
PID CONTROLLER DESIGN FOR CONTROLLING DC MOTOR

SPEED USING MATLAB APPLICATION

MOHAMED FARID BIN MOHAMED FARUQ

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS♦

 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

29 JALAN RASMI JAYA, AHMAD NOR KASRUDDIN BIN NASIR
TAMAN RASMI JAYA, (Nama Penyelia)
68000 AMPANG,
SELANGOR

Tarikh: 11 NOVEMBER 2008 Tarikh: : 11 NOVEMBER 2008

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2008/2009

MOHAMED FARID BIN MOHAMED FARUQ (860724-56-5251)

PID CONTROLLER DESIGN FOR CONTROLLING DC
MOTOR SPEED USING MATLAB APPLICATION

“I hereby acknowledge that the scope and quality of this thesis is qualified for the

award of the Bachelor Degree of Electrical Engineering (Power System)”

Signature : __

 Name : AHMAD NOR KASRUDDIN BIN NASIR

 Date : 11 NOVEMBER 2008

PID CONTROLLER DESIGN FOR CONTROLLING DC MOTOR

SPEED USING MATLAB APPLICATION

MOHAMED FARID BIN MOHAMED FARUQ

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Power System)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER, 2008

ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : MOHAMED FARID BIN MOHAMED FARUQ

Date : 11 NOVEMBER 2008

iii

To my beloved mother, father and sister

iv

ACKNOWLEDGEMENT

 In preparing this thesis, I was in contact with many people, researchers,

academicians, and practitioners. They have contributed towards my understanding

and thoughts. In particular, I wish to express my sincere appreciation to my thesis

supervisor, Mr. Ahmad Nor Kasruddin Bin Nasir, for encouragement, guidance,

critics and friendship. Without his continued support and interest, this thesis would

not have been the same as presented here. I would like to give my sincere

appreciation to all my friends and others who have provided assistance at various

occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to

list all of them in this limited space. Finally to all my family members where without

them I would not be here.

v

ABSTRACT

 This project is a simulation and experimental investigation into the

development of PID controller using MATLAB/SIMULINK software. The

simulation development of the PID controller with the mathematical model of DC

motor is done using Ziegler–Nichols method and trial and error method. The PID

parameter is to be tested with an actual motor also with the PID controller in

MATLAB/SIMULINK software. In order to implement the PID controller from the

software to the actual DC motor data acquisition is used. From the simulation and the

experiment, the result performance of the PID controller is compared in term of

response and the assessment is presented.

vi

ABSTRAK

 Project in adalah penyelidikan secara simulasi dan eksperimen dalam

pembangunan pengawal PID mengunakan perisian MATLAB/SIMULINK.

Pembangunan simulasi pengawal PID dengan model matematik motor DC

mengunankan kaedah Ziegler–Nichols dan kaedah cuba dan jaya. Parameter

pengawal PID akan diuji dengan motor sebenar juga dengan pengawal PID

mengunakan perisian MATLAB/SIMULIN. Bagi mengaplikasikan pengawal PID

dari perisian kepada motor DC sebenar, data acquisition card di gunakan. Dari

simulasi dan eksperimen, keputusan kecekapan dari pengawal PID dibandingkan dari

segi respon dan analisis di lakukan dan dibentangkan.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 TITLE PAGE i

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

LIST OF FIGURES xi

 LIST OF SYMBOLS xv

 LIST OF APPENDICES xvi

I INTRODUCTION

1.1 Background of Project 1

1.2 Objective 2

1.3 Scope of Work 2

1.4 Problem Statement 3

viii

II LITERATURE REVIEW

2.1 Permanent Magnet Direct Current Motor 4

2.2 Control Theory 5

 2.2.1 Closed-Loop Transfer Function 6

 2.2.2 PID Controller 8

2.3 Pulse Width Modulation 9

2.4 MATLAB® and SIMULINK® 11

III METHODOLOGY

 3.1 System Description 15

 3.1.1 Mathematical Model 19

3.2 Data Acquisition 22

 3.2.1 PCI-1710HG 24

 3.2.1.1 Specification 25

 3.2.1.2 Installation Guide 29

3.3 Real Time Computing 31

3.4 Real Time Window Target 32

 3.4.1 Setup and Configuration 34

 3.4.1.1 Compiler 34

 3.4.1.2 Kernel Setup 35

 3.4.1.3 Testing the Installation 37

 3.4.2 Creating a Real Time Application 39

 3.4.3 Entering Configuration Parameters for 47

Simulink

3.4.4 Entering Simulation Parameters for 49

Real-Time Workshop

 3.4.5 Creating a Real-Time Application 51

 3.4.6 Running a Real-Time Application 52

3.5 Driver 53

 3.5.1 Geckodrive G340 54

ix

 3.5.2 Alternative Driver IR2109 55

 3.5 Project Planning 56

IV RESULT AND DISCUSSION

 4.1 Controller Design 57

 4.1.1 PID Controller 58

 4.1.1.1 Zeigler Nichols Method 58

 4.1.1.2 Trial and Error Method 59

 4.2 Simulation without PID Controller 60

 4.3 Simulation with PID Controller 61

 4.4 Experiment without PID Controller 62

 4.5 Experiments with PID Controller 66

V CONCLUSION AND RECOMENDATION

 5.1 Conclusion 70

 5.2 Future Recommendation 71

REFERENCES 73

APPENDICES

APPENDIX A 76

APPENDIX B 77

APPENDIX C 78

x

LIST OF TABLES

TABLE NO. TITLE PAGE

4.1 Typical Values of Proportional, Integral, and Derivative 59

feedback Coefficient for PID-type Controller

4.2 Speed and Voltage for every 10% duty cycle 65

xi

LIST OF FIGURE

FIGURE NO. TITLE PAGE

2.1 Concept of the Feedback Loop to Control the Dynamic 5

Behavior of the Reference

2.2 Closed-Loop Controller or Feedback Controller 7

2.3 A Square Wave, Showing the Definitions of ymin, ymax 9

and D

2.4 PWM Pulse Generate from Comparing Sinewave and 10

Sawtooth

2.7 MATLAB® Default Command Windows 12

2.8 SIMULINK® Running a Simulation of a Thermostat- 14

Controlled Heating System

3.1 Block Diagram of the System 15

3.2 Geckodrive G340 16

3.3 Alternative Driver (IR2109) 16

xii

3.4 Power Supply 16

3.5 Oscilloscope 16

3.6 Data Acquisition Card (PCI-1710HG) 16

3.7 Industrial Wiring Terminal Board with CJC Circuit 17

(PCLD-8710)

3.8 Personal Computer 17

3.9 Litton - Clifton Precision Servo DC Motor JDH-2250 18

3.10 Schematic Diagram of the DC Motor 19

3.11 Block Diagram of the Open-Loop Permanent-Magnet 21

DC Motor

3.12 Block Diagram of the Open-Loop Servo Actuated by 21

Permanent-Magnet DC Motor

3.13 Block Diagram of the Closed-Loop Servo with PID 22

Controller

3.14 Pin Assignment 27

3.15 Block Diagram of PCI-1710HG 28

3.16 PCI-1710HG Installation Flow Chart 30

3.17 Simulink Model rtvdp.mdl 37

xiii

3.18 Output Signal rtvdp.mdl 39

3.19 Simulink Library Browser 40

3.20 Empty Simulink Windows 40

3.21 Signal Generator Block Parameter 41

3.22 Analog Output Block Parameter 42

3.23 Board Test OK Dialog 43

3.24 Scope Parameters Dialog Box 45

3.25 Scope Window 46

3.26 Scope Properties: axis 1 46

3.27 Completed Simulink Block Diagram 47

3.28 Configuration Parameter (Solver) Windows. 48

3.29 Configuration Parameter (Hardware Implementation) 49

 Windows

3.30 System Target File Browsers. 50

3.31 Configuration Parameter (Real-Time Workshop) 50

Windows

3.32 Connect To Target and Start Real-Time Code 52

3.33 Geckodrive G340 Block Diagram 54

xiv

3.34 Typical Connections for IR2109 55

3.35 Flow Chart of Project 56

4.1 Simulink Block of PID Controller 58

4.2 Detailed Simulink Block of the System 60

4.3 Output of DC Motor without PID Controller 60

4.4 Detail Simulink Block of the System with PID Controller 61

4.5 Output of DC Motor without PID Controller 62

4.6 Simulink Block of Experiment without PID 63

4.7 10% Duty Cycle Pulse 63

4.8 50% Duty Cycle Pulse 64

4.9 90% Duty Cycle Pulse 64

4.10 Velocity Estimation 65

4.11 Complete Simulink Block of the Experiment 67

4.12 Velocity Decoder Subsystem Simulink Block 68

xv

LIST OF SYMBOLS

D - duty cycle

T - period

TL - load torque

Өr - angle

ωr - rotor angular displacement

ia - armature current

Ea - Induced emf

ka - back emf / torque constant

ra - armature resistance

La - armature inductance

J - moment of inertia

Bm - viscous friction coefficient

Tviscous - viscous friction torque

ua - armature voltage

kp - proportional coefficient

ki - integral coefficient

kd - derivative coefficient

Tocs - period of self-sustained oscillation

kpmax - critical value of proportional coefficient

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Simulink Block of PID Control DC Motor (Simulation) 76

 Simulink Block of DC Motor

Simulink Block of PID Controller

B Simulink Block of PID Control DC Motor (Experiment) 77

Simulink Block of Velocity Decoder

C Embedded MATLAB Function 78

MATLAB Command

CHAPTER 1

INTRODUCTION

1.1 Background of Project

Permanent magnet direct current motor (PMDC) have been widely use in

high-performance electrical drives and servo system. There are many difference DC

motor types in the market and all with it good and bad attributes. Such bad attribute

is the lag of efficiency. In order to overcome this problem a controller is introduce to

the system.

