to discover the most minimal solution even once.
Again, in terms of average ranking as well as overall rank-
ing, FSOS convincingly outperforms its predecessor, SOS
followed by TLBO, Jaya, SCA, and CFOA.

The results of mixed covering array test case generation
are presented in Table 9, Here again, FSOS maintains its top
position with an average ranking of 1.75. The performance of
FSOS can be attributed to the adoption of FIS. Specifically,
FIS enables FSOS to select the phases adaptively based on the

need of the current search process. However, its predecessor
slips to rank 4 due to following a deterministic sequence
for executing the involved phases. Among the other meta-
heuristics, SCA attains improved performance and receives
rank 2 followed by TLBO, SOS, CFOA, and Jaya algorithms.

C. STATISTICAL ANALYSIS
The Wilcoxon Signed Rank test was applied to identify
whether the result of FSOS is statistically significant. To be
specific, the null hypothesis (Ho) states that FSOS perfor-
mance is the same as any other algorithms. Results of this test
are summarized in Table 10 and 11. The resulting values were
compared with the chosen significance level α = 0.05 and
α = 0.10. From Table 10 related to the benchmark functions,
FSOS is statistically better than all compared algorithms with
both 90 percent confidence level. In fact, with the excep-
tion of TLBO, FSOS is also statistically better than Jaya,
CFOA, SCA, and SOS. Concerning Table 11 related to t-way
test suite generation, FSOS is statistically better than Jaya,
CFOA, SCA, and TLBO. On a negative note, there is no
significant difference between FSOS and SOS.

D. EXPERIMENTAL OBSERVATION AND DISCUSSION
Based on the aforementioned discussions, a number of
thought-provoking observations can be drawn, which are
elaborated as follows:

VOLUME 8, 2020 225397



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

TABLE 7. Results of Fixed-Dimensions Multimodal Benchmark Functions.

• Given its overall ranking performance, we conclude
that FSOS is able to judiciously balance its explo-
ration and exploitation process. Unlike the original SOS
which executes the three search phases (commensalism,
mutualism, and parasitism) in deterministic sequence,
FSOS allows the non-deterministic search phase selec-
tion based on the individual weighted performance via
FIS. Based on the penalized and reward model, the best
performing search phase has a higher probability for
subsequent selection using the probability bar selection.

In this manner, at any instance of execution, FSOS may
run any single search phase, a combination of two search
phases or even all the search phases at once. This adap-
tive behavior is the key component that enhances the
performance of FSOS over SOS and other competing
metaheuristic algorithms. Statistical analysis shows that
FSOS outperforms all other metaheuristic algorithms at
90% confidence level (refer Table 10) with the excep-
tion of its predecessor SOS in only one case (refer to
Table 11).

225398 VOLUME 8, 2020



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

TABLE 8. Comparison between Existing Algorithms on t-way Test Suite Generation (Covering Array).

• More precisely, the introduction of FIS within FSOS
has improved its exploration and exploitation abilities as
demonstrated by the benchmarking experiments. More
precisely, the exploration and exploitation of FSOS is
made dynamic via the fuzzy rules by breaking the pre-set
sequence of the individual search operators. Contrary

to typical metaheuristic algorithms which require tun-
ing of the control parameters to gain balance con-
trol of the exploration and the exploitation process,
FSOS takes the best of both worlds – behaves like a
parameterized algorithmwithout the need for significant
tuning.

VOLUME 8, 2020 225399



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

TABLE 9. Comparison between Existing Algorithms on t-way Test Suite Generation (Mixed-Coverage Array).

TABLE 10. Summary of Wilcoxon Signed Rank Test Results for Benchmark Functions.

TABLE 11. Summary of Wilcoxon Signed Rank Test Results for t-way Test Suite Generation.

• As far as convergence is concerned for various sets of
experiments, no major differences are noticed between
FSOS and SOS. In fact, our experimental results demon-
strate that both FSOS and SOS can reach convergence in

earlier iteration than the other competing metaheuristic
algorithms.

