

*Corresponding author.
Email address: ffaisae@ump.edu.my
doi: 10.14456/easr.2022.21

Engineering and Applied Science Research 2022;49(2):189-200 Research Article

 Engineering and Applied Science Research

 https://www.tci-thaijo.org/index.php/easr/index

 Published by the Faculty of Engineering, Khon Kaen University, Thailand

A novel Tiki-Taka algorithm to optimize hybrid flow shop scheduling with energy consumption

Mohd Fadzil Faisae Ab Rashid*1) and Muhammad Ammar Nik Mu'tasim2)

1)Department of Industrial Engineering, College of Engineering, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
2)Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia

Received 18 January 2021

Revised 24 May 2021

Accepted 2 June 2021

Abstract

Hybrid flow shop scheduling (HFS) has been thoroughly studied due to its significant impact on productivity. Besides the impact on

productivity, the abovementioned problem has attracted researchers from different background because of its difficulty in obtaining

the most optimum solution. HFS complexity provides good opportunity for researcher to propose an efficient optimization method for

the said problem. Recently, research in HFS has moved towards sustainability by considering energy utilization in the study.

Consequently, the problem becomes more difficult to be solved via existing approach. This paper modeled and optimized HFS with

energy consumption using Tiki-Taka Algorithm (TTA). TTA is a novel algorithm inspired by football playing style that focuses on

short passing and player positioning. In different with existing metaheuristics, the TTA collected information from nearby solution and

utilized multiple leaders’ concept in the algorithm. The research began with problem modeling, followed by TTA algorithm

formulation. A computational experiment is then conducted using benchmark problems. Then, a case study problem is presented to

assess the applicability of model and algorithm in real-life problems. The results indicated that the TTA consistently was in the first

and second ranks in all benchmark problems. In addition, the case study results confirmed that TTA is able to search the best fitness

solution by compromising the makespan and total energy utilization in the production schedule. In future, the potential of TTA will be

further investigated for flexible hybrid flow shop scheduling problems.

Keywords: Hybrid flow shop, Tiki-Taka algorithm, Energy efficiency

Nomenclature

𝑛 Total number of jobs 𝑡𝑖𝑘𝑠 Processing time of job i on machine k at stage s

𝑖 Index for job. 𝑖 = 1, 2, … , 𝑛 𝐸𝑘𝑠 Power rate of machine k at stage s in Watt

𝑆 Total number of stage 𝐶𝑖 Completion time of job i

𝑠 Index for stage. 𝑠 = 1, 2, … , 𝑆 𝐶𝑚𝑎𝑥 Makespan time

𝐾𝑠 Total number of machines at stage 𝑆 𝑇𝐸𝐶 Total energy consumption

𝑘𝑠 Index for machine at stage 𝑆. 𝑘𝑠 = 1, 2, … , 𝐾𝑠.

1. Introduction

 Production scheduling is an important activity in manufacturing. This activity refers to assigning resources such as plant, machine,

process, material, and human, among others, to produce finish or semi-finish products. The production scheduling problem is mainly

divided into flow shop and job shop scheduling problems, depending on the resource flows. One of the production scheduling variants

is known as hybrid flow shop scheduling (HFS).

 HFS is the scheduling problem in which the production is conducted in a few stages. In each stage, parallel machines exist [1]. The

basic version of HFS assumes that the process must strictly follow the predetermined process precedence, while the machine has similar

capacities in performing the task. Consequently, there are two main issues in HFS: to determine the job processing sequence, and to

assign job to specific machine in each stage [2].

 Various types of HFS have been studied in previous researches. The most basic version is known as identical parallel machine,

where all machines in every stage are identical. The second version is uniform parallel machine, in which the processing time is

dependent on the machine speed. Meanwhile, the third version is the unrelated parallel machine; in this version, the parallel machine

does not depending on another machine. The processing time for similar process might be different because of model variation [3].

This research focuses on unrelated HFS problem.

 Recently, research in HFS tend to consider energy utilization, besides the common aims such as total completion time, lateness and

penalty. The energy consideration not only provides sustainable advantage, but also reduces energy cost for manufacturer. Li et al.

modeled the energy aware HFS by considering the energy utilization in standby and processing states. In addition, their work considered

the setup time between consecutive jobs [4].

190 Engineering and Applied Science Research 2022;49(2)

 On the other hand, researcher embeds the energy utilization in HFS by minimizing the total production cost [5]. This approach,

however, is only effective when the energy cost contributes to a certain portion from the total cost. When the energy cost is relatively

small compared with other costs, the energy saving effect will be insignificant and manufacturer tends to ignore this solution. In order

to avoid this situation, researcher would optimize HFS with energy utilization by lowering the relative importance of energy in the

optimization process [6]. This leads the obtained solution to have preference over the makespan and tardiness objectives.

Another strategy used in HFS to reduce energy utilization is by manipulating the energy price. In many countries, the electricity rate is

different during peak and off-peak period. In this approach, the total energy consumption is still the same, but the production schedule

is shifted to the off-peak period with lower electricity rate [7, 8]. As such, the energy cost borne by the company is reduced, although

the carbon footprint will remain the same.

 Various types of metaheuristic algorithms were proposed to optimize HFS with energy utilization for the past three years

(Table 1). Among popular optimization algorithm for HFS with energy consumption is Evolutionary Algorithm (EA). Jiang and Zhang

improved multi-objective EA by introducing external archive population for convergence and local search for population diversity [9].

Meanwhile, Liu et. al used weighted sum approach in EA to handle makespan and energy objectives in optimization [10]. On the other

hand, Gong et. al hybridized EA with variable neighborhood search (VNS) to enhance the algorithm performance [11].

Table 1 Metaheuristic algorithms used in HFS with energy utilization from 2019

Metaheuristic algorithm Reference

Evolutionary algorithm Jiang & Zhang, 2019 [9].

Liu et al., 2020 [10].

Gong et al., 2020 [11].