 There are also many types of controller used in the industry, such controller is

PID controller. PID controller or proportional–integral–derivative controller is a

generic control loop feedback mechanism widely used in industrial control systems.

A PID controller attempts to correct the error between a measured process variable

and a desired set point by calculating and then outputting a corrective action that can

adjust the process accordingly. So by integrating the PID controller to the DC motor

were able to correct the error made by the DC motor and control the speed or the

position of the motor to the desired point or speed.

2

1.2 Objective

The objectives of this project are:

i. To fulfill the requirement for the subject BEE4712: Engineering Project.

ii. To explorer and apply the knowledge gain in lectures into practical

applications.

iii. To control the speed of DC motor with PID controller using

MATLAB/SIMULINK application.

iv. To design the PID controller and tune it using MATLAB/SIMULINK.

v. To compare and analyze the result between the simulation result using a DC

motor mathematical model in MATLAB/SIMULINK and the experimental

result using the actual motor.

1.3 Scope of Work

The scope of this project is;

i. Design and produce the simulation of the PID controller

ii. Simulate the PID controller with the modeling of the DC motor

iii. Implement the PID simulation with and actual DC motor

iv. The comparison of the simulation result with the actual DC motor

3

1.4 Problem Statement

The problem encounter when dealing with DC motor is the lag of efficiency

and losses. In order to eliminate this problem, controller is introduce to the system.

There’s few type of controller but in this project, PID controller is chosen as the

controller for the DC motor. This is because PID controller helps get the output,

where we want it in a short time, with minimal overshoot and little error.

CHAPTER 2

LITERATURE REVIEW

2.1 Permanent Magnet Direct Current Motor

A DC motor is designed to run on DC electric power [3]. An example is

Michael Faraday's homopolar motor, and the ball bearing motor. There are two types

of DC motor which are brush and brushless types, in order to create an oscillating

AC current from the DC source and internal and external commutation is use

respectively. So they are not purely DC machines in a strict sense [3].

A brushless DC motor (BLDC) is a synchronous electric motor which is

powered by direct-current electricity (DC) and which has an electronically controlled

commutation system, instead of a mechanical commutation system based on brushes

[4]. In such motors, current and torque, voltage and rpm are linearly related [4].

BLDC has its own advantages such as higher efficiency and reliability, reduced

noise, longer lifetime, elimination of ionizing sparks from the commutator, and

overall reduction of electromagnetic interference (EMI). With no windings on the

rotor, they are not subjected to centrifugal forces, and because the electromagnets are

located around the perimeter, the electromagnets can be cooled by conduction to the

motor casing, requiring no airflow inside the motor for cooling [4]. The disadvantage

5

is higher cost, because of two issues. First, it requires complex electronic speed

controller to run.

2.2 Control Theory

 Control theory is an interdisciplinary branch of engineering and mathematics

that deals with the behavior of dynamical systems [7]. The desired output of a system

is called the reference [7]. When one or more output variables of a system need to

follow a certain reference over time, a controller manipulates the inputs to a system

to obtain the desired effect on the output of the system [7].

Figure 2.1 Concept of the Feedback Loop to Control the Dynamic Behavior of the

Reference

 If we consider an automobile cruise control, it is design to maintain the speed of the

vehicle at a constant speed set by the driver. In this case the system is the vehicle. The

vehicle speed is the output and the control is the vehicle throttle which influences the engine

torque output. One way to implement cruise control is by locking the throttle at the desired

speed but when encounter a hill the vehicle will slow down going up and accelerate going

down. In fact, any parameter different than what was assumed at design time will

translate into a proportional error in the output velocity, including exact mass of the

6

vehicle, wind resistance, and tire pressure [7]. This type of controller is called

an open-loop controller because there is no direct connection between the output of

the system (the engine torque) and the actual conditions encountered; that is to say,

the system does not and cannot compensate for unexpected forces [7].

 For a closed-loop control system, a sensor will monitor the vehicle speed and

feedback the data to its computer and continuously adjusting its control input or the

throttle as needed to ensure the control error to a minimum therefore maintaining the

desired speed of the vehicle. Feedback on how the system is actually performing

allows the controller (vehicle's on board computer) to dynamically compensate for

disturbances to the system, such as changes in slope of the ground or wind speed [7].

An ideal feedback control system cancels out all errors, effectively mitigating the

effects of any forces that may or may not arise during operation and producing a

response in the system that perfectly matches the user's wishes [7].

2.2.1 Closed-Loop Transfer Function

The output of the system y(t) is fed back through a sensor measurement F to

the reference value r(t). The controller C then takes the error e (difference) between

the reference and the output to change the inputs u to the system under control P.

This is shown in the figure. This kind of controller is a closed-loop controller or

feedback controller. This is called a single-input-single-output (SISO) control

system; MIMO (i.e. Multi-Input-Multi-Output) systems, with more than one

input/output, are common. In such cases variables are represented

through vectors instead of simple scalar values. For some distributed parameter

systems the vectors may be infinite-dimensional (typically functions).

7

Figure 2.2 Closed-loop controller or feedback controller

If we assume the controller C, the plant P, and the sensor F are linear and time-

invariant (i.e.: elements of their transfer function C(s), P(s), and F(s) do not depend

on time), the systems above can be analyzed using the Laplace transform on the

variables. This gives the following relations:

Solving for Y(s) in terms of R(s) gives:

The expression is referred to as

the closed-loop transfer function of the system. The numerator is the forward (open-

loop) gain from r to y, and the denominator is one plus the gain in going around the

feedback loop, the so-called loop gain. If , i.e. it has a

large norm with each value of s, and if , then Y(s) is

approximately equal to R(s). This means simply setting the reference controls the

output.

8

2.2.2 PID Controller

PID Control (proportional-integral-derivative) is by far the widest type of

automatic control used in industry. Even though it has a relatively simple

algorithm/structure, there are many subtle variations in how it is applied in industry

[5]. A proportional–integral–derivative controller (PID controller) is a generic

control loop feedback mechanism widely used in industrial control systems [1]. A

PID controller will correct the error between the output and the desired input or set

point by calculating and give an output of correction that will adjust the process

accordingly. A PID controller has the general form

Where Kp is proportional gain, Ki is the integral gain, and Kd is the derivative gain.

The PID controller calculation (algorithm) involves three separate

parameters; the Proportional, the Integral and Derivative values [1]. The Proportional

value determines the reaction to the current error, the Integral determines the reaction

based on the sum of recent errors and the Derivative determines the reaction to the

rate at which the error has been changing [1]. The weighted sum of these three

actions is used to adjust the process via a control element such as the position of a

control valve, the power supply of a heating element or DC motor speed and

position.

9

2.3 Pulse Width Modulation

Pulse-width modulation (PWM) of a signal or power source involves the

modulation of its duty cycle, to either convey information over a communications

channel or control the amount of power sent to a load.

Pulse-width modulation uses a square wave whose pulse width is modulated

resulting in the variation of the average value of the waveform. If we consider a

square waveform f(t) with a low value ymin, a high value ymax and a duty cycle D (see

figure 2.3), the average value of the waveform is given by:

Figure 2.3 A Square Wave, Showing the Definitions of ymin, ymax and D

As f(t) is a square wave, its value is ymax for and ymin for

. The above expression then becomes:

10

This latter expression can be fairly simplified in many cases where ymin = 0 as

. From this, it is obvious that the average value of the signal () is

directly dependent on the duty cycle D.

The simplest way to generate a PWM signal is the intersective method, which

requires only a sawtooth or a triangle waveform (easily generated using a simple

oscillator) and a comparator. When the value of the reference signal (the green sine

wave in figure 2.4) is more than the modulation waveform (blue), the PWM signal

(magenta) is in the high state, otherwise it is in the low state.

Figure 2.4 PWM Pulse Generate from Comparing Sinewave and Sawtooth

11

2.4 MATLAB and SIMULINK

MATLAB is a high-performance language for technical computing. It

integrates computation, visualization, and programming in an easy-to-use

environment where problems and solutions are expressed in familiar mathematical

notation. Typical uses include:

• Math and computation

• Algorithm development

• Data acquisition

• Modeling, simulation, and prototyping

• Data analysis, exploration, and visualization

• Scientific and engineering graphics

• Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that

does not require dimensioning. This allows you to solve many technical computing

problems, especially those with matrix and vector formulations, in a fraction of the

time it would take to write a program in a scalar non-interactive language such as C

or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally

written to provide easy access to matrix software developed by the LINPACK and

EISPACK projects. Today, MATLAB engines incorporate the LAPACK and BLAS

libraries, embedding the state of the art in software for matrix computation.

