

HEAT TRANSFER AND FLOW ANALYSIS OF HYBRID NANOFLUID WITH VICSOUS DISSIPATION IMPACT

INVENTOR: KHO YAP BING FACULTY: CENTRE FOR MATHEMATICAL SCIENCES UNIVERSITY: UNIVERSITY MALAYSIA PAHANG EMAIL: yapbing90@hotmail.com CO-INVENTORS: DR. RAHIMAH JUSOH@AWANG, PROF. DR. MOHD ZUKI ALLEH, MOHD HISYAM MOHD ARIFF, DR. ZULKHIBRI ISMAIL@MUSTOFA

Background/Introduction

ITREX 2021

State of the Art/Methods

• As the viscous dissipation increases, the internal heat energy also increases which leading to the

Table 1: Results of Stability Analysis

0.8

λ	γ (1 st Solution)	γ (2 nd Solution)
-1	1.4280	-0.7832
-1.2	1.2179	-0.7411
-1.4	0.9527	-0.6505
-1.6	0.5610	-0.4257
-1.69	0.2220	-0.1181
-1.696	0.1792	-0.0244
-1.6962	0.1776	-0.0117

deterioration of the process of heat transfer

- The appearance of Cu and Al₂O₃ nanoparticles strongly affect the thermophysical properties and stability of hybrid nanofluids flow, especially increase dramatically in thermal conductivity of the fluids.
- Higher values of suction increases the magnitude of the skin friction since it acts as a deceleration factor for the fluid flow and deploys a drag force.
- From the stability analysis, the first solution is stable since the generated smallest eigenvalue is positive.

Achievement/Award

SILVER MEDAL (CITREX, 2020) **Dual Solutions of Magnetohydrodynamic Rotating** Flow and Heat Transfer of Nanofluids

Publication

Data Analytics and Applied Mathematics (DAAM), vol. 1 (01), pp:11-22 (2020) Mathematical analysis of the flow and heat transfer of Ag-Cu hybrid nanofluid over a stretching/ shrinking surface with convective boundary condition and viscous dissipation.

Acknowledgement

This research is supported by Universiti Malaysia Pahang Internal Grant of RDU191101 & RDU1903143

Collaboration/Industrial Partner

www.ump.edu.my