Genetic algorithm Schulz, 2019 [5]

Meng et al., 2019 [12]

Imperialist competitive algorithm Li et al., 2019 [6]

Zhou et al., 2019 [13]

Tao et al, 2020 [14]

Ant lion optimization Geng et al., 2020 [8]

Whale optimization algorithm Utama et al., 2020 [15]

Multi-verse optimizer Geng et al, 2019 [16]

Grasshopper algorithm optimization Utama et al., 2020 [17]

 Another algorithm implemented for HFS with energy consumption is Genetic Algorithm (GA). This algorithm has been improved

by introducing energy-conscious decoding method that reduces energy consumption in the solution decoding [12]. Another work

utilizing GA is by introducing intelligent swap and shifting procedure in Genetic Algorithm (GA) [5]. It was reported that this approach

is able to find near-optimal solutions.
 In 2019 and 2020, it was claimed that Imperialist Competitive Algorithm (ICA) is one of the frequently used algorithms to optimize

HFS with energy consumption. Zhou et al., for example, modified the ICA by clustering the candidate solution into groups based on

the solution fitness [13]. The abovementioned researchers found that this approach was able to keep solution diversity. On the other

hand, Li et al. presented two-level ICA [6]; the first level consists of the strongest candidate solutions, while the second level considers

other solutions. Meanwhile, Tao et al. proposed a discrete version of ICA [14]. This approach requires special operators to conduct

mathematical operation in the algorithm.

 Besides popular algorithms, researchers also implemented relatively new algorithms to optimize HFS with energy consumption.

For instance, Geng et al. utilized Ant Lion Optimization (ALO) to optimize the problem. ALO was proposed back in 2014 to mimic

the hunting behavior of ant lions. The results indicated that the multi-objective ALO was comparable with well-established algorithms

such as NSGA-II and multi-objective PSO [8]. Apart from ALO, Whale Optimization Algorithm (WOA) is another new algorithm

used to optimized HFS with energy utilization [15]. For optimization purposes, the WOA was hybridized with local search strategies

to enhance the algorithm performance, in which the hybrid WOA was found to have successfully produced optimum energy

consumption while maintaining the completion time.

 Multi-Verse Optimizer (MVO) is also a relatively new algorithm implemented to optimize HFS with energy utilization [16]. The

MVO is improved by embedding additional operators such as Lèvy Flight and local search to improve the performance. Grasshopper

Algorithm Optimization (GOA) is also utilized to optimize the HFS with energy problem in printing company [17]. The optimization

algorithm is able to reduce energy utilization in a company.

 Based on the previous research, variety of optimization algorithms were implemented to optimize the HFS with energy utilization.

One of the reasons for algorithm variation is that none of the single algorithm is able to perform best in all conditions. In other words,

the performance of optimization algorithm depends on numerous factors, such as the algorithm coding, problem representation,

computational experiment environment, and test problem/case study used during the experiment. Apart from adopting well-established

algorithms such as EA and GA, researchers also tend to utilize relatively new algorithms, such as WOA, MVO and GOA. These

algorithm performances are explored for the studied problem.

 This research, therefore, proposes a novel algorithm called Tiki-Taka Algorithm (TTA) to optimize HFS with energy utilization.

TTA is an optimization algorithm inspired by football playing style called tiki-taka. In this playing style, the player makes a short pass

to the nearby player while aiming to deliver the ball to the key players. Using the same concept, the TTA gathers information from a

nearby solution and the leading solutions in order to progress to the next iteration. The next section presents HFS with energy utilization

problem, followed with TTA details. Next, this paper discusses results from computational experiment, as well as the case study.

Finally, the conclusion is made based on the findings.

2. Hybrid flow shop with energy consumption problem

 Hybrid flow shop scheduling (HFS) combines parallel machine and flow shop scheduling problem. In HFS, there are n jobs to be

processed at S stages in a predetermined order. In each stage, s, there are Ks parallel and unrelated machines that can be used to conduct

similar process. However, the capabilities of each machine in a stage differ due to model and speed variants. There are two main issues

Engineering and Applied Science Research 2022;49(2) 191

to be solved in HFS problem; the first issue is the sequence of job processing, whereas the second issue is the job-machine assignment

in a particular stage. The following notations are used for HFS modeling.
 The optimization objective in equation (1) aims to minimize the completion time, which is also known as makespan. This formula

refers to the completion time of the last operation in the whole planning period. The second objective function (2) calculates the total

energy utilization. TEC only calculates the energy utilization during operational period because in normal practice, the idle machine

will be turned off for safety reasons.

 maxmaxC Ci 1, 2, ...,i n (1)

1 1 1

Kn S s
TEC t E y

iks ks iksi s ks
    
  

 (2)

Subjected to:

1 if job is processed at machine

0 otherwise

i ksy
iks

 (3)

1, 1, 2, ..., ; 1, 2..,
1

Ks
y i n s S
iksks

    


 (4)

 Constraint (4) ensures that the job, i, is only processed at exactly one machine in each stage. The HFS problem is represented using

continuous representation in a matrix of 𝑛 × ∑ 𝐾𝑠
𝑆
𝑠=1 , as in equation (5). Equation (6) presents the minimum value in each row. The

job sequence will be determined by sorting Ximin in an ascending order, as per equation (7).

...1,1,1 1,1,2 1, ,

...2,1,1 2,1,2 2, ,

...

...,1,1 ,1,2 , ,

x x x S Ks

x x x S KsX

x x xn n n S Ks



 
 
 
 
 
 

 (5)

1
min

2
min

min ...

min

x

x
Xi

xn



 
 
 
 
 
 

 (6)

 ' ascending
min

X Xj i (7)

{ }; 1, 2, ...,J j j n   (8)

2.1 Numerical example of problem modeling

 As an example, the HFS model is let to consider a three-job and two-stage problem. Table 2 represents the processing time for the

jobs at different machines.