MATLAB has evolved over a period of years with input from many users. In

university environments, it is the standard instructional tool for introductory and

advanced courses in mathematics, engineering, and science. In industry, MATLAB is

the tool of choice for high-productivity research, development, and analysis.

MATLAB features a family of add-on application-specific solutions called

toolboxes. Very important to most users of MATLAB, toolboxes allow you to learn

12

and apply specialized technology. Toolboxes are comprehensive collections of

MATLAB functions (M-files) that extend the MATLAB environment to solve

particular classes of problems. Areas in which toolboxes are available include signal

processing, control systems, neural networks, fuzzy logic, wavelets, simulation, and

many others.

When you start MATLAB, the MATLAB desktop appears, containing tools

(graphical user interfaces) for managing files, variables, and applications associated

with MATLAB. The following illustration shows the default desktop. You can

customize the arrangement of tools and documents to suit your needs.

Figure 2.7 MATLAB Default Command Windows

Simulink is software for modeling, simulating, and analyzing dynamic

systems. Simulink enables you to pose a question about a system, model it, and see

what happens.

13

With Simulink, you can easily build models from scratch, or modify existing

models to meet your needs. Simulink supports linear and nonlinear systems, modeled

in continuous time, sampled time, or a hybrid of the two. Systems can also be

multirate — having different parts that are sampled or updated at different rates.

Thousands of scientists and engineers around the world use Simulink® to

model and solve real problems in a variety of industries, including:

• Aerospace and Defense

• Automotive

• Communications

• Electronics and Signal Processing

• Medical Instrumentation

Model analysis tools include linearization and trimming tools, whichcan be accessed

from the MATLAB command line, plus the many tools in MATLAB and its

application toolboxes. Because MATLAB® and Simulink are integrated; you can

simulate, analyze, and revise your models in either environment at any point.

Simulink® is tightly integrated with MATLAB. It requires MATLAB to run,

depending on MATLAB to define and evaluate model and block parameters.

Simulink® can also utilize many MATLAB features. For example, Simulink can use

MATLAB to:

• Define model inputs.

• Store model outputs for analysis and visualization.

• Perform functions within a model, through integrated calls to MATLAB

operators and functions.

14

Figure 2.8 Simulink Running a Simulation of a Thermostat-Controlled Heating System

CHAPTER 3

METHODOLOGY

3.1 System Description

Figure 3.1 Block Diagram of the System

 The system block diagram is as shown in Figure 3.1. It consist of 2 main

block (PC and Motor) that are connected through a driver and supplied by a power

supply. The control algorithm is builded in the Matlab/Simulink software and

compiled with Real-Time Window Target. The Real-Time Window Target Toolbox

include an analog input and analog output that provide connection between the data

acquisition card (PCI-1710HG) and the simulink model. For example, the speed of

the DC motor could be controlled by supplying certain voltage and frequency from

SPEED MEASUREMENT

ENCORDER

MOTOR

PC
SIMULINK
(REAL‐TIME

WINDOW TARGET)

DATA ACQUISITION
CARD

(PCI‐1710HG)

POWER SUPPLY

DRIVER

16

signal generator block to the analog output in Simulink. From the analog input, the

square received is displayed in a scope. The square wave pulse then is derived using

the velocity equation to get the velocity of the DC motor speed. The speed acquired

and the signal send can create a closed loop system with PID controller to control the

speed of the DC motor. Figure 3.2 to Figure 3.9 shows the DC motor, driver, and

other hardware used in this project and the DC motor specification.

 Figure 3.2 Geckodrive G340 Figure 3.3 Alternative Driver (IR2109)

Figure 3.4 Power Supply Figure 3.5 Oscilloscope

Figure 3.6 Data Acquisition Card (PCI-1710HG)

17

Figure 3.7 Industrial Wiring Terminal Board with CJC Circuit (PCLD-8710)

Figure 3.8 Personal Computer

18

Figure 3.9 Litton - Clifton Precision Servo DC Motor JDH-2250

Specification of JDH-2250

Torque Constant: 15.76 oz-in. / A

Back EMF: 11.65 VDC / KRPM

Peak Torque: 125 oz-in.

Cont. Torque: 16.5 oz-in.

Encoder: 250 counts / rev.

Channels: A, B in quadrature, 5 VDC input (no index)

Body Dimensions: 2.25" dia. x 4.35" L (includes encoder)

Shaft Dimensions: 8 mm x 1.0" L w/flat

19

3.1.1 Mathematical Model

Figure 3.10 Schematic Diagram of the DC Motor

To find the transfer function for the block diagram of the open and closed

loop system a differential equation to describe the system dynamic. Kirchhoff’s

voltage is use to map the armature circuitry dynamic of the motor.

Using Newton’s 2nd law

The electromagnetic torque developed by the permanent-magnet DC motor

20

The viscous friction torque

The load torque is denoted as TL. Use the Newton’s second law, we have

The dynamics of the rotor angular displacement

To find the transfer function, the derived three first-order differential equation

and

Using the Laplace operator

21

From the transfer function, the block diagram of the permanent-magnet DC motor is

illustrated by Figure 3.11

Figure 3.11 Block Diagram of the Open-Loop Permanent-Magnet DC Motor

Figure 3.12 Block Diagram of the Open-Loop Servo Actuated by Permanent-Magnet DC

Motor

Using the linear PID controller

22

From the block diagram developed and documented in figure, it obtains the closed-

loop system illustrated in Figure 3.13

Figure 3.13 Block Diagram of the Closed-Loop Servo with PID Controller

In this project the permanent-magnet DC motor use is permanent-magnet Litton

Clifton Precision JDH-2250-HF-2C-E. The parameters are:

 Ra = 2.7 ohm La = 0.004 H

 Bm = 0.0000093 N-m-s-rad-1

 ka = 0.105 V-s-rad-1 (the back emf constant)

 ka = 0.105 N-m-A-1 (the torque constant)

 J = 0.0001 kg-m2

3.2 Data Acquisition

 Data acquisition is the sampling of the real world in generating data that can

be manipulated by a computer. Data acquisition typically involves acquisition of

signals or waveforms then and processing the signals to obtain desired information.

Components of data acquisition systems include sensors that convert any

measurement parameter to an electrical signal, which is acquired by data acquisition

hardware.

23

The acquired data from the data acquisition hardware are displayed,

analyzed, and stored on a computer, either using software, or custom displays and

control developed using programming languages such as BASIC, C, Fortran, Java,

Lisp, Pascal. Programming languages that used for data acquisition include, EPICS,

Lab VIEW, and MATLAB provides a programming language but also built-in

graphical tools and libraries for data acquisition and analysis.

Transducer is a device that converts physical property or phenomenon into

corresponding measurable electrical signal, such as voltage and current. The data

acquisition system ability to measure different phenomena depends on the

transducers to convert the physical phenomena into a signal measurable by the data

acquisition hardware. There are specific transducers for many different applications,

such as measuring temperature, pressure, or fluid flow. DAQ also deploy various

Signal Conditioning techniques to adequately modify various different electrical

signals into voltage that can then be digitized using ADCs.

Signals may be digital or analog depending on the transducer used. Signal

conditioning may be necessary if the signal from the transducer is not suitable for the

DAQ hardware that’ll be used. The signal may be amplified or deamplified, or may

require filtering, or a lock-in amplifier is included to perform demodulation. Various

other examples of signal conditioning might be bridge completion, providing current

or voltage excitation to the sensor, isolation, linearization, etc.

DAQ hardware is what usually interfaces between the signal and a PC. It

could be in the form of modules that can be connected to the computer's ports

(parallel, serial, USB, etc...) or cards connected to slots (PCI, ISA) in the mother

board. Due to the space on the back of a PCI card is too small for all the connections

needed, an external breakout box is required. DAQ-cards often contain multiple

components (multiplexer, ADC, DAC, TTL-IO, high speed timers, RAM). These are

accessible via a bus by a micro controller, which can run small programs. The

controller is more flexible than a hard wired logic, yet cheaper than a CPU so that it

is alright to block it with simple polling loops.

24

Driver software that usually comes with the DAQ hardware or from other

vendors, allows the operating system to recognize the DAQ hardware and programs

to access the signals being read by the DAQ hardware. A good driver offers high and

low level access. So one would start out with the high level solutions offered and

improves down to assembly instructions in time critical or exotic applications.