• Concerning the time complexity, the Big O notation can
be conveniently adopted to compare the performance of

225400 VOLUME 8, 2020



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

TABLE 12. Time Complexity of the Compared Meta-Heuristics.

each metaheuristic algorithm under study. Typically, the
time complexity is dependent on the number of search
agents (n), the number of dimensions (d), the number
of maximum iteration (Maxiter ), and the fitness function
evaluation (c). With the population size = N_size, the
time complexity of any algorithm (A) can generally be
defined as in Eq. 17:

O(A) = O(fitness function evaluation)

+O(agent update in memory

+O(dimension update) (17)

Based on Eq. 17, the time complexity of all the
compared metaheuristic algorithms can be summa-
rized in Table 12. Assuming all other operations can
be performed in a constant time, the time complex-
ity for all metaheuristic algorithms in Table 12 can
be approximated as ≈ O(Maxiter×c×n/N_size +
Maxiter×d×n/N_size)when n is sufficiently large. From
this approximation, it can be deduced that the introduc-
tion of FIS within does not have any direct performance
penalty.

• In terms of fairness of comparison with other meta-
heuristic algorithms, a number of issues can be fur-
ther elaborated. Firstly, we have only compared our
work against parameter-free based metaheuristic algo-
rithms involving Jaya, CFOA, SCA, TLBO, and SOS.
These algorithms do not provide any parameter controls
(with the exception of population size and maximum
iteration). As such, they are not subjected to tuning
which makes their exploration and exploitation remain

in pre-set mode. Instead of using the maximum itera-
tion, our work opted for maximum fitness evaluation
(with the same population size) as the stopping crite-
ria. The significance of our choice stemmed from the
fact that each algorithm must have the same number
of agent updates. Consider an analogy of throwing a
dart. If one person throws a dart 20 times, he has more
chances of hitting the bull’s eye than another person
throwing only 10 times. In the case of TLBO, the
agent updates occur twice (once in both the learner
and teacher phase). Given a population size of N_size,
and iteration of Maxiter , there are 2 ×N_size×Maxiter
fitness evaluations overall within TLBO. Meanwhile,
SOS have three fitness evaluations per iteration, thus,
contributing to 3 ×N_size×Maxiter fitness evaluations
overall. In contrast, Jaya, CFOA, and SCA has only
N_size×Maxiter fitness evaluation overall. Obviously,
considering the same N_size and Maxiter for all algo-
rithms would not make the comparison fair. For this
reason, our work has considered the same maximum fit-
ness evaluation as stopping criteria instead. In our case,
we have set Maxiter = ∞ (refer line 5 in Algorithm 2)
with common N_size for all algorithms. The iteration
stops when the maximum fitness evaluation is reached
(refer to lines 28-29 in Algorithm 2) regardless of the
iteration count. Secondly, unlike the minimum best
results for the benchmark functions (or the best test suite
size for t-way testing) which are absolute (regardless of
how the algorithm is implemented), time performances
depend on the efficiency of implementation, choice of
language implementation, and data structure. For this

VOLUME 8, 2020 225401



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

FIGURE 6. Convergence Curves for Multimodal Functions F1 to F7.

reason, we don’t make a comparison of time in our
work. Finally, we have opted for mean results over the
best results for our Wilcoxon Signed Rank test anal-
ysis. Given that all metaheuristic algorithms rely on

randomness to do solution updates (via trial and error),
their performance can be subjected to chances. One
algorithm may produce the best result once by luck, but
poor results in a subsequent run. As such, using themean

225402 VOLUME 8, 2020



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

FIGURE 7. Convergence Curves for Multimodal Functions F8 to F13.

can give a better indication of performance than the best
results.