Table 2 Example of HFS processing time

Job Stage 1 Stage 2

M1_1 M1_2 M2_1 M2_2 M2_3

J1 8 11 3 5 3

J2 6 4 7 9 6

J3 2 3 6 4 4

2.1.1 Solution representation

 The HFS problem is represented using continuous encoding in a matrix of 𝑛 × ∑ 𝐾𝑠
𝑆
𝑠=1 . In initial iteration, the problem

representation is randomly created, while for the rest of iteration, the problem representation is generated from new player position in

TTA. For the abovementioned example problem, the problem is represented in Table 3.

192 Engineering and Applied Science Research 2022;49(2)

Table 3 Example of problem representation

Job m1_1 m1_2 m2_1 m2_2 m2_3

j1 0.7174 0.1188 0.2760 0.3669 0.9024

j2 0.2228 0.0890 0.9993 0.4492 0.0692

j3 0.1620 0.6740 0.6966 0.6724 0.5395

 To decode the job processing sequence, a minimum value from each row that represents the jobs is extracted. Then, the minimum

value in each row is sorted in an ascending order. Using this rule, the decoded job processing sequence will be j2, j1, and j3 (Table 4).

Table 4 (a) Minimum representation value, (b) Sorted job according to minimum representation

Job Minimum Job Minimum

j1 0.1188 j2 0.0692

j2 0.0692 j1 0.1188

j3 0.1620 j3 0.1620

 The next decision is to assign jobs to a specific machine in the stages. For this purpose, the similar rule that is based on minimum

representation value is adopted. For job j1 in the first stage, the representation value of m1_2 is smaller than m1_1. Therefore, the j1 in

Stage 1 will be assigned to m1_2. On the other hand, j1 in Stage 2 will be assigned to m2_1 because the representation value for m2_1 is

the smallest, compared with m2_2 or m2_3. The job-machine assignment for this example is presented in Table 5.

Table 5 Job-machine assignment

Job Assigned machine

 Stage 1 Stage 2

j2 m1_2 m2_3

j1 m1_2 m2_1

j3 m1_1 m2_3

 Figure 1 show a schedule generated from the decoded HFS solution in the presented example. The job in a specific stage will be

assigned to the machine subjected to the machine availability and also precedence between stages. For example, j3 is the only job that

being assigned to m1_1 in Stage 1. Although j3 is the last job to be processed, since the machine m1_1 is available after j2 and j1 in Stage

1 were assigned, it will begin the process from time 0. In contrast, j3 on the second stage can only begin the process at the 10th minute

due to availability of m2_3.

Figure 1 Example of generated production schedule

3. Tiki-Taka algorithm

 Tiki-Taka Algorithm (TTA) is a population-based metaheuristic that inspired by football playing style [18]. Tiki-Taka is a well-

known football playing style that refers to short passing, player positioning, and possession maintaining. The tiki-taka strategy is

popularly associated with the Spanish national team and the football clubs in La Liga league. The initial objective of this tactic is to

control the game by maintaining the ball possession. This is conducted by forming a triangle around the opponent players and making

short passing. Once the triangle carries more than one opponent player, a new triangle will be formed. In order to form a triangle,

players will always look for the key players in the team. When the ball is close to the opponent’s penalty box, the key player will make

some movement and strike to score a goal.

 In Tiki-Taka Algorithm, the player position represents the candidate solution. Meanwhile, the ball position is the solution vector

that will determine the position of the next player. Besides that, the key players represent a set of solution leaders that also influence

the ball position in the game. The TTA implements the two main features from tiki-taka tactics: short passing and player positioning.

The short passing feature aims to collect information from nearby player to decide the new player position. Other than the information

of nearby player, the new player position is also obtained information of key player and the ball position. The flow of TTA is presented

in Figure 2.

0 2 6 4 8 10

Time

12 14 18 16 20

Machine

𝑗2

𝐶max

𝑗3

𝑗1

𝑗2 𝑗3

𝑗1

𝑚1_1

𝑚1_2

𝑚2_1

𝑚2_2

𝑚2_3

Engineering and Applied Science Research 2022;49(2) 193

Figure 2 Flow chart of Tiki-Taka algorithm

3.1 Initialization

 At the initial stage, the player position is randomly created. Before that, the parameters for the algorithm are defined, including the

number of players, problem dimension, key players, and coefficients. Consider an HFS problem with n jobs and m machines, the

problem is represented using n × m dimensions. A set of w players with n × m dimensions are randomly created known as Pw. This is

the candidate solution with population size w.

...1,1 1,2 1,

...2,1 2,2 2,

...

... ,,1 ,2

p p p n m

p p p n mPw

p p pW n mw w







 
 
 
 
 
 

Concurrently, another matrix that represents the ball position, B, is generated. At the initial stage, Bw = Pw.

...1,1 1,2 1,

...2,1 2,2 2,

...

... ,,1 ,2

b b b n m

b b b n mBw

b b bW n mw w







 
 
 
 
 
 

3.2 Evaluation

 The evaluation is made to assess the player position according to optimization objective. Before the designated fitness function can

be implemented, the player position must be decoded to transform it into an HFS solution. For this purpose, the player position, pw, is

divided into specific job size. For example, for problem with 3 jobs and 2 stages with two and three machines respectively, the

dimension of solution will be 15. 𝐿𝑒𝑡 𝑃𝑤 = [𝑃𝑤,1, 𝑃𝑤,1, 𝑃𝑤,1, … , 𝑃𝑤,15]. For decoding purposes, the pw will be divided with n jobs, thus

becoming 𝑋𝑖 while the element inside the matrix are noted as 𝑋𝑖,𝑠,𝑘 Noted that the 𝑋𝑖 and 𝑋𝑖,𝑠,𝑘 notations are only used during decoding

and evaluation stages only.