3.2.1 PCI-1710HG

 The Advantech PCI-1710HG is a powerful data acquisition (DAS) card for

the PCI bus. It features a unique circuit design and complete functions for data

acquisition and control, including A/D conversion, D/A conversion, digital input,

digital output, and counter/timer. The Advantech PCI-1710HG provides users with

the most requested measurement and control functions as below:

• PCI-bus mastering for data transfer

• 16-channel Single-Ended or 8 differential A/D Input

• 12-bit A/D conversion with up to 100 kHz sampling rate

• Programmable gain for each input channel

• On board samples FIFO buffer (4096 samples)

• 2-channel D/A Output

• 16-channel Digital Input

• 16-channel Digital Output

• Programmable Counter/Timer

• Automatic Channel/Gain Scanning

• Board ID

25

3.2.1.1 Specification

Analog Input

• Channels 16 single-ended/ 8 differential (SW programmable)

• Resolution 12 bits

• Max. Sampling Rate* 100 kS/s

• FIFO Size 4096 samples

• Overvoltage Protection ±30Vp-p

• Input Impedance 1 GΩ

• Sampling Modes Software, onboard programmable pacer, or external

• Input Range (V, software programmable)

*Note:

The sampling rate and throughput depends on the computer hardware architecture

and software environment. The rates may vary due to programming language, code

efficiency, CPU utilization and so on.

Analog Output

• Channels 2

• Resolution 12 bits

• Output Rate Static update

• Output Range (V, software programmable)

26

• Slew Rate 10 V/ms

• Driving Capability 3 mA

• Operation Mode Software polling

• Accuracy INLE: ±1/2 LSB, DNLE: ±1/2 LSB

Digital Input

• Channels 16

• Compatibility 5 V/TTL

• Input Voltage Logic 0: 0.8 V max.

Logic 1: 2.0 V min.

Digital Output

• Channels 16

• Compatibility 5 V/TTL

• Output Voltage Logic 0: 0.4 V max.

Logic 1: 2.4 V min.

• Output Capability Sink: 8.0 mA @ 0.8 V

Source: -0.4 mA @ 2.0 V

Pacer/Counter

• Channels 1

• Resolution 16 bits

• Compatibility 5 V/TTL

• Max. Input Frequency 1 MHz

General

• Bus Type PCI V2.2

• I/O Connector SCSI-68P female x 1

• Dimensions (L x H) 175 x 100 mm (6.9" x 3.9")

27

• Power Consumption Typical: 5 V @ 850 mA

Max: 5 V @ 1.0 A

• Operating Temperature 0 ~ 60° C (32 ~ 140° F) (refer to IEC 68-2-1, 2)

• Storing Temperature -20 ~ 70° C (-4 ~ 158° F)

• Storing Humidity 5 ~ 95% RH non-condensing (refer to IEC 68-2-3)

Pin Assignments

Figure 3.14 Pin Assignment

28

Figure 3.15 Block Diagram of PCI-1710HG

29

3.2.1.2 Installation Guide

Before installing the PCI-1710HG card, make sure the following necessary

component is present:

• PCI-1710HG Multifunction card

• PCI-1710HG User’s Manual

• Driver software Advantech DLL drivers (included in the companion CD-

ROM)

• Wiring cable PCL-10168

• Wiring board PCLD-8710, ADAM-3968

• Computer Personal computer or workstation with a PCI-bus slot (running

Windows95/98/NT/2000/XP)

Some other optional components are also available for enhanced operation:

• Application software ActiveDAQ, GeniDAQ or other third-party software

packages

After getting the necessary components and maybe some of the accessories for

enhanced operation of the Multifunction card, begin the Installation procedures.

Figure 3.16 provides a concise flow chart to give a broad picture of the software and

hardware installation procedures:

30

Figure 3.16 PCI-1710HG Installation Flow Chart

Advantech offers a rich set of DLL drivers, third-party driver support and

application software to help fully exploit the functions of the PCI-1710HG card:

• DLL driver (on the companion CD-ROM)

• LabVIEW driver

• Advantech ActiveDAQ

• Advantech GeniDAQ

31

3.3 Real Time Computing

Real-time computing is the study of hardware and software systems that are

subject to a "real-time constraint" example, operational deadlines from event to

system response. A non-real-time system is one for which there is no deadline, even

if fast response or high performance is desired or even preferred. The needs of real-

time software are often addressed in the context of real-time operating systems, and

synchronous programming languages, which provide guide on which to build real-

time application software.

A real time system may be one where its application can be considered to be

mission critical. The anti-lock brakes on a car are an example of a real-time

computing system, the real-time constraint in this system is the short time in which

the brakes must be released to prevent the wheel from locking. Real-time

computations can be said to have failed if they are not completed before their

deadline, where their deadline is relative to an event. A real-time deadline must be

met, regardless of system load.

 The term real-time derives from its use in early simulation. While current

usage implies that a computation that is 'fast enough' is real-time, originally it

referred to a simulation that proceeded at a rate that matched that of the real process

it was simulating. Analog computers, especially, were often capable of simulating

much faster than real-time, a situation that could be just as dangerous as a slow

simulation if it were not also recognized and accounted for.

 Real-time computing is sometimes misunderstood to be high-performance

computing, but this is not always the case. For example, a massive supercomputer

executing a scientific simulation may offer impressive performance, yet it is not

executing a real-time computation. Conversely, once the hardware and software for

an anti-lock braking system has been designed to meet its required deadlines, no

further performance gains are necessary. Furthermore, if a network server is highly

loaded with network traffic, its response time may be slower but will still succeed.

32

Hence, such a network server would not be considered a real-time system, temporal

failures (delays, time-outs, etc.) are typically small and compartmentalized (limited

in effect) but are not catastrophic failures. In a real-time system, a slow-down beyond

limits would often be considered catastrophic in its application context. Therefore,

the most important requirement of a real time system is predictability and not

performance.

Some kinds of software, such as many chess-playing programs, can fall into

either category. For instance, a chess program designed to play in a tournament with

a clock will need to decide on a move before a certain deadline or lose the game, and

is therefore a real-time computation, but a chess program that is allowed to run

indefinitely before moving is not. In both of these cases, however, high performance

is desirable: the more work a tournament chess program can do in the allotted time,

the better its moves will be, and the faster an unconstrained chess program runs, the

sooner it will be able to move. This example also illustrates the essential difference

between real-time computations and other computations, if the tournament chess

program does not make a decision about its next move in its allotted time it loses the

game, example if it fails as a real-time computation—while in the other scenario,

meeting the deadline is assumed not to be necessary.

3.4 Real Time Window Target

 Real-Time Windows Target™ rapid prototyping software is a PC solution for

prototyping and testing real-time systems. Real-Time Windows Target software uses

a single computer as a host and target. On this computer, MATLAB® environment,

Simulink® software, and Stateflow® software (optional) is use to create models

using Simulink blocks and Stateflow diagrams.

33

After creating a model and simulating it using Simulink software in normal

mode, it can generate executable code with Real-Time Workshop® code generation

software, Stateflow® Coder™ code generation software (optional), and the Open

Watcom C/C++ compiler. Then the application can be run in real time with Simulink

external mode.

 Real-Time Windows Target uses standard and inexpensive I/O boards for

PC-compatible computers. When running the models in real time, Real-Time

Windows Target captures the sampled data from one or more input channels, uses

the data as inputs to the block diagram model, immediately processes the data, and

sends it back to the outside world through an output channel on the I/O board.

 Real-Time Windows Target provides a custom Simulink block library. The

I/O driver block library contains universal drivers for supported I/O boards. These

universal blocks are configured to operate with the library of supported drivers. This

allows easy location of driver blocks and easy configuration of I/O boards.

It only need to drag and drop a universal I/O driver block from the I/O library

the same way as it would from a standard Simulink block library. And it connects an

I/O driver block to the model just as it would connect any standard Simulink block.

It just need to create a real-time application in the same way as it create any

other Simulink model, by using standard blocks and C-code S-functions. It can add

input and output devices to the Simulink model by using the I/O driver blocks from

the rtwinlib library provided with Real-Time Windows Target. This library contains

the following blocks:

• Analog Input

• Analog Output

• Counter Input

• Digital Input

• Digital Output

• Encoder Input

34

• Frequency Output

• Packet Input

• Packet Output

• Stream Input

• Stream Output

3.4.1 Setup and Configuration

Real-time Window Target can use any PC compatible computer that runs

Windows 2000, Windows XP 32-bit, or Windows Vista 32-bit. The computer can be

a desktop, laptop, or notebook PC.

3.4.1.1 Compiler

 Compiled code is created from the generated C-code using the Open Watcom

C/C++ compiler. For convenience, this compiler is shipped with the Real-Time

Windows Target software. No other third-party compiler is needed or can be used.

The Real-Time Windows Target software always uses the Open Watcom

C/C++ compiler, even if you have specified some other compiler using the mex -

setup command. Real-Time Windows Target software cannot be configured to use

a compiler other than Open Watcom C/C++.

35

3.4.1.2 Kernel Setup

 During software installation, all Real-Time Windows Target software is

copied onto the hard drive, but the Real-Time Windows Target kernel is not

automatically installed into the operating system. The kernel must be installed before

a Real-Time Windows Target application can be run. Installing the kernel configures

it to start running in the background each time the computer is start. The following

procedure describes how to use the command rtwintgt -install. The command

rtwintgt –setup can also be used instead. To install the kernel:

1. rtwintgt –install

is typed in the MATLAB Command Window

or:

a) Click the MATLAB Start button.

b) Select Links and Targets > Real-Time Windows Target > Install

real-time kernel

The MATLAB Command Window displays one of these messages:
You are going to install the Real-Time Windows Target

kernel.
Do you want to proceed? [y] :

or:

There is a different version of the Real-Time Windows

Target kernel installed.