• Concerning limitations, we are aware that our FSOS
performance may well depend on our fuzzy design
choices. Owing to the simplicity of maintaining the
fuzzy rules, we have opted for Mamdani over Sugeno
based approach. For the same reason, we have opted for
the triangular/trapezoidal membership function over the
Gaussian one. We have also used overlapping linguistic
terms for input membership functions between 0 to 60
(into three members consisting of low, medium, and
high) and flatten the other value to 100. Our output
membership function is composed of 5 overlapping (and
equal-width) membership functions from -50 to 50 to

deal with bar movement (either to the left or to the
right). Based on our design choices, we can observe
some limitations of our approach. Firstly, the choice
of linguistic terms can be seen as two sides of
the same coin. On one hand, too many linguis-
tic terms invite more rules, hence, require more
computation. On the other hand, too little linguis-
tic terms might not capture the need of the prob-
lems. As we have developed our fuzzy FIS based
on our design choices, there could be other variants
that may well work better. Different design choices
(e.g. Mamdani versus Sugeno approach, Gaussian ver-
sus Trapezoidal membership function) might lead to
different results as there are no guarantees that our

VOLUME 8, 2020 225403



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

FIGURE 8. Convergence Curves for Fixed-Dimension Multimodal Functions F14 to F23.

225404 VOLUME 8, 2020



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

choices are sufficiently general for other optimization
problems.

VII. CONCLUSION
In this paper, FSOS — an adaptive variant of SOS is pro-
posed to solve general optimization problems. Here, the
Mamdani Fuzzy interference system is integrated with SOS
for selecting a single or any combination of update operators
among mutualism, commensalism, and parasitism adaptively
based on the setting of their individual probabilities via fuzzy
decision-making process. The performance of the proposed
algorithm is tested on 23 benchmark functions under the
categories: unimodal, multimodal, and fixed-dimension mul-
timodal and also taking a t-way test generation as a case study.
Based on the acquired experimental results, FSOS not only
outperforms its predecessor, SOS, but also other compared
metaheuristic algorithms for all sets of experiments that are
conducted in this work. Summing up, it is worth noting that
our FIS approach is also applicable to other metaheuristic
algorithms such as Monarch Butterfly Optimization (MBO)
[62], Earthworm Optimization Algorithm (EWA) [63], Ele-
phant Herding Optimization (EHO) [64], and Moth Search
Algorithm (MS) [65] to address the optimization problems
highlighted in the current paper. Here, unlike our work which
deals with selection search operators, the FIS also can be
used to automatically tune each of the algorithm’s parameters
during runtime.

REFERENCES
[1] J. Islam, P. M. Vasant, B. M. Negash, M. B. Laruccia, M. Myint, and

J. Watada, ‘‘A holistic review on artificial intelligence techniques for well
placement optimization problem,’’ Adv. Eng. Softw., vol. 141, Mar. 2020,
Art. no. 102767.

[2] G. Villarrubia, J. F. De Paz, P. Chamoso, and F. D. la Prieta, ‘‘Artificial neu-
ral networks used in optimization problems,’’ Neurocomputing, vol. 272,
pp. 10–16, Jan. 2018.

[3] A. Godio and A. Santilano, ‘‘On the optimization of electromagnetic
geophysical data: Application of the PSO algorithm,’’ J. Appl. Geophys.,
vol. 148, pp. 163–174, Jan. 2018.

[4] N. Razaaly, G. Persico, G. Gori, and P. M. Congedo, ‘‘Quantile-based
robust optimization of a supersonic nozzle for organic rankine cycle tur-
bines,’’ Appl. Math. Model., vol. 82, pp. 802–824, Jun. 2020.

[5] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc.
IEEE Int. Conf. Neural Netw., Perth, WA, Australia, vol. 4, Nov. 1995,
pp. 1942–1948.

[6] D. E. Goldberg, Genetic Algorithms in Search, Optimisation and Machine
Learning. Boston, MA, USA: Addison-Wesley, 1989.

[7] R. V. Rao, V. J. Savsani, and D. P. Vakharia, ‘‘Teaching–learning-based
optimization: A novel method for constrained mechanical design opti-
mization problems,’’ Comput.-Aided Des., vol. 43, no. 3, pp. 303–315,
Mar. 2011.