1,1,1 1,1,2 1,2,1 1,2,2 1,2,3

2,1,1 2,1,2 2,2,1 2,2,2 2,2,3

3,1,1 3,1,2 3,2,1 3,2,2 3,2,3

x x x x x

X x x x x xi

x x x x x



 
 
 
  

Start

Define population size, iteration

number, and c1, c2, c3 and

problose

Update player position

Initialize player

position

Evaluate player

position

Update ball position Update key players

Terminate?

End

No

Yes

194 Engineering and Applied Science Research 2022;49(2)

 𝑋𝑖,𝑠,𝑘 is the solution representation for job i at the kth machine on stage s. Noted that the 𝑋𝑖 is randomly created for initial iteration,

while for the rest of iterations, the value is derived from the TTA algorithm through new player position. In order to determine the job

processing sequence, the minimum value from every row in 𝑋𝑖 is identified as 𝑋𝑖𝑚𝑖𝑛
 Then, 𝑋𝑖𝑚𝑖𝑛

 is sorted in an ascending order known

as 𝑋𝑗
′. Finally, the job sequence 𝐽 is derived from the job index, 𝐽. Similarly, the job-machine assignment is made based on the smallest

representation for the job in each stage.

1
min

2min min

3
min

x

X xi

x



 
 
 
 
  

 '
ascending

min
X Xj i

{ }; 1, 2, ...,J j j n  

 The job processing sequence and job-machine assignment solutions are then evaluated using fitness function. Equations (1) and

(2) present the objective functions to minimize completion time and total energy utilization. Since this problem is a multi-objective

problem, one of the methods for handling the problem is using weighted sum approach. The weighted sum approach combines both

optimization objectives into a single function. The single function is then optimized and treated as a single objective problem. However,

since the Cmax and TEC have a different range, they need to be normalized into a similar range [0, 1], as shown in equations (9) and

(10). In order to identify the minimum and maximum values for each objective function (𝐶𝑚𝑎𝑥𝑚𝑎𝑥
, 𝐶𝑚𝑎𝑥𝑚𝑖𝑛

, 𝑇𝐸𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶𝑚𝑖𝑛), a

thorough test using one objective function at a time is conducted. Finally, the fitness function, as in equation (11), is used in the

optimization process. In equation (11), w1 and w2 are weightage 𝐶̂𝑚𝑎𝑥 and 𝑇̂𝐸𝐶 respectively. In this work, the w1 and w2 are set to 0.5

each. This indicated that both objective functions are equally important.

max max
minˆ

max
max maxmax min

C C

C
C C






 (9)

minˆ

max min

TEC TEC
TEC

TEC TEC





 (10)

ˆ ˆmin max1 2f w C w TEC  (11)

3.3 Update key players

 In TTA, key players are a set of best solutions from the population. The number of key players, nk, is equivalent to 10% of the

population size or a minimum of three players. The key players are selected and updated based on the top fitness values obtained from

evaluation procedure. In HFS, the key players are the set of problem representations that came out with best Cmax in the schedule. If

the population size is 30, three key players (equal to 10%) will be selected based on the best fitness values. The key players procedure

mimics the tiki-taka strategy that uses multiple key players in a team to diverse the ball movement. In optimization, this concept enables

the algorithm to maintain the diversity of solution. The key player archive, h, will be updated in every iteration.

3.4 Update ball position

 One of tiki-taka features is short passing. The ball updating procedure simulates this feature in order to deliver the ball from one

player to the next nearby player, as shown in Figure 3. However, in a real play, there will be a possibility that the ball possession is lost

to the opponent during the passing. In TTA, the probability of lose the ball (problose) is set at 10%. The updated ball position, bi’, is

formulated as follow. In this formula, rp, is random number between 0 and 1.

 
  

, ' 1

, 1 1

rand b b b r probpi ii lose
bi

b c rand b b r probpi i i lose

  


   





 (12)

 The ball updating formula in (12) consists of two conditions: successful pass (rp > problose) and unsuccessful pass (rp ≤ problose).

For successful pass, the ball simply being delivered to the nearby player with some random. Meanwhile, for unsuccessful pass, the ball

is being blocked. The c1 is a coefficient that determines the ball reflection magnitude.

3.5 Update player position

 The player position will be updated following the ball and also key player’s positions. Since the TTA employed more than one

leader, the key player selection is made randomly. Then, the player position is updated using the following formula:

Engineering and Applied Science Research 2022;49(2) 195

   ' '
* * * *2 3p p rand c b p rand c h pi i i i i     (13)

 In equation (13), c2 and c3 are coefficients ranging 1.5-2.5 and 0.5-1.5, respectively. These coefficients balanced the exploration

and exploitation in the search space.

Figure 3 Tiki-Taka short passing example

3.6 Numerical example of TTA

 In initial stage, the initial solution will be randomly created. For demonstration purpose, only four candidate solutions are showed.

Besides the initial random solution, the TTA parameters also defined in this step. Let c1 = 1.5, c2 = 2.5, c3 = 1.2, problose = 10% and

initial solution as follow:

P1 [0.581 0.592 0.368 0.312 0.220 0.746 0.547 0.703 0.819 0.532 0.752 0.342 0.447 0.775 0.083]

P2 [0.021 0.477 0.598 0.389 0.301 0.444 0.893 0.655 0.633 0.047 0.969 0.265 0.030 0.025 0.993]

P3 [0.359 0.284 0.185 0.653 0.024 0.595 0.901 0.262 0.002 0.929 0.668 0.276 0.769 0.031 0.097]

P4 [0.415 0.670 0.926 0.292 0.177 0.843 0.202 0.360 0.894 0.628 0.161 0.617 0.144 0.592 0.804]

Then, the solutions are broken down into Xi, based on the job and machine number, thus becoming:

0.581 0.592 0.368 0.312 0.220

0.746 0.547 0.703 0.819 0.532

0.752 0.342 0.447 0.775 0.083
1X 

 
 
  

0.021 0.477 0.598 0.389 0.301

0.444 0.893 0.655 0.633 0.047

0.969 0.265 0.030 0.025 0.993
2X 

 
 