Do you want to update to the current version? [y] :

2. y is typed to continue installing the kernel, or n to cancel installation without

making any changes.

36

If y, the MATLAB environment installs the kernel and displays the message:

The Real-Time Windows Target kernel has been

successfully installed.

3. If a message appears asking to restart your computer, do so before attempting

to use the kernel, or the Real-Time Windows Target model will not run

correctly.

4. After installing the kernel, verify that it was correctly installed by typing:

rtwho

The MATLAB Command Window should display a message that shows the

kernel version number, followed by performance, timeslice, and other

information similar to bellow

Real-Time Windows Target version 3.0.0 (C) The

MathWorks, Inc. 1994-2007

Running on Uniprocessor APIC computer.

MATLAB performance = 100.0%

Kernel timeslice period = 1 ms

Once the kernel is installed, you can leave it installed. The kernel remains idle after

you have installed it, which allows the Windows operating system to control the

execution of any standard Windows based application, including Internet browsers,

word processors, the MATLAB environment, and so on. The kernel becomes active

when you begin execution of your model, and becomes idle again after model

execution completes.

37

3.4.1.3 Testing the Installation

Once the installation of the Real-Time Windows Target software and kernel

is completed, it is recommended a quick test by running the model rtvdp.mdl. Doing

this test is a quick check to confirm that the Real-Time Windows Target software is

still working. The model rtvdp.mdl does not have any I/O blocks, so that this model

can run regardless of the I/O boards in your computer. Running this model will test

the installation by running Real-Time Workshop code generation software, Real-

Time Windows Target software, and the Real-Time Windows Target kernel.

1. To open the demo model rtvdp is typed in the MATLAB Command

Window, or launch MATLAB Online Help and choose Demos > Links and

Targets > Real-Time Windows Target > Real-Time Van der Pol

Simulation.

The Simulink model rtvdp.mdl window opens.

Figure 3.17 Simulink Model rtvdp.mdl

38

2. From the Tools menu, Real-Time Workshop is choose and Build Model is

selected. The MATLAB Command Window displays the following

messages:

Starting Real-Time Workshop build for model: rtvdp

Invoking Target Language Compiler on rtvdp.rtw

. . .

Compiling rtvdp.c

. . .

Created Real-Time Windows Target module rtvdp.rwd.

Successful completion of Real-Time Workshop build

procedure

for model: rtvdp

3. From the Simulation menu, click External, and then click Connect to

target.

The MATLAB Command Window displays the following message:

Model rtvdp loaded

4. From Simulation menu, Start Real-Time Code is clicked.

The Scope window displays the output signals. If the Scope window looks

like the next figure, the Real-Time Windows Target software have

successfully installed and have run a real-time application.

39

Figure 3.18 Output Signal rtvdp.mdl

5. From Simulation menu, Stop Real-Time Code is selected. The real-time

application stops running, and the Scope window stops displaying the output

signals.

3.4.2 Creating a Real Time Application

 This procedure explains how to create a simple Simulink model. This model

is used as an example to learn other procedures that are useful with Real-Time

Windows Target software. A Simulink model is created before running a simulation

or creates a Real-Time Target software

1. In the MATLAB Command Window, simulink is typed

The Simulink Library Browser opens. The left pane shows a hierarchy of

libraries and block categories, with the Simulink library at the top. The right

pane shows the blocks available in the category selected on the left. See

“Library Browser” for more information.

40

Figure 3.19 Simulink Library Browser

2. Choose File > New>Model, or the New model button is click on the toolbar.

An empty Simulink window opens:

Figure 3.20 Empty Simulink Windows

3. In the left pane of the Simulink Library Browser window, Simulink is click

and Sources is choose. Then Signal Generator block is click and drag from

the browser to the Simulink window. From Sinks, Scope is click and drag to

the Simulink window. Real-Time Window Target is selected and Analog

Output is drag to the Simulink window.

41

4. The Signal Generator output is connected to the Scope input by clicking-

and-dragging a line between the blocks. Likewise, the Analog Output is

connected between the Scope and Signal Generator.

5. Signal Generator block is double clicked. The Block Parameters dialog box

opens. From the Wave form list, square is choose.

In the Amplitude text box, 1 is entered

In the Frequency text box, 20 is entered

From the Units list, rad/sec is selected.

The Block Parameters dialog box shown in Figure 3.21.

Figure 3.21 Signal Generator Block Parameter

6. OK is clicked.

7. The Analog Output block is double clicked.

The Analog Output Block Parameters dialog box opens. The I/O Block

parameters dialog box opens. For an Analog Output block, the dialog box is

shown in Figure 3.22.

42

Figure 3.22 Analog Output Block Parameter

8. Install new board is clicked. From the list that appears, the manufacturer of

the board is pointed, and then a board type is selected. For example, it pointed

to Advantech, then click PCI-1710HG.

9. One of the following is selected, as appropriate to the board:

• For an ISA bus board, a hexadecimal base address is entered. This value

must match the base address jumpers or switches set on the physical

board. For example, if a base address of 0x300 is entered, in the Address

box 300 typed. The base address is selected by checking boxes A9

through A3.

• For a PCI bus board, the PCI slot is entered or Auto-detect are checked.

43

10. The Block Parameters dialog also able to set other block parameters, such as

the sample time. Set such parameters as needed.

11. Then Test is clicked.

The Real-Time Windows Target kernel tries to connect to the selected board,

and if successful, displays the following message.

Figure 3.23 Board Test OK Dialog

12. OK button on the message box is clicked, and again on the Block Parameters

dialog box.

The I/O Block Parameters dialog box closes, and the parameter values are

included in your Simulink model.

13. In the Sample time box, enter the same value entered in the Fixed step size

box from the Configuration Parameters dialog box, or an integer multiple of

that value 0.001

14. In the Output channels box, a channel vector is entered that selects the

analog output channels used on this board. The vector can be any valid

MATLAB vector form. For example, to select single analog output channels

on the PCI-1710HG board, 1 is entered or to select both analog output

channels, [1,2] or [1:2] is entered

15. For the Output range list, the input range for all of the analog input channels

entered in the Input channels box is copied. For example, with the PCI-

1710HG board, 0 to 10 V is choose.

44

16. From the Block input signal list, choose from the following options:

• Volts — Expects a value equal to the analog output voltage.

• Normalized unipolar — Expects a value between 0 and +1 that is

converted to the full range of the output voltage regardless of the output

voltage range. For example, an analog output range of 0 to +5 volts and -5

to +5 volts would both be converted from values between 0 and +1.

• Normalized bipolar — Expects a value between -1 and +1 that is

converted to the full range of the output voltage regardless of the output

voltage range.

• Raw — Expects a value of 0 to 2n -1. For example, a 12-bit A/D

converter would expect a value between 0 and 212 -1 (0 to 4095). The

advantage of this method is the expected value is always an integer with

no round off errors.

17. The initial value for each analog Output channel entered in the Output

channels box. For example, if 1 was entered in the Output channels box, and

an initial value of 0 volts is needed, enter 0.

18. The final value is entered for each analog channel entered in the Output

channels box. For example, if 1 is entered in the Output channels box, and a

final value of 0 volts is needed, 0 is entered.

19. One of the following is clicked:

• Apply to apply the changes to your model and leave the dialog box open.

• OK to apply the changes to your model and close the dialog box.

20. In the Simulink window, the Scope block is double click.

A Scope window opens.

21. The Parameters button is click.

A Scope parameters dialog box opens.

45

22. The General tab is clicked. In the Number of axes field, the number of

graphs needed in one Scope window is entered. For example, 1 is entered for

a single graph. Do not select the floating scope check box. In the Time range

field, the upper value for the time range is entered. For example, 1 second is

entered. From the Tick labels list, bottom axis only is choose. From the

Sampling list, decimation is choose and 1 is entered in the text box. The

Scope parameters dialog box looks similar to Figure 3.24.

Figure 3.24 Scope Parameters Dialog Box

23. One of the following is clicked:

• Apply to apply the changes to your model and leave the dialog box open.

• OK to apply the changes to your model and close the dialog box.

24. In the Scope window, the y-axis is right-clicked. From the menu, Axes

Properties is clicked.

46

Figure 3.25 Scope Window

The Scope properties: axis 1dialog box opens.

25. In the Y-min and Y-max text boxes the range for the y-axis is entered in the

Scope window. For example, -2 and 2 is entered as in Figure 3.26.

Figure 3.26 Scope Properties: axis 1

26. One of the following is clicked:

• Apply to apply the changes to your model and leave the dialog box open.

• OK to apply the changes to your model and close the dialog box.

The complete Simulink block diagram is shown in Figure 3.27.

47

Figure 3.27 Completed Simulink Block Diagram

27. From the File menu, Save As is clicked. The Save As dialog box opens. In

the File name text box, a filename for the Simulink model is entered and

Save is clicked. For example, rtwin_model is typed.

The Simulink software saves your model in the file rtwin_model.mdl.

