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ABSTRAK 

Algoritma metetauristik telah menunjukkan prestasi yang memberangsangkan dalam 

menyelesaikan masalah pengoptimuman dunia yang canggih. Walau bagaimanapun, 

banyak algoritma metaheuristik masih mengalami kadar penumpuan yang rendah kerana 

kurang keseimbangan antara ekplorasi (iaitu carian pada ruang berpotensi baru) dan 

eksploitasi (iaitu manipulasi jiran terbaik yang sedia ada). Dalam  masalah 

pengoptimuman komplek tertentu, kadar penumpuan masih menjadi masalah kerana 

adanya potensi tinggi untuk terperangkap dalam optima lokal. Teknik pembelajaran 

umum berasaskan pembangkang (OBL) menghasilkan prestasi yang memberansangkan 

untuk menangani isu ini. Walaubagaimanapun, Teknik pembelajaran umum berasaskan 

pembangkang OBL selalunya menumpukan pada penyelesaian hanya pada satu arah 

berlawanan. Menangani isu kelemahan OBL ini, penyelidikan ini mencadangkan teknik 

pembelajaran umum berasaskan pembangkang (OBL) baru yang diilhamkan oleh 

fenomena semulajadi sistem cermin selari yang dikenali sebagai Teknik Cermin Selari 

(PMT). Seperti pendekatan OBL sedia ada, PMT menghasilkan penyelesaian berpotensi 

baru berdasarkan calon yang dipilih pada masa ini. Tidak seperti teknik yang berasaskan 

OBL sedia ada, PMT menghasilkan lebih daripada satu calon dalam pelbagai arah. Bagi 

menilai prestasi dan kesesuaiannya, PMT telah diadaptasi untuk empat algoritma 

metaheuristik kontemporari: Evolusi Perbezaan (DE), Pengoptimuman Gerombolan 

Partikel (PSO), Simulasi  Penyepuhlindapan (SA), dan Algoritma Pengoptimuman Ikan 

Paus (WOA), untuk menyelesaikannya 15 fungsi penanda aras beserta 2 masalah khusus 

melibatkan rekabentuk kimpalan beam dan rekabentuk tekanan kapal selam. Secara 

eksperimen, PMT menunjukkan hasil yang memberangsangkan dengan mempercepatkan 

kadar penumpuan terhadap algoritma asal dengan jumlah penilaian kecergasan yang 

sama. 
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ABSTRACT 

 

Metaheuristic algorithms have shown promising performance in solving sophisticated 

real-world optimization problems. Nevertheless, many metaheuristic algorithms are still 

suffering from a low convergence rate because of the poor balance between exploration 

(i.e. roaming new potential search areas) and exploitation (i.e., exploiting the existing 

neighbors). In some complex problems, the convergence rate can still be poor owing to 

becoming trapped in local optima. Opposition-based learning (OBL) has shown 

promising results to address the aforementioned issue. Nonetheless, OBL-based solutions 

often consider one particular direction of the opposition.  Considering only one direction 

can be problematic as the best solution may come in any of a multitude of directions.   

Addressing these OBL limitations, this research proposes a new general OBL technique 

inspired by a natural phenomenon of parallel mirrors systems called the Parallel Mirrors 

Technique (PMT). Like existing OBL-based approaches, the PMT generates new 

potential solutions based on the currently selected candidate. Unlike existing OBL-based 

techniques, the PMT generates more than one candidate in multiple solution-space 

directions. To evaluate the PMT’s performance and adaptability, the PMT was applied to 

four contemporary metaheuristic algorithms, Differential Evolution, Particle Swarm 

Optimization, Simulated Annealing, and Whale Optimization Algorithm, to solve 15 

well-known benchmark functions as well as 2 real world problems based on the welded 

beam design and pressure vessel design. Experimentally, the PMT shows promising 

results by accelerating the convergence rate against the original algorithms with the same 

number of fitness evaluations comparing to the original metaheuristic algorithms in 

benchmark functions and real-world optimization problems. 
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