[8] R. V. Rao, ‘‘Jaya: A simple and new optimization algorithm for solving
constrained and unconstrained optimization problems,’’ Int. J. Ind. Eng.
Comput., vol. 7, no. 1, pp. 19–34, 2016.

[9] M.-Y. Cheng and D. Prayogo, ‘‘Symbiotic organisms search: A new meta-
heuristic optimization algorithm,’’ Comput. Struct., vol. 139, pp. 98–112,
Jul. 2014.

[10] X-S. Yang, ‘‘Firefly algorithm, stochastic test functions and design opti-
misation,’’ Int. J. Bio-Inspired Comput., vol. 2, no. 2, pp. 78–84, 2010.

[11] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 66, pp. 46–61, Mar. 2014.

[12] K. Zervoudakis and S. Tsafarakis, ‘‘A mayfly optimization algorithm,’’
Comput. Ind. Eng., vol. 145, Jul. 2020, Art. no. 106559.

[13] X.-S. Yang, ‘‘Flower pollination algorithm for global optimization,’’ in
Unconventional Computation and Natural Computation. Berlin, Germany:
Springer, 2012, pp. 240–249.

[14] E. Hosseini, ‘‘Laying chicken algorithm: A newmeta-heuristic approach to
solve continuous programming problems,’’ J. Appl. Comput. Math., vol. 6,
no. 1, p. 2, 2017.

[15] X. Meng, Y. Liu, X. Gao, and H. Zhang, ‘‘A new bio-inspired algorithm:
Chicken swarm optimization,’’ in Advances in Swarm Intelligence. Cham,
Switzerland: Springer, 2014, pp. 86–94.

[16] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.
Softw., vol. 95, pp. 51–67, May 2016.

[17] B. Li, ‘‘Research on WNN modeling for gold price forecasting based
on improved artificial bee colony algorithm,’’ Comput. Intell. Neurosci.,
vol. 2014, pp. 1–10, Jan. 2014.

[18] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.

[19] M. Tahani and N. Babayan, ‘‘Flow regime algorithm (FRA): A
physics-based meta-heuristics algorithm,’’ Knowl. Inf. Syst., vol. 60, no. 2,
pp. 1001–1038, Aug. 2019.

[20] A. R. Moazzeni and E. Khamehchi, ‘‘Rain optimization algorithm
(ROA): A new Metaheuristic method for drilling optimization solutions,’’
J. Petroleum Sci. Eng., vol. 195, Dec. 2020, Art. no. 107512.

[21] H. S. Hosseini, ‘‘Problem solving by intelligent water drops,’’ in Proc.
IEEE Congr. Evol. Comput., Sep. 2007, pp. 3226–3231.

[22] R. A. Formato, ‘‘Central force optimization: A new metaheuristic with
applications in applied electromagnetics,’’ Prog. Electromagn. Res.,
vol. 77, pp. 425–491, 2007.

[23] A. Kaveh and S. Talatahari, ‘‘A novel heuristic optimization method:
Charged system search,’’ActaMechanica, vol. 213, nos. 3–4, pp. 267–289,
Sep. 2010.

[24] A. Narayanan and M. Moore, ‘‘Quantum-inspired genetic algorithms,’’ in
Proc. IEEE Int. Conf. Evol. Comput., May 1996, pp. 61–66.

[25] A. Hatamlou, ‘‘Black hole: A new heuristic optimization approach for data
clustering,’’ Inf. Sci., vol. 222, pp. 175–184, Feb. 2013.

[26] R. S. Pavithr and Gursaran, ‘‘Quantum inspired social evolution (QSE)
algorithm for 0-1 knapsack problem,’’ Swarm Evol. Comput., vol. 29,
pp. 33–46, Aug. 2016.