  

0.359 0.284 0.185 0.653 0.024

0.595 0.901 0.262 0.002 0.929

0.668 0.276 0.769 0.031 0.097
3X 

 
 
  

0.415 0.670 0.926 0.292 0.177

0.843 0.202 0.360 0.894 0.628

0.161 0.617 0.144 0.592 0.804
4X 

 
 
  

 The candidate solution is decoded solution using the approach mentioned in section 2.1.1. The decoded solution later is evaluated

using equation (11). The obtained fitness value for X1 until X4 are as follow;

Xi f(Xi)

X1 0.5421

X2 0.8634

X3 0.7415

X4 0.3766

 Now the key players are updated by selecting the top solutions based on the fitness value. For demonstration purpose, let assume

the nk is 2. Based on the fitness value, f(Xi), the top two solutions were X1 and X4. Since X1 and X4 were coming from P1 and P4, the

key players, h will consist of P1 and P4. Noted that in actual application, number of key players will be 10% of the population size.

ℎ = {𝑃1, 𝑃4}

196 Engineering and Applied Science Research 2022;49(2)

 Next, the ball position is updated. For initial solution, Bw = Pw. In this step, the calculation using equation (12) is conducted

dimension by dimension. In this example, only the first dimension of solution 1 (P1,1) will be demonstrated. In order to conduct this

operation, a random number is generated. Lets the random number for P1,1 is 0.3522. Since the random number is larger than problose

(0.1), the updated ball position, will use the following equation (from equation (12)).

𝑏1,1
′ = 𝑟𝑎𝑛𝑑 ∗ (𝑏1,1 − 𝑏2,1) + 𝑏1,1

Replacing the values into this equation,

𝑏1,1
′ = 0.3522(0.581 − 0.021) + 0.581

𝑏1,1
′ = 0.778

 Then, the player position is updated using equation (13). In this step, the algorithm will randomly select one key player from h.

Lets the selected key player is P4. Therefore, the h value in equation (13) will be replaced with p4,1.

𝑝1,1
′ = 𝑝1,1 + 𝑟𝑎𝑛𝑑 ∗ 𝑐2 ∗ (𝑏1,1

′ − 𝑝1,1) + 𝑟𝑎𝑛𝑑 ∗ 𝑐3 ∗ (𝑝4,1 − 𝑝1,1)

Lets random numbers are 0.7942 and 0.0660, replacing the values;

𝑝1,1
′ = 0.581 + 0.7942 ∗ 2.5 ∗ (0.778 − 0.581) + 0.0660 ∗ 1.2 ∗ (0.415 − 0.581)

𝑝1,1
′ = 0.959

 The procedures above is repeated for all solution dimensions. Then a new player position, P’1 will be established. This procedure

is also repeated for other candidate solutions.

4. Results and discussion

 This section presents the results obtained from computational experiment and case study problem. The results were then thoroughly

discussed to relate the findings with theoretical in optimization and scheduling. The purpose of computational experiment is to verify

the proposed TTA performance in optimizing the HFS with energy consumption problem. Meanwhile the case study problem aims to

validate the applicability of the proposed model and algorithm in the real-life problem.

4.1 Computational experiment

 A computational experiment has been conducted to test the proposed TTA to optimize HFS with energy utilization. For this

purpose, a set of benchmark test problem proposed by Carlier and Neron [19] was utilized. This is one of popular hypothetical test

problem that widely used to test hybrid flow shop scheduling problem. Table 6 demonstrates the details of the benchmark test problem.

The processing time is randomly generated using normal distribution between {3, 20}. The last column in Table 6 indicated the machine

configuration at each stage. In j10c5a2, for instance, there are two machines in each stage, except in the third stage that had only one

machine.

Table 6 Benchmark test problem configuration

Problem Number of jobs Number of stages Machine configuration

j10c5a2 10 5 2 2 1 2 2

j10c5b1 10 5 1 2 2 2 2

j10c5c1 10 5 3 3 2 3 3

j10c5d1 10 5 3 3 3 3 3

j10c10a2 10 10 2 2 2 2 1 2 2 2 2 2

j10c10b1 10 10 1 2 2 2 2 2 2 2 2 2

j10c10c1 10 10 3 3 3 3 2 3 3 3 3 3

j15c5a1 15 5 3 3 1 3 3

j15c5b1 15 5 1 3 3 3 3

j15c5c1 15 5 3 3 2 3 3

j15c10a2 15 10 3 3 3 3 1 3 3 3 3 3

j15c10b1 15 10 1 3 3 3 3 3 3 3 3 3

 To compare the performance of TTA, six other metaheuristic algorithms were used in the optimization process. The comparison

algorithms were Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly

Algorithm (FA), Moth Flame Optimizer (MFO), and Butterfly Optimization Algorithm (BOA). These comparison algorithms were

chosen based on different factors. ACO and PSO were chosen because of their popularity in metaheuristics in optimizing the

combinatorial problem. In addition, these metaheuristics were among the well-established algorithms introduced in the 1990s. On the

other hand, ABC and FA were introduced in 2005 and 2008, respectively. They represented the popular mid-age metaheuristics that

were implemented to optimize various type of combinatorial problems. Finally, the MFO and BOA represented the recent

metaheuristics algorithms. The MFO was introduced in 2015, while BOA in 2018.

 In the computational experiment, the population size was set to 30, while the maximum iteration was 1,000 for all algorithms. The

optimization run was repeated 20 times for each of benchmark problem. The specific parameter setting for algorithms is presented in

Table 7. Noted that for TTA, the parameter setting utilized in this work is based on previous study in literature [18].