3.4.3 Entering Configuration Parameters for Simulink

The configuration parameters give information to Simulink for running a

simulation. After creating a Simulink model, enter the configuration parameters for

Simulink. This procedure uses the Simulink model rtwin_model.mdl as an

example and assumes that the model has already been loaded.

1. In the Simulink window, and from the Simulation menu, Configuration

Parameters is clicked. In the Configuration Parameters dialog box, the

Solver tab is clicked.

The Solver pane opens.

48

2. In the Start time field, 0.0 is entered. In the Stop time field, the amount of

time the model needs run is entered. For example, 10.0 seconds is entered.

3. From the Type list, Fixed-step is chosen. Real-Time Workshop does not

support variable step solvers.

4. From the Solver list, a solver is chosen. For example, the general purpose

solver ode5 (Dormand-Prince) is choosen.

5. In the Fixed step size field, a sample time is entered. For example, 0.001
seconds is entered for a sample rate of 1000 samples/second.

6. From the Tasking Mode list, SingleTasking is picked. (For models with

blocks that have different sample times, MultiTasking is picked.)
Your Solver pane looks similar to the next Figure 3.28.

Figure 3.28 Configuration Parameter (Solver) Windows.

7. One of the following is clicked:

• Apply to apply the changes to your model and leave the dialog box open.

• OK to apply the changes to your model and close the dialog box.

49

3.4.4 Entering Simulation Parameters for Real-Time Workshop

 After creating a Simulink model, the simulation parameters for Real-Time

Workshop is could be entered. The simulation parameters are used by Real-Time

workshop for generating C code and building a real-time application. This procedure

uses the Simulink model rtwin_model.mdl as an example and assumes it have

already loaded that model:

1. In the Simulink window, and from the Simulation menu, Configuration

Parameters is clicked and a window as in Figure 3.29 appears.

Figure 3.29 Configuration Parameter (Hardware Implementation) Windows.

2. The Hardware Implementation node is click.

3. From the Device type list, 32-bit Real-Time Windows Target is

chosen. Under Emulation hardware, none is selected.

4. The Real-Time Workshop node is clicked. The Real-Time Workshop pane

opens.

5. In the Target selection section, the Browse button at the RTW system

target file list is clicked as shown on Figure 3.30.

6. The System Target File Browser opens. The system target file for Real-Time

Windows Target is selected and OK is clicked.

50

Figure 3.30 System Target File Browsers.

The system target file rtwin.tlc, the template make file rtwin.tmf, and

the make command make_rtw are automatically entered into the Real-Time

Workshop pane. Although not visible in the Real-Time Workshop pane, the

external target interface MEX file rtwinext is also configured when OK is

clicked. This allows external mode to pass new parameters to the real-time

application and to return signal data from the real-time application. The data

is displayed in Scope blocks or saved with signal logging. TheReal-Time

Workshop pane looks similar to the Figure 3.31.

Figure 3.31 Configuration Parameter (Real-Time Workshop) Windows.

51

7. One of the following is clicked:

• Apply to apply the changes to your model and leave the dialog box open.

• OK to apply the changes to your model and close the dialog box.

3.4.5 Creating a Real-Time Application

Real-Time Workshop generates C code from your Simulink model, then the

Microsoft Visual C++ compiler compiles and links that C code into a real-time

application. After you enter parameters into the Configuration Parameters dialog

box for Real-Time Workshop, a real-time application can be build. This procedure

uses the Simulink model rtwin_model.mdl as an example, and assumes the model

is loaded:

1. In the Simulink window, and from the Tools menu, point to Real-Time

Workshop, and Build Model is clicked. The build process does the

following:

• Real-Time Workshop creates the C code source files rtwin_model.c

and rtwin_model.h.

• The make utility make_rtw.exe creates the make file

rtwin_model.mk from the template make file rtwin.tmf.

• The make utility make_rtw.exe builds the real-time application

rtwin_model.rwd using the make file rtwin_model.mk created

above. The file rtwin_model.rwd is a binary file that we refer to as

your real-time application. You can run the real-time application with the

Real-Time Windows Target kernel.

2. The Simulink model is connected to the real-time application .After creating a

real-time application, MATLAB is closed and restarted, then it is connected

and the executable is run without having to rebuild.

52

3.4.6 Running a Real-Time Application

The real-time application is run to observe the behavior of your model in real

time with the generated code.

The process of connecting consists of

• Establishing a connection between the Simulink model and the kernel to

allow exchange of commands, parameters, and logged data.

• Running the application in real time.

After building the real-time application, the model is run in real time. This procedure

uses the Simulink model rtwin_model.mdl as an example, and assumes the real-

time application is created for that model:

1. From the Simulation menu, External mode simulation is selected. Connect

to Target is chosen or clicking connects to the target from the toolbar as

in Figure 3.32.

Figure 3.32 Connect To Target and Start Real-Time Code

MATLAB displays the message
Model rtwin_model loaded

2. From the Simulation menu, Start Real-Time Code is chosen or clicking start

the code from the toolbar as in figure 3.18.

53

Simulink runs the execution and plots the signal data in the Scope window. In this

example, the Scope window displays 1000 samples in 1 second, increases the time

offset, and then displays the samples for the next 1 second.

Note:

Transfer of data is less critical than calculating the signal outputs at the selected

sample interval. Therefore, data transfer runs at a lower priority in the remaining

CPU time after real-time application computations are performed while waiting for

another interrupt to trigger the next real-time application update. The result may be

a loss of data points displayed in the Scope window.

3. One of the following is done:

• The execution run until it reaches the stop time.

• From the Simulation menu, Stop Real-time Code is clicked.

The real-time application stops.

4. In the Simulation window, and from the Simulation menu, Disconnect From

Target is clicked.

5. From the Simulation menu, External is clicked.

MATLAB displays the message
Model rtwin_model unloaded

3.5 Driver

 A driver is an electronic circuit which enables a voltage to be applied across a

load in either direction. These circuits are often used in robotics and other

applications to allow DC motors to run forwards or backwards. Driver available as

integrated circuits, or can be built from discrete components. The reason why a

driver is used to be connected to the motor is because the in capability of the DAQ

Card to supply voltage higher than 10V. The DC motor used needed to be supplied

54

with 30 Volt in order to operate smoothly. With the driver it makes it possible to

connect and external power supply to the motor by controlling it trough the driver.

3.5.1 Geckodrive G340

 G340 is a PID feedback servo drive that could be used with motor rate up to

80Volt and 20Amp.The driver provide quadrature encoder inputs to be feedback to

the PID controller inside the driver, the driver also provide 5Volt 50Mamp encoder

supply for the motor encoder. Opto-isolated step and direction inputs are available

for position, speed and direction control. Build in the driver is a 20 kHz PWM

generator and a adjustable current limiter for protection. Due to it advance feature

and especially the build in PID controller as in Figure 3.33, it was not compatible to

be used it in this project.

Figure 3.33 Geckodrive G340 Block Diagram

55

3.5.2 Alternative Driver IR2109

 The IR2109are high voltage, high speed power MOSFET and IGBT drivers

with dependent high and low side referenced output channels. Proprietary HVIC and

latch immune CMOS technologies enable ruggedized monolithic construction. The

logic input is compatible with standard CMOS or LSTTL output, down to 3.3V

logic. The output drivers feature a high pulse current buffer stage designed for

minimum driver cross-conduction. The floating channel can be used to drive an N-

channel power MOSFET or IGBT in the high side configuration which operates up

to 600 volts. This driver. Figure 3.34 are the typical circuit connection for the driver.

Figure 3.34 Typical Connections for IR2109

 The driver operates when a pulse or a PWM is send to the IN terminal of the

driver, this will control the frequency of the two MOSFET gate to pass the voltage to

the motor. The higher the width of the on cycle of the pulse the more voltage is

passed to the motor therefore increasing the speed of the motor.

56

3.6 Project Planning

Figure 3.35 shows the flow chart of the development of the simulation and

experimental of PID controller design for controlling DC motor speed using

MATLAB application.

Figure 3.35 Flow Chart of Project

CHAPTER 4

RESULT AND DISCUSSION

4.1 Controller Design

 In this experiment, PID controller was proposed to control the DC motor

speed. The purpose of this part is to show how settings for controllers can be

obtained from knowledge of the process to be controlled. This forms part of the

complete control system design procedure. After manipulated and adjusted quantities

have been selected and their pairings, perhaps tentatively, chosen then values of one

or more parameters for each controller must be determined. The process with these

control loops and controller settings can then be tested, usually by simulation using a

mathematical model of the process and then with the actual process. The choice of

control loops and/or the controller settings may then be changed if their performance

is not satisfactory.

58

4.1.1 PID Controller

 PID controller is the most widely use controller in the industrial control

system. To design a PID controller there several method that could be used. The

reason why PID controller were choose for this project is because that it get the

desired output in a short time, with minimal overshoot and little error and also it is

relatively easy to be implement. Figure 4.1 show a Simulink block of the PID

controller.

To Workspace1

t

To Workspace

simout

Switch
Speed

PID

Input

DC Motor

In1 Out1

Clock

Figure 4.1 Simulink Block of PID Controller

4.1.1.1 Zeigler Nichols Method

 In 1942, John G. Ziegler and Nathaniel B. Nichols of Taylor Instruments

published a paper on closed loop-tuning techniques that remain popular to this day.