[27] Z. Woo Geem, J. Hoon Kim, and G. V. Loganathan, ‘‘A new heuristic
optimization algorithm: Harmony search,’’ Simulation, vol. 76, no. 2,
pp. 60–68, Feb. 2001.

[28] Y. Shi, ‘‘Brain storm optimization algorithm,’’ in Advances in Swarm
Intelligence. Berlin, Germany: Springer, 2011, pp. 303–309.

[29] M. Jahangiri, M. A. Hadianfard, M. A. Najafgholipour, M. Jahangiri, and
M. R. Gerami, ‘‘Interactive autodidactic school: A newMetaheuristic opti-
mization algorithm for solving mathematical and structural design opti-
mization problems,’’ Comput. Struct., vol. 235, Jul. 2020, Art. no. 106268.

[30] B. Das, V. Mukherjee, and D. Das, ‘‘Student psychology based opti-
mization algorithm: A new population based optimization algorithm for
solving optimization problems,’’ Adv. Eng. Softw., vol. 146, Aug. 2020,
Art. no. 102804.

[31] M. S. Gonçalves, R. H. Lopez, and L. F. F. Miguel, ‘‘Search group
algorithm: A new Metaheuristic method for the optimization of truss
structures,’’ Comput. Struct., vol. 153, pp. 165–184, Jun. 2015.

[32] O. Tunca, S. Carbas, and I. Aydogdu, ‘‘Symbiotic organisms search based
optimal design of steel rigid frames,’’ in Proc. Int. Congr. Comput. Mech.
(9Gracm), Chania, Greece, 2018, p. 57.

[33] S. Talatahari, ‘‘Symbiotic organisms search for optimum design of frame
and grillage systems,’’ Asian J. Civil Eng. (Building Housing), vol. 17,
no. 3, pp. 229–313, 2016.

[34] A. E. Ezugwu, ‘‘Enhanced symbiotic organisms search algorithm for
unrelated parallel machines manufacturing scheduling with setup times,’’
Knowl.-Based Syst., vol. 172, pp. 15–32, May 2019.

[35] M. Abdullahi, M. A. Ngadi, S. I. Dishing, S. M. Abdulhamid, and
B. I. Ahmad, ‘‘An efficient symbiotic organisms search algorithm with
chaotic optimization strategy for multi-objective task scheduling problems
in cloud computing environment,’’ J. Netw. Comput. Appl., vol. 133,
pp. 60–74, May 2019.

[36] M.-Y. Cheng, D. Prayogo, andD.-H. Tran, ‘‘Optimizingmultiple-resources
leveling in multiple projects using discrete symbiotic organisms search,’’
J. Comput. Civil Eng., vol. 30, no. 3, May 2016, Art. no. 04015036.

[37] A. E. Ezugwu and D. Prayogo, ‘‘Symbiotic organisms search algorithm:
Theory, recent advances and applications,’’ Expert Syst. Appl., vol. 119,
pp. 184–209, Apr. 2019.

VOLUME 8, 2020 225405



N. A. Zainal et al.: Adaptive FSOS Algorithm and Its Applications

[38] A. E.-S. Ezugwu and A. O. Adewumi, ‘‘Discrete symbiotic organisms
search algorithm for travelling salesman problem,’’ Expert Syst. Appl.,
vol. 87, pp. 70–78, Nov. 2017.

[39] S. Kumar, G. G. Tejani, and S. Mirjalili, ‘‘Modified symbiotic organ-
isms search for structural optimization,’’ Eng. Comput., vol. 35, no. 4,
pp. 1269–1296, Oct. 2019.

[40] G. G. Tejani, V. J. Savsani, S. Bureerat, and V. K. Patel, ‘‘Topology and size
optimization of trusses with static and dynamic bounds by modified sym-
biotic organisms search,’’ J. Comput. Civil Eng., vol. 32, no. 2, Mar. 2018,
Art. no. 04017085.

[41] G. G. Tejani, N. Pholdee, S. Bureerat, and D. Prayogo, ‘‘Multiobjective
adaptive symbiotic organisms search for truss optimization problems,’’
Knowl.-Based Syst., vol. 161, pp. 398–414, Dec. 2018.

