INTELLIGENT INTERACTION TESTS SUITE GENERATOR FOR IOT TESTING

The use of Opposition-Based Learning Jaya Algorithm

Patent

ITRex 2021

Copyright: LY2020000663 19/02/2020 INVENTOR : Dr. Abdullah Nasser FACULTY : Faculty of Computing UNIVERSITY : Universiti Malaysia Pahang EMAIL : abdullahnasser@ump.edu.my CO-INVENTORS : Prof. Dr. Kamal Zuhairi Zamli, Assoc. Dr. AbdulRahman Alsewari and Dr. Taha Hussein Alaaldeen Rassem

Camera

1. High Resolution

1. Thermomete

2. Heat Sensor

2. Web Cam 3. CCTV

Robotic

Interface 1. USB

2. LPT Port

Network Cables 1. UTP 2. Fiber Optics

((((H))))

Background

- Typical Internet of Things (IOT) applications consist of large heterogeneous components.
- In order to ensure free-of-bug integration, there is need for testing all possible combinations (i.e., causing combinatorial explosion problem).
- Testing all possibilities is practically impossible owing to resource and time constraints.
- In order to address these issues, t-way testing approach has been adopted to minimize the tests systematically.

Product Image and Product Characteristics/Results

Generate Opposition Population (OP) Standard OBL Quasi OBL Quasi Reflection OBL Based on current performance Current Optimum OBL

IOT Interconnected

Manufacturing

ŝ

L

- The proposed IITSG strategy utilizes multiple Opposition-Based Learning and Jaya Algorithm.
- The OBLs selections will be based on each individual performance.

IITSG interface

Perst Suite Generation – □ × × Intelligent Interaction Test Suite Generator Parameters Setting: metraction Type Oscillation Contract Suite Generator Command Line OBL -1 10,10,10,10,10 -1 2 metraction Type Oscillation Command Line OBL -1 10,10,10,10,10 -1 2 metraction Type Oscillation Command Line OBL -1 10,10,10,10,10 -1 2 Metraction Type Oscillation Command Line OBL -1 10,10,10,10,10 -1 2 Metraction Command Line Occillation Population Oscillation Oscillation Sequence Oscillation Test State Generator Sequence Sequence Oscillation Socillation Socillation Socillation Oscillation Socillation Socillation Socillation Socillation Oscillation Socillation Socillatit

Result

t	Systems	SA	ACA	GA	PSO	HSS	CS	IITSG
2	3 ³	9	9	9	9	9	9	9*
2	313	16	17	17	17	18	20	17
2	1010	NA	159	157	NA	155	NA	153*
3	36	33	33	33	42	39	43	33*
3	46	64	64	64	102	70	105	64*
3	106	1508	1501	1473	1506	1505	NA	1470*
2	$5^1 3^8 2^2$	15	16	15	NA	20	21	20
3	$5^2 \ 4^2 \ 3^2$	100	106	108	NA	120	NA	117
4	210	NA	NA	NA	37	37	36	36*
5	210	NA	NA	NA	82	81	79	75*
9	210	NΔ	NΔ	NΔ	NΔ	512	NΔ	571

Novelty/Inventiveness

- IITSG designed for minimizing tests for large scale IOT applications.
- The tool can support both sequence and sequence-less test cases.
- IITSG utilizes the idea Adaptive Oppositionbased Learning Selection (IEEE access paper).

Benefits/Usefulness/Applicability

- It is important to ensure best integration among internet of things devices.
- Finding defects and reduce risks of IOT devices.
- It is important to ensure the privacy and security issues in the internet of things.

Status of Innovation

- The tool ready for marketing.
- The tool has been tested and evaluated against existing tool.

Achievement/Award

- 4 ISI Q1 papers and 1 copyright
- 2 Gold medals at iCE-CInno 2016 + CITREX

2017.

Publication

- An Adaptive Opposition-based Learning Selection: The Case for Jaya Algorithm, 2021, IEEE Access, (Q1, IF 3.745), Early Access.
- An Elitist-Flower Pollination based Strategy for Constructing Sequence and Sequence-less T-way Test Suite Generation" International Journal of Bio-Inspired Computing, 2018, (ISI Q2, IF=1.93).
- Hybrid Flower Pollination Algorithm Strategies For T-Way Test Suite Generation" PlosOne, 2018, (ISI Q1, IF=2.8).
- Pairwise Test Data Generation based on Flower Pollination Algorithm, MJCS, 30(3), 2017, pp. 242-257. (ISI Q4, IF=0.6)

Final test size = 121	Avrage = 122.4444444	Average Time = 5.79			
Current uncovered interaction =0	124 - Current Best Test Case	=[4, 0, 0, 1, 8] [Weight=1]			

10	2	INA	INA	INA	INA	1024	INA	1024
10	210	NA	NA	NA	NΛ	1024	NA	1024*

Marketability & Commercialisation

- The developed tool can be used to test IOT applications and software product lines.
- The developed tool can be used for Software testing lab's subject.
- The tool has been successfully used to test hardware and software implementations.

Cost Analysis

Here are is some of popular tools in the market:

Tool	Price	Sequence feature		
Hovawiso	\$1200 per year - Business unit	Not support		
TIERAWISE	\$2600 per year - Enterprise-wide	Not support		
SpiraTest	\$6047.89 per year	Not support		
IITSG	\$7500 per year	Support		