Ziegler and Nichols described a closed loop-tuning technique that is conducted with

the controller in automatic mode, but with the integral and derivative actions set to

zero. The Proportional gain is increased until even the slightest error causes a

sustained oscillation in the process variable.

The smallest controller gain that can cause such an oscillation is called the

ultimate gain Kpmax. The period of those oscillations is called the ultimate period Tosc.

59

The appropriate tuning parameters can be computed from these two values

substituting it in the Table 4.1.

Table 4.1: Typical Values of Proportional, Integral, and Derivative feedback Coefficient for

PID-type Controller

Controller Kp Ki Kd

P 0.5 Kpmax - -

PI 0.45 Kpmax 1.2 Tosc -

PID 0.6 Kpmax 2 Tosc Tosc / 8

From the table, the value of Kp, Ki, and Kd is applied to into the system.

4.1.1.2 Trial and Error Method

Trial and error, or trial by error, is a general method of problem solving for

obtaining knowledge, both propositional knowledge and know-how. In the field of

computer science, the method is called generate and test. In elementary algebra,

when solving equations, it is "guess and check". This approach can be seen as one of

the two basic approaches to problem solving and is contrasted with an approach

using insight and theory.

Due to the unsuccessful use of Ziegler Nichols method where when Kp was

increase the step pulse didn’t oscillate. Therefore to find the value of Kp, Ki, and Kd,

trial and error method was the resort. Trough this method the value of Kp, Ki, and Kd,

was obtain by increasing their value until the best result are obtain. In this simulation

the values obtain is as follow:

Kp = 15 Ki = 86 Kd = 0.05

60

4.2 Simulation without PID Controller

 The detailed and explicit simulation block for the DC motor without PID

controller is shown in Figure 4.2.

ka2

0.105

ka1

0.105

To Workspace1

t

To Workspace

simout

Switch
Speed

PID

Input

Clock

1/(sLa+ra)

1

0.004 s+2.7
1/(Js+Bm)

1

0.0001 s+0.0000093

Figure 4.2 Detailed Simulink Block of the System

 The DC motor parameter ra, La, Bm, ka, and J is entered in the simulation

block. Assigning the desired reference speed of the DC motor to be r(t) = 1 rad, the

modeling was performed and Figure 4.2 illustrates the output dynamic. As it can be

seen there is a large error from the output show from the simulation. The steady-state

error is 8.503 rad.

Figure 4.3 Output of DC Motor without PID Controller

61

4.3 Simulation with PID Controller

 After simulating the system without PID controller, PID controller is

implemented to the Simulink block above and the proportional Kp, integral Ki, and

derivative Kd coefficients is enter in the PID controller block as illustrated in Figure

4.4.

ka2

0.105

ka1

0.105

To Workspace1

t

To Workspace

simout

Switch
Speed

PID

Input

Clock

1/(sLa+ra)

1

0.004 s+2.7
1/(Js+Bm)

1

0.0001 s+0.0000093

Figure 4.4 Detail Simulink Block of the System with PID Controller

Assigning the reference point of the DC motor speed at r(t) = 1 rad, the modeling

was performed and Figure 4.5 illustrated the dynamic output of the system.

The commonly performance criteria to be attained are the stability with the

desired stability margin in the full operating envelope, the robustness to parameter

variation and changes, tracking and disturbance attenuation, dynamic and steady

state accuracy, and dynamic performance specification imposed on the states and the

transient response. For the DC motor system studied and designed, the settling time

Ts is 29.55ms, the maximum overshoot %OS is 1.2%, the rise time Tr is 7.3828ms

and the delay time Td is 2.453ms.

62

Figure 4.5 Output of DC Motor without PID Controller

4.4 Experiment without PID controller

 After simulating the system with without PID controller, the actual DC motor

is applied to see the weather the simulation coefficient of the proportional Kp,

integral Ki, and derivative Kd will performed or needed more tuning. In this section,

the DC motor will be connected to the computer through a driver and the DAQ card.

The DAQ card will send the information or signal to the driver and the DC motor

will turn. Due to the nature of the driver where it PWM signal in order to pass the

voltage to the DC motor it is developed in Figure 4.6 the Simulink block to control

the speed of the motor using pulse generator where the duty cycle is manipulated.

63

Scope

Pulse
Generator

Analog Output
Advantech

PCI -1710HG [auto]

Analog
Output

Figure 4.6 Simulink Block of Experiment without PID

The square wave is set to frequency of 1 kHz and the voltage applied to the

DC motor trough the driver is 30 Volt. The pulse generated from the pulse generator

is as shown in Figure 4.7 to Figure 4.9. The speed and voltage for every 10% of duty

cycle is recorded in Table 4.2.

Figure 4.7 10% Duty Cycle Pulse

64

Figure 4.8 50% Duty Cycle Pulse

Figure 4.9 90% Duty Cycle Pulse

65

Table 4.2: Speed and Voltage for every 10% duty cycle

Duty Cycle
(%)

Speed
(rpm)

Speed Increase
(rpm)

Voltage
(V)

Voltage Increase
(V)

0 0 0 0 0

10 240 240 3.0 3.0

20 480 240 6.0 3.0

30 720 240 9.0 3.0

40 960 240 12.0 3.0

50 1200 240 15.0 3.0

60 1440 240 18.0 3.0

70 1680 240 21.0 3.0

80 1920 240 24.0 3.0

90 2160 240 27.0 3.0

100 0 0 0 0

 The speed of the DC motor was measured trough an encoder where a square

ware pulse was the output. There are multiple ways to determine the angular velocity

of a quadrature Encoder. From the develop square wave pulse output from the

encoder, the number of quadrature Encoder pulses in a fixed time interval is counted

to estimate the velocity of the encoder, Figure 4.10 below demonstrates this

procedure. This method is appropriate for high speed applications.

Figure 4.10 Velocity Estimation

66

Once the number of pulses in a fixed time interval is measured the angular velocity

of the quadrature Encoder can be calculated using the following formula:

Where, “Encoder Pulses” is the number of quadrature encoder pulses received in

the Fixed Time Interval and the ‘Pulse per Revolution’ is the number of pulse in 1

revolution of the encoder which is 240pulse Per Revolution base on the datasheet

 From Table 4.2, the increase on speed and voltage is constant. For every 10%

of duty cycle the speed increase and amount of 240 rpm and 3 Volt. The reason at

duty cycle 100% the DC motor speed is 0 rpm is because the driver used only

accepts pulse at the input in order to control the voltage pass to the DC motor. At

100% duty cycle the square wave pulse become a constant value of 10V therefore the

drive does not operate. From the table we can figure out the maximum speed of the

DC motor at 30 Volt as if it was connected directly to the 30 Volt voltage supplies

which is 2400 rpm.

4.5 Experiments with PID Controller

 During the development of the Simulink block for the experiment PID

controller with the DC motor, there were few problem encounter and solve but the

end result were a problem that was unsolved. Figure 4.11 is the generated Simulink

Block to be run with the real DC motor.

67

Velocity Decoder

In1Out1

To Workspace1

t

To Workspace

simout

Switch
Step

Scope

PWM

u

t
yfcnPID

Output Pulse
Advantech

PCI -1710HG [auto]

Analog
Output Feedbacks Speed

0

Encoder Phase A
Advantech

PCI -1710HG [auto]

Analog
Input

Desired Speed

1200

Clock1

Clock

Figure 4.11 Complete Simulink Block of the Experiment

Due to the nature of the driver, the Simulink developed needed to create a PWM

where the duty cycle is controlled but the PID base on the input speed. To get duty

cycle a MATLAB SQUARE(T) is used. SQUARE(T) generates a square wave with

period 2π for the elements of time vector T. SQUARE(T) is like SIN(T), only it

creates a square wave with peaks of +1 to -1 instead of a sine wave.

SQUARE(T,DUTY) generates a square wave with specified duty cycle. The duty

cycle, DUTY, is the percent of the period in which the signal is positive. In order to

create square wave of frequency of 1 kHz a function as such is create pwm =

square(2*pi*1000*t,u/2400*100), where u is the desired speed. Then this

function inserted into the Embedded MATLAB Function.

In order to compare the desired speed with the actual speed of the DC motor,

so that the PID controller can to calculate the error. The velocity measurement as

been discussed in previous section, a velocity decoder is created. The velocity

decoder is as show in Figure 4.12. The square wave pulse generated from the

encoder is sent to the DAQ card trough the real-time window target Analog Input

and to the velocity decoder In1. The signal is send to the counter and the positive

pulse is count for every 1ms where another pulse reset the count for every 1.1ms so

that the count doest continue till infinity. The counted value of the encoder pulse then

is send to the Velocity Formula where it only collect the data from the counter every

1ms only so that the count value us calculated for every count value. Using the

68

previous discussed formula to calculate the motor speed is used in this Embedded

MATLAB Function of Velocity Formula. The function is as follow:

y = ((u/250)*60)/0.001;

Where u is the total counted value of the positive pulse or rising edge of the encoder

square wave signal. y is then compare with the desired speed of the DC motor and

send to the PID controller to evaluate and fix the DC motor speed if there is an error.