[42] G. G. Tejani, V. J. Savsani, and V. K. Patel, ‘‘Adaptive symbiotic organisms
search (SOS) algorithm for structural design optimization,’’ J. Comput.
Design Eng., vol. 3, no. 3, pp. 226–249, Jul. 2016.

[43] E. Çelik, ‘‘A powerful variant of symbiotic organisms search algorithm
for global optimization,’’ Eng. Appl. Artif. Intell., vol. 87, Jan. 2020,
Art. no. 103294.

[44] D. T. T. Do and J. Lee, ‘‘A modified symbiotic organisms search (mSOS)
algorithm for optimization of pin-jointed structures,’’ Appl. Soft Comput.,
vol. 61, pp. 683–699, Dec. 2017.

[45] G. G. Tejani, V. J. Savsani, V. K. Patel, and S. Mirjalili, ‘‘Truss optimiza-
tion with natural frequency bounds using improved symbiotic organisms
search,’’ Knowl.-Based Syst., vol. 143, pp. 162–178, Mar. 2018.

[46] A. E.-S. Ezugwu, A. O. Adewumi, and M. E. Frîncu, ‘‘Simulated
annealing based symbiotic organisms search optimization algorithm for
traveling salesman problem,’’ Expert Syst. Appl., vol. 77, pp. 189–210,
Jul. 2017.

[47] D. Guha, P. Roy, and S. Banerjee, ‘‘Quasi-oppositional symbiotic organism
search algorithm applied to load frequency control,’’ Swarm Evol. Com-
put., vol. 33, pp. 46–67, Apr. 2017.

[48] D.-H. Tran, L. Luong-Duc, M.-T. Duong, T.-N. Le, and A.-D. Pham,
‘‘Opposition multiple objective symbiotic organisms search (OMOSOS)
for time, cost, quality and work continuity tradeoff in repetitive projects,’’
J. Comput. Des. Eng., vol. 5, no. 2, pp. 160–172, Apr. 2018.

[49] G. G. Tejani, N. Pholdee, S. Bureerat, D. Prayogo, and A. H. Gandomi,
‘‘Structural optimization using multi-objective modified adaptive sym-
biotic organisms search,’’ Expert Syst. Appl., vol. 125, pp. 425–441,
Jul. 2019.

[50] L. A. Shalabi, Z. Shaaban, and B. Kasasbeh, ‘‘Data mining: A pre-
processing engine,’’ J. Comput. Sci., vol. 2, no. 9, pp. 735–739,
Sep. 2006.

[51] W. Pedrycz and X. Wang, ‘‘Designing fuzzy sets with the use of the
parametric principle of justifiable granularity,’’ IEEE Trans. Fuzzy Syst.,
vol. 24, no. 2, pp. 489–496, Apr. 2016.

[52] F. Camastra, A. Ciaramella, V. Giovannelli, M. Lener, V. Rastelli,
A. Staiano, G. Staiano, and A. Starace, ‘‘A fuzzy decision system for
genetically modified plant environmental risk assessment using mamdani
inference,’’ Expert Syst. Appl., vol. 42, no. 3, pp. 1710–1716, Feb. 2015.

[53] M. Mizumoto, ‘‘Fuzzy reasoning with various fuzzy inputs,’’ Inf. Sci.,
vol. 45, no. 2, pp. 129–151, 1988.

[54] M.-Y. Cheng and D. Prayogo, ‘‘Fuzzy adaptive teaching–learning-based
optimization for global numerical optimization,’’ Neural Comput. Appl.,
vol. 29, no. 2, pp. 309–327, Jan. 2018.

[55] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving optimization
problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133, Mar. 2016.

[56] M. Mitić, N. Vuković, M. Petrović, and Z. Miljković, ‘‘Chaotic fruit
fly optimization algorithm,’’ Knowl.-Based Syst., vol. 89, pp. 446–458,
Nov. 2015.