Engineering and Applied Science Research 2022;49(2) 197

Table 7 Parameter setting for TTA and comparison algorithms

Algorithm Parameter setting

ACO [20] Relative importance of pheromone: α = 1

Relative importance of heuristic: β = 3

Local evaporation rate: 0.1

Global evaporation rate: 0.2

PSO [21] Inertia coefficient, w = 1

Cognition learning coefficient, c1 = 1.8

Social learning coefficient, c2 = 1.8

ABC [22] Crossover probability = 0.6

Local search rate = 0.4

Scout Limit = 1/8

FA [23] Attraction coefficient = 2

Light absorption coefficient = 1

Randomization parameter = 0.5

MFO [24] Constant to interpret the shape of logarithmic spiral, b = 1

Closeness to the flame, t: linearly decrease from 1 to -1

BOA [25] Modular modality c: 0.01

Power exponent a: increased from 0.1 to 0.3

Switch probability p: 0.8

TTA [18] Probability of lose the ball (problose) : 10%

Ball reflection magnitude coefficient, c1 = 1.5

Ball position coefficient, c2 = 2.5

Key player’s position coefficient, c3 =1.2

 Table 8 presents the mean and standard deviation of fitness value obtained from computational experiment. In general, the TTA

came out with the best mean fitness in nine out of twelve benchmark test problems. Meanwhile, in the remaining three problems, TTA

ranked second. According to Table 8, the next best algorithm was FA. The FA obtained the best mean in one problem, ranked second

in nine problems and fourth in two problems. The results indicated that the TTA was able to converge consistently for every

optimization run.

Table 8 Mean and standard deviation of fitness function from computational experiment

Problem Indicator ACO PSO ABC FA MFO BOA TTA

j10c5a2

Mean 0.2475 0.3012 0.2401 0.2561 0.2780 0.3427 0.2417

SD 0.0084 0.0221 0.0054 0.0060 0.0126 0.0197 0.0062

j10c5b1

Mean 0.2807 0.3432 0.2765 0.2888 0.3027 0.3403 0.2791

SD 0.0056 0.0165 0.0029 0.0075 0.0138 0.0261 0.0071

j10c5c1

Mean 0.2035 0.2461 0.1890 0.1713 0.2208 0.2996 0.1592

SD 0.0073 0.0232 0.0098 0.0131 0.0215 0.0312 0.0164

j10c5d1

Mean 0.3183 0.3481 0.3086 0.2945 0.3039 0.3921 0.2908

SD 0.0094 0.0187 0.0069 0.0139 0.0196 0.0278 0.0146

j10c10a2

Mean 0.3681 0.4045 0.3553 0.3419 0.3966 0.4864 0.3293

SD 0.0107 0.0310 0.0034 0.0150 0.0157 0.0237 0.0125

j10c10b1

Mean 0.3802 0.4223 0.3668 0.3435 0.3953 0.4821 0.3193

SD 0.0110 0.0208 0.0111 0.0236 0.0210 0.0280 0.0110

j10c10c1

Mean 0.3033 0.3330 0.2944 0.2419 0.2883 0.4842 0.2319

SD 0.0169 0.0251 0.0133 0.0267 0.0313 0.0171 0.0225

j15c5a1

Mean 0.4079 0.4533 0.3947 0.3917 0.4138 0.4948 0.3878

SD 0.0094 0.0293 0.0046 0.0103 0.0118 0.0204 0.0065

j15c5b1

Mean 0.4939 0.5306 0.4820 0.4746 0.4949 0.5888 0.4744

SD 0.0052 0.0243 0.0084 0.0100 0.0101 0.0233 0.0054

j15c5c1

Mean 0.2946 0.3037 0.2774 0.2326 0.2723 0.4955 0.2305

SD 0.0127 0.0158 0.0114 0.0075 0.0183 0.0157 0.0130

j15c10a2

Mean 0.2987 0.3279 0.2819 0.2481 0.2958 0.4968 0.2564

SD 0.0148 0.0204 0.0112 0.0114 0.0231 0.0249 0.0184

j15c10b1

Mean 0.2709 0.3182 0.2595 0.2412 0.2894 0.3942 0.2206

SD 0.0190 0.0361 0.0085 0.0072 0.0147 0.0283 0.0155

 In order to test the significance of TTA results, a nonparametric test was conducted using Wilcoxon signed-rank test at 95%

confidence interval. The nonparametric test was chosen because the results obtained from optimization did not normally distributed.

Table 9 indicates the p-value from the Wilcoxon signed-rank test. When the p-value is smaller than significance level (0.05), it indicated

that there is significant difference between TTA and comparison algorithm results. The p-value with asterisk (*) symbol in Table 9

shows that the TTA has no significant difference compared with comparison algorithm.

 In general, TTA has a significant difference in all benchmark problems compared with PSO and BOA. Meanwhile, in comparison

with ACO and MFO, TTA is significantly better in 91.7% of the benchmark problems. However, TTA is only significantly better than

FA in 16.7% (or two benchmark problems) of the problems. In summary, TTA has a significant different in 80.6% of the total cases in

the computational experiment problems.

198 Engineering and Applied Science Research 2022;49(2)

Table 9 Wilcoxon signed-rank test (p-value)

Problem ACO PSO ABC FA MFO BOA

j10c5a2 0.0403 0.0002 0.5933* 0.0207 0.0002 0.0002

j10c5b1 0.3060* 0.0002 0.5946* 0.2378* 0.0004 0.0002

j10c5c1 0.0002 0.0002 0.0008 0.2413* 0.0002 0.0002

j10c5d1 0.0008 0.0002 0.0091 0.4727* 0.1212* 0.0002

j10c10a2 0.0002 0.0002 0.0013 0.1212* 0.0002 0.0002

j10c10b1 0.0002 0.0002 0.0002 0.0073 0.0002 0.0002

j10c10c1 0.0002 0.0002 0.0002 0.3447* 0.001 0.0002

j15c5a1 0.0010 0.0002 0.0257 0.1859* 0.0002 0.0002

j15c5b1 0.0028 0.0002 0.0452 0.6776* 0.0036 0.0452

j15c5c1 0.0002 0.0002 0.0002 0.9698* 0.0004 0.0002

j15c10a2 0.0002 0.0002 0.0028 0.3075* 0.0028 0.0002

j15c10b1 0.0008 0.0002 0.0022 0.0539* 0.0022 0.0002

4.2 Case study

 In order to demonstrate the applicability of the proposed HFS with energy utilization model and algorithm in real-life problems, an

industrial case study was conducted in a bearing machining process. There were three main processes for bearing outer ring: face

grinding, groove grinding, and bore grinding. In this study, the number of machines was limited to three machines with different

capacity at each stage. There were six jobs that needed to be scheduled for a one-month period. The job processing time at each machine

is presented in Table 10. The last row in Table 10 indicates the power rating for each machine.

