Thermal–electrical–hydraulic properties of Al₂O₃–SiO₂ hybrid nanofluids for advanced PEM fuel cell thermal management

Saifuddin Khalid^a, Irnie Zakaria^a, W. H. Azmi^b & W. A. N. W. Mohamed^a ^a Faculty of Mechanical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia

^b College of Engineering, Department of Mechanical and Automotive Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, 26300, Pahang, Malaysia

ABSTRACT

Hybrid nanofluid is a new revolutionized cooling liquid with improved thermo-physical properties as compared to conventional coolant. This paper presents the feasibility of hybrid Al_2O_3 -SiO₂ nanofluids as an advanced coolant for PEM fuel cell application in terms of thermal– electrical–hydraulic thermo-physical properties. Nine mixture ratios of Al_2O_3 –SiO₂ were used in this experiment, ranging from 10:90 to 90:10 mixture ratios. The result demonstrated that both thermal conductivity and electrical conductivity decreased as the percentage of Al_2O_3 was increased in the mixture. In contrast, the dynamic viscosity property increased as the Al_2O_3 percentage ratio was increased. In summary, property enhancement ratio (PER) of thermohydraulic (PER_{t/v}) and thermo-electrical (PER_{t/e}) was established. Both PER_{t/v} and PER_{t/e} analyses favor 10:90 ratio of Al_2O_3 –SiO₂ hybrid as the most feasible ratio for the implementation in PEMFC. This is due to the dominant effect of thermal over viscosity and electrical conductivity.

KEYWORDS

Electrical conductivity; Hybrid nanofluids; PEMFC; Thermal conductivity; Viscosity

ACKNOWLEDGMENTS

The author would like to thank Universiti Teknologi MARA (UiTM) under 600-IRMI/FRGS 5/3 (375/2019) for financial supports given.