[57] K. Z. Zamli, M. F. J. Klaib, M. I. Younis, N. A. M. Isa, and R. Abdullah,
‘‘Design and implementation of a t-way test data generation strategy
with automated execution tool support,’’ Inf. Sci., vol. 181, no. 9,
pp. 1741–1758, May 2011.

[58] A. R. A. Alsewari and K. Z. Zamli, ‘‘Design and implementation of
a harmony-search-based variable-strength t-way testing strategy with
constraints support,’’ Inf. Softw. Technol., vol. 54, no. 6, pp. 553–568,
Jun. 2012.

[59] S. García, D. Molina, M. Lozano, and F. Herrera, ‘‘A study on the use of
non-parametric tests for analyzing the evolutionary algorithms’ Behaviour:
A case study on the CEC’2005 special session on real parameter optimiza-
tion,’’ J. Heuristics, vol. 15, no. 6, pp. 617–644, Dec. 2009.

[60] J. Derrac, S. García, D. Molina, and F. Herrera, ‘‘A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,’’ Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3–18, Mar. 2011.

[61] J. H. Zar, Biostatistical Analysis. London, U.K.: Pearson Education Inc,
2009.

[62] G. G.Wang, S. Deb, and Z. Cui, ‘‘Monarch butterfly optimization,’’Neural
Comput. Appl., vol. 31, no. 7, pp. 1995–2014, 2019.

[63] G. G. Wang, S. Deb, and L. D. S. Coelho, ‘‘Earthworm optimization
algorithm: A bio-inspired Metaheuristic algorithm for global optimization
problems,’’ Int. J. Bio-Inspired Comput., vol. 1, no. 1, p. 1, 2015.

[64] G.-G. Wang, S. Deb, and L. D. S. Coelho, ‘‘Elephant herding optimiza-
tion,’’ in Proc. 3rd Int. Symp. Comput. Bus. Intell. (ISCBI), Dec. 2015,
pp. 1–5.

[65] G.-G. Wang, ‘‘Moth search algorithm: A bio-inspired Metaheuristic algo-
rithm for global optimization problems,’’Memetic Comput., vol. 10, no. 2,
pp. 151–164, Jun. 2018.

NURUL ASYIKIN ZAINAL received the B.Eng.
degree in electronics (computer and information)
from International Islamic University Malaysia,
Kuala Lumpur, Malaysia, in 2010, and the M.S.
degree in software engineering from Universiti
Malaysia Pahang, Pahang, Malaysia, in 2016,
where she is currently pursuing the Ph.D. degree in
software engineering. From 2011 to 2020, she was
a Design Engineer (Automation) with Malaysian
Test Equipment Sdn Bhd, Pahang, Malaysia. Her

research interests include the development of embedded systems, intelligent
control, and also soft-computing in modeling and control.

SAIFUL AZAD (Member, IEEE) received the
Ph.D. degree in information engineering from
the University of Padova, Italy, in 2013. He is
currently serving as a member for the Fac-
ulty of Computing, Universiti Malaysia Pahang,
Malaysia. He is also the author of many scientific
papers’ published in renowned journals and con-
ferences. His research interests include data min-
ing, machine learning, design and implementation
of communication protocols, network security, and

simulation software design. He is also a Fellow of the IBM Center of
Excellence, Malaysia. He was a recipient of many national and international
awards for his services, exhibitions, publications, and so on.

KAMAL Z. ZAMLI (Member, IEEE) received the
degree in electrical engineering from the Worces-
ter Polytechnic Institute, Worcester, MA, USA,
in 1992, the M.Sc. degree in real-time software
engineering from Universiti Teknologi Malaysia,
in 2000, and the Ph.D. degree in software engi-
neering from the University of Newcastle upon
Tyne, U.K., in 2003. His research interests include
search-based software engineering and computa-
tional intelligence.

225406 VOLUME 8, 2020