Table 10 Processing time for bearing machining process (minutes)

Job Quantity Facing Grooving Boring

MF1 MF2 MF3 MG1 MG2 MG3 MB1 MB2 MB3

J1 1200 864 624 576 1440 2040 1920 1008 1008 864

J2 3750 2700 1950 1800 4500 6375 6000 3150 3150 2700

J3 3250 2340 1690 1560 3900 5525 5200 2730 2730 2340

J4 2500 1800 1300 1200 3000 4250 4000 2100 2100 1800

J5 4150 2988 2158 1992 4980 7055 6640 3486 3486 2988

J6 2250 1620 1170 1080 2700 3825 3600 1890 1890 1620

Power (W) 2800 3200 3600 4200 3800 3200 1800 1800 2400

 Optimization for the case study problem was conducted using TTA, FA, ABC, and MFO. The optimization run was repeated 20

times; the average and best fitness were recorded. Table 11 presents the optimization result for the case study problem. The proposed

TTA had consistently performed better in average and best fitness, compared with FA, ABC, and MFO. The last two columns in Table

11 demonstrate the individual optimization objective that was decoded from the obtained best fitness solution. From the result, the

minimum Cmax obtained by TTA was 12,760 minutes. Meanwhile, the minimum TEC was established by MFO. Nevertheless, the Cmax

for MFO was the highest among all algorithms. In comparison with other algorithms, Cmax for TTA has a better performance between

0.3%-2.0%. However, the TEC for TTA was 0.18% and 0.25% higher than FA and MFO, respectively. The results indicated that none

of the optimization algorithms were able to find minimum values in both optimization objectives. The TTA result was compromised

between the Cmax and TEC values.

Table 11 Optimization result of case study problem

Algorithm Average Fitness Best Fitness Cmax (minute) TEC (kWh)

TTA 0.4725 0.4516 12760 2466.5

FA 0.4741 0.4527 12819 2461.9

ABC 0.4783 0.4576 12802 2472.3

MFO 0.4780 0.4649 13020 2460.4

 Figure 4 presents the convergence for TTA, FA, ABC, and MFO in solving case study problem. The FA converged at the initial

stage and maintained the obtained fitness. The MFO also converged at early stage and at the middle of the iterations. In contrast, the

ABC algorithm converged at the early stage, then maintained the convergence at the middle stage and experienced convergence again

at the end of iteration. The proposed TTA convergence can be observed in the early and middle iteration process. The last final

convergence occurred approximately near the 700th iteration. This result indicated the ability of TTA to converge until two-thirds of

iteration. The flat curve after 700th iteration confirmed the attainment of optimum solution.

 Figure 5 presents the production schedule obtained by TTA that was presented in Table 9. The production begins by processing J6,

J5, and J2 on MF1, MF2, and MF3, respectively. There was a minimum utilization of machine with higher power rate, especially MF3

and MB3 in the schedule, to reduce TEC. In MB2, there were gaps between J6-J2 and J2-J1. This situation was because of the

precedence constraints of both jobs in the second stage (Grooving). However, in the case that the completion time is not critical, the

production planner might select solution from FA or MFO that provides lower energy consumption.

 Numerical experiment and case study problem optimization clearly indicated that TTA provided better solution compared with

comparison algorithms. There are a few factors that contributed to exceptional TTA performance compared with existing algorithms.

The first unique feature is short passing strategy to the nearby solution. This feature allows the algorithm to collect information from

other solutions before deciding the new solution. It also means that all candidate solutions will contribute to the new solution

reproduction. From this strategy, the algorithm will identify suitable/unsuitable position to move.

Engineering and Applied Science Research 2022;49(2) 199

 The second feature of TTA is the multiple key players (leader solutions) in the algorithm. Majority of existing metaheuristics use

single leader solution to influence the reproduction of new solutions towards better solution. Using this strategy, the candidate solution

tends to move nearby the leader. If the leader solution was in local optima, all the solution having risk to be trapped. Meanwhile in

TTA, each of candidate solutions need to randomly choose a key player to be considered from the archive during updating player

position. This feature makes the candidate solutions more diverse and also reduce possibility to be trapped in local optima. Both of the

unique features make TTA performed better than other algorithms in this work.

Figure 4 Convergence plot for case study problem

Figure 5 Production schedule using TTA

5. Conclusions

 This paper presented hybrid flow shop scheduling (HFS) problem optimization using a new algorithm called Tiki-Taka Algorithm

(TTA). In difference with the regular flow shop scheduling, the studied problem considered the total energy consumption as one of

TTA

MFO

ABC

FA

0 200 400 600 1000 800
0.44

0.46

0.48

0.5

0.54

0.52

Iteration

0.64

0.56

0.58

0.62

0.6

F
it

n
es

s

0 2000 4000 6000 10000 8000 12000 14000

Time (minutes)

M
a
ch

in
es

J2

Cmax = 12760 min, TEC = 2466.5 kWh

MF1

MF2

MG1

MF3

MB3

MG2

MG3

MB2

MB1

J2

J2

J4

J4

J4

J1

J1

J1

J6

J6

J6

J5

J5

J5

J3

J3

J3

200 Engineering and Applied Science Research 2022;49(2)

optimization objectives towards sustainable manufacturing systems. The research begins with formulation of hybrid flow shop

scheduling with energy consumption. Then, a computational experiment was conducted to assess TTA performance for HFS with

energy consumption using a set of benchmark problems. The results were compared with well-established, mid-age, and recent

optimization algorithms. Then, a case study problem is presented to demonstrate applicability of the proposed HFS with energy

consumption and TTA in optimizing real-life problems.