Out 1
1

Velocity Formula

uy fcn

Pulse
Generator

Gain

1

Counter

Clk

Rst
CntCnt Up In1

1

Figure 4.12 Velocity Decoder Subsystem Simulink Block

 It was stated before that the experiment Simulink block had an unsolved

problem where it was

Function output 'y' cannot be of MATLAB type.

Function 'Embedded MATLAB Function' (#30.0.176), line 1,

column 1:

"function y = fcn(u,t)"

Errors occurred during parsing of Embedded MATLAB function

'Embedded

MATLAB Function'(#30)

69

Embedded MATLAB Interface Error: Errors occurred during

parsing of Embedded MATLAB function 'Embedded

MATLAB Function'(#30).

Embedded MATLAB Interface Error:

 In order to solve the problem it is needed to solved this problem or find other

way to created the PWM in Simulink or use a driver with build in PWM generator.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

 MALTAB and Simulink is very user-friendly software, through which

control system is design sung various block provided. Simulink save a lot of time by

avoiding hundred lines of coding. MATLAB and Simulink are used for simulation

and for designing real-time model. There is an inherent advantage in using Simulink

to model the control system. It saves time and effort, allowing the engineer to design

the system in a straightforward manner, rather than wasting time writing source code

from scratch. Only recently has Simulink had the capability to directly target

hardware. It was now possible to create Simulink models for motor testing, open-

loop system design, as well as closed-loop system design without writing any lines of

code.

 The basic aim of this thesis is to control the speed of a DC motor using PID

controllers and is accomplished with desired specifications. The block diagram of a

DC motor was developed and by using Simulink, a toolbox extension of the

MATLAB program, the block diagram was simulated with expected waveforms

output. The simulation and modeling of the DC motor also gave an inside look of the

71

expected output when testing the actual DC motor. The results from the simulation

were never likely to occur in real-life condition due to the response times and

condition of the actual motor. A PID controller were design suing Ziegler Nichols

methods and trial and error method Then these controllers are used for controlling

the speed of a DC Motor, during simulation and real-time closed loop operation.

During simulation, controllers provided output with following specifications:

• Steady-state error of 0.001

• Rise time of 7.3828ms

• Delay time of 2.453ms

• % overshoot of 1.2%

Due to the problem encountered when conducting the experiment of the actual DC

motor there was no data for the controlled DC motor accept for the speed and voltage

of the uncontrolled DC motor. The uncontrolled DC motor show that for every 10%

of the duty cycle there is an increase of 240 rmp of the DC motor speed and 3 Volt of

DC motor voltage In order to control the DC motor, the width of the duty cycle must

be controlled to get the desired speed.

5.1 Future Recommendation

 Lots of future work can be done to exploit the advantages of MATLAB and

Simulink and their hardware targeting capabilities. This thesis used a simple

structure of PID controller; a complicated structure can be chosen to obtain better

output. There are various advances tuning method such as Robust Adaptive PID

(RaPID) could be used in designing PID controller other than Ziegler Nichols

methods and trial and error methods. An intelligent controller could also be used for

speed control of DC drives, so the combination of intelligent controller and PID

controller can be used for better control of speed.

72

For future studies for student to test and design a controller, a closed – loop

control of DC motor via internet could be developed. This way student or event

lecture could test their controller without event needing to go to the laboratory to

collect data or set up the equipment, they just needed to communicate their controller

with the server and the program and the data is updated to a web page for easy access

and inconvenient.

73

REFERENCE

[1] 9 January 2008, citing internet source URL

http://en.wikipedia.org/wiki/PID_controller

[2] Lyshevski, S. E., Electromechanical Systems, Electric Machines, and Applied

Mechatronics: CRC press. 1999

[3] 10 January 2008, citing internet source URL

http://en.wikipedia.org/wiki/Electric_motor#DC_motors

[4] 10 January 2008, citing internet source URL

http://en.wikipedia.org/wiki/Brushless_DC_electric_motor

[5] 9 January 2008, citing internet source URL

http://www.actc-control.com/resource_centre/tech_pid.html#Introduction

[6] 15 January 2008, citing internet source URL

http://www.measurementcomputing.com/daq_card.htm

[7] 15 September 2008, citing internet source URL

http://en.wikipedia.org/wiki/Control_theory

[8] Gandra, D., Real-Time of Robust PID Controller For Speed Control of DC

Motor, Master thesis, Texan A&M University-Kingsville; 2006

74

[9] Jingwei Xu, Fuzzy PID Control through Optimization: A New Method for

PID Control, Doctor Thesis, Marquette University, Milwaukee, Wisconsin;

2006

[10] Min Xu, High Performance and Robust Control, Doctor Thesis, Florida

Atlantic University, Boca Raton, Florida; 1996

[11] Kamalasdan, S., and Hande, A., A PID Controller for Real-Time DC Motor

Speed Control using the C505C Microcontroller, pp. 34-39

[12] Chau, K.T. and Chan, C.C., A Spice Compatible Model of Permanent Magnet

DC Motor Drives, IEEE Catalogue No. 95TH8025, Hong Kong, pp. 477-482;

1995

[13] Seller, D., an Overview of Proportional Plus Integral Plus Derivative Control

and Suggestions for Its Successful Application and Iimplementation, Portland

Energy Conservation Inc, Portland, Oregon

[14] Esposito, Joel M., Feemster, M. G., and Watkins, J. M., Role of a MATLAB

Real-Time Hardware Interface Within a Systems Modeling Course,

Proceedings of the 2004 American Society for Engineering Education Annual

Conference & Exposition, United States Naval Academy; 2003

[15] Samaranayake, L., Alahakoon, S., Closed – loop Speed Control of a

Brushless DC Motor via Ethernet

[16] Babuška, R., and Stramigioli, S., Matlab and Simulink for Modeling and

Control, Delft University of Technology; 1999

[17] Kamalasadan, S., Real Time Speed Control of a DC Motor using

C505CMicrocontroller, The University of Toledo; 2001

75

[18] Klee, A., Development of a Motor Speed Control System Using Matlab and

Simulink, Implemented with a Digital Signal Processor, Bachelor Thesis,

University of Central Florida; 2005

[19] Howe, T., K., Evaluation of the transient response of a DC motor using

MATLAB/SIMULINK, Bachelor Thesis, University of Queensland; 2003

[20] Aung, W., P., Analysis on Modeling and Simulink of DC Motor and its

Driving System Used for Wheeled Mobile Robot, International Journal of

Computer, Information, and Systems Science, and Engineering Volume 2

Number 1, pp. 22-29

76

APPENDIX A

Simulink Block of PID Control DC Motor (Simulation)

To Workspace1

t

To Workspace

simout

Switch
Speed

PID

Input

DC Motor

In1 Out1

Clock

Simulink Block of DC Motor

Out 1
1

ka2

0.105

ka1

0.105
1/(sLa+ra)

1

0.004 s+2.7
1/(Js+Bm)

1

0.0001 s+0.0000093In1
1

Simulink Block of PID Controller

u

1

Proportional
Gain

P

Integrator

1
s

Integral
Gain

I

Ideal
Derivative

du /dt

Derivative
Gain

D

e

1

77

APPENDIX B

Simulink Block of PID Control DC Motor (Experiment)

Velocity Decoder

In1Out1

To Workspace1

t

To Workspace

simout

Switch
Step

Scope

PWM

u

t
yfcnPID

Output Pulse
Advantech

PCI -1710HG [auto]

Analog
Output Feedbacks Speed

0

Encoder Phase A
Advantech

PCI -1710HG [auto]

Analog
Input

Desired Speed

1200

Clock1

Clock

Simulink Block of Velocity Decoder

Out 1
1

Velocity Formula

uy fcn

Pulse
Generator

Gain

1

Counter

Clk

Rst
CntCnt Up In1

1

78

APPENDIX C

Embedded MATLAB Function

function pwm = fcn(u,t)

% This block supports the Embedded MATLAB subset.

% See the help menu for details.

pwm = square(2*pi*1000*t,u/2400*100);

function y = fcn(u)

% This block supports an embeddable subset of the MATLAB

language.

% See the help menu for details.

y = ((u/250)*60)/0.001;

MATLAB Command

plot(t,simout)

plot(t,scope)

	- 1 - Cover Page.pdf
	- 2 -pengesahan_status_tesis.pdf
	- 3 - acknowledgement_by_supervisor.pdf
	- i - title page.pdf
	- ii - Declaration.pdf
	- iii - Dedication.pdf
	- iv - acknowledgement.pdf
	- v - Abstract.pdf
	- vi - Abstrak.pdf
	- vii - Table of Content.pdf
	- x - List of Table.pdf
	- xi - List of Figures.pdf
	- xv - List of Symbols.pdf
	- xvi - List of Appendices.pdf
	1 - Chapter 1.pdf
	2 - Chapter 2.pdf
	3 - Chapter 3.pdf
	4 - Chapter 4.pdf
	5 - Chapter 5.pdf
	6 - Reference.pdf
	7 - Appendix A.pdf
	8 - Appendix B.pdf
	9 - Appendix C.pdf