 The computational experiment results indicated that TTA performed best in 75% of the benchmark test problems, and second best

in the remaining problems. Based on statistical test, the TTA solution has significant difference in 80.6% of the cases compared with

other algorithms. The results show the superiority of TTA to optimize HFS with energy consumption. On the other hand, the case study

optimization confirmed the computational experiment result. The TTA showed minimum average and best fitness compared with

comparison algorithm. The obtained optimization objective values by TTA had compromised the total makespan and energy

consumption.

6. Acknowledgement

 The authors would like to acknowledge Universiti Malaysia Pahang for funding this research under the internal grant RDU190317

(Energy Utilization Modelling and Optimization for Machine Scheduling Problem in Production).

7. References

[1] Shao W, Shao Z, Pi D. Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling

problem. Knowl Base Syst. 2020;194:105527.

[2] Fernandez-Viagas V, Perez-Gonzalez P, Framinan JM. Efficiency of the solution representations for the hybrid flow shop

scheduling problem with makespan objective. Comput Oper Res. 2019;109:77-88.

[3] Tosun O, Marichelvam MK, Tosun N. A literature review on hybrid flow shop scheduling. Int J Adv Oper Manag.

2020;12(2):156-94.

[4] Li J, Sang H, Han Y, Wang C, Gao K. Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems

with setup energy consumptions. J Clean Prod. 2018;181(3):584-98.

[5] Schulz S. A genetic algorithm to solve the hybrid flow shop scheduling problem with subcontracting options and energy cost

consideration. In: Wilimowska Z, Borzemski L, Swiątek J, editors. Proceedings of 39th International Conference on Information

Systems Architecture and Technology-ISAT; 2018 Sep 16-18; Nysa, Poland. Berlin: Springer; 2019. p. 263-73.

[6] Li M, Lei D, Cai J. Two-level imperialist competitive algorithm for energy-efficient hybrid flow shop scheduling problem with

relative importance of objectives. Swarm Evol Comput. 2019;49:34-43.

[7] Schulz S, Neufeld JS, Buscher U. A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow

shop scheduling. J Clean Prod. 2019;224:421-34.

[8] Geng K, Ye C, Dai ZH, Liu L. Bi-objective re-entrant hybrid flow shop scheduling considering energy consumption cost under

time-of-use electricity tariffs. Complexity. 2020;2020:8565921.

[9] Jiang S, Zhang L. Energy-oriented scheduling for hybrid flow shop with limited buffers through efficient multi-objective

optimization. IEEE Access. 2019;7:34477-87.

[10] Liu Z, Yan J, Cheng Q, Yang C, Sun S, Xue D. The mixed production mode considering continuous and intermittent processing

for an energy-efficient hybrid flow shop scheduling. J Clean Prod. 2020;246:119071.

[11] Gong G, Chiong R, Deng Q, Han W, Like Z, Lin W, et al. Energy-efficient flexible flow shop scheduling with worker flexibility.

Expert Syst Appl. 2020;141:112902.

[12] Meng L, Zhang C, Shao X, Ren Y, Ren C. Mathematical modelling and optimisation of energy-conscious hybrid flow shop

scheduling problem with unrelated parallel machines. Int J Prod Res. 2019;57(4):1119-45.

[13] Zhou R, Lei D, Zhou X. Multi-objective energy-efficient interval scheduling in hybrid flow shop using imperialist competitive

algorithm. IEEE Access. 2017;7:85029-41.

[14] Tao X, Li J, Huang T, Duan P. Discrete imperialist competitive algorithm for the resource-constrained hybrid flowshop problem

with energy consumption. Complex Intell Syst. 2020;7(1):1-16.
[15] Utama DM, Widodo DS, Ibrahim MF, Hidayat K, Baroto T, Yurifah A. The hybrid whale optimization algorithm: a new

metaheuristic algorithm for energy-efficient on flow shop with dependent sequence setup. J Phys Conf Ser. 2020;1569:22094.

[16] Geng K, Ye C, Cao L, Liu L. Multi-objective reentrant hybrid flowshop scheduling with machines turning on and off control

strategy using improved multi-verse optimizer algorithm. Math Probl Eng. 2019;2019:1-18.

[17] Utama DM, Baroto T, Widodo DS. Energy-efficient flow shop scheduling using hybrid grasshopper algorithm optimization. J

Ilmiah Teknik Industri. 2020;19(1):30-8.

[18] Rashid M. Tiki-Taka algorithm: a novel metaheuristic inspired by football playing style. Eng Comput. 2021;38(1):313-43.

[19] Carlier J, Neron E. An exact method for solving the multi-processor flow-shop. RAIRO Oper Res. 2000:34(1):1-25.

[20] Luo H, Du B, Huang GQ, Chen H, Li X. Hybrid flow shop scheduling considering machine electricity consumption cost. Int J

Prod Econ. 2013;146(2):423-39.

[21] Tang D, Dai M, Salido MA, Giret A. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle

swarm optimization. Comput Ind. 2016;81:82-96.

[22] Gong D, Han Y, Sun J. A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop

scheduling problems. Knowl Base Syst. 2018;148:115-30.

[23] Rashid MF, Osman MA. Optimisation of energy efficient hybrid flowshop scheduling problem using firefly algorithm. 2020

IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE); 2020 Apr 18-19; Malaysia. New York:

IEEE; 2020. p. 36-41.

[24] Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Base Syst. 2015;89:228-49.

[25] Arora S, Singh S. Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput. 2019;23(3):715-34.

