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ABSTRACT Vehicle control in autonomous traffic flow is often handled using the best decision-making
reinforcement learning methods. However, unexpected critical situations make the collisions more severe
and, consequently, the chain collisions. In this work, we first review the leading causes of chain collisions
and their subsequent chain events, which might provide an indication of how to prevent and mitigate the
crash severity of chain collisions. Then, we consider the problem of chain collision avoidance as a Markov
Decision Process problem in order to propose a reinforcement learning-based decision-making strategy and
analyse the safety efficiency of existing methods in driving security. To address this, A reward function is
being developed to deal with the challenge of multiple vehicle collision avoidance. A perception network
structure based on formation and on actor-critic methodologies is employed to enhance the decision-making
process. Finally, in the safety efficiency analysis phase, we investigated the safety efficiency performance of
the agent vehicle in both single-agent and multi-agent autonomous driving environments. Three state-of-the-
art contemporary actor-critic algorithms are used to create an extensive simulation in Unity3D. Moreover,
to demonstrate the accuracy of the safety efficiency analysis, multiple training runs of the neural networks
in respect of training performance, speed of training, success rate, and stability of rewards with a trade-off
between exploitation and exploration during training are presented. Two aspects (single-agent and multi-
agent) have assessed the efficiency of algorithms. Every aspect has been analyzed regarding the traffic
flows: (1) the controlling efficiency of unexpected traffic situations by the sudden slowdown, (2) abrupt
lane change, and (3) smoothly reaching the destination. All the findings of the analysis are intended to shed
insight on the benefits of a greater, more reliable autonomous traffic set-up for academics and policymakers,
and also to pave the way for the actual carry-out of a driver-less traffic world.

INDEX TERMS Autonomous Vehicles, Deep Reinforcement Learning Method, Reward Function, Chain
Collision Avoidance, Autonomous Traffic Flow, Safety Efficiency Analysis.

I. INTRODUCTION

AUtonomous vehicles (AVs) are currently regarded as
the technology for revolutionizing the existing modes

of travel. The research shows that AVs have the potential to
improve road safety by eliminating human errors [1] and by
optimising traffic congestion [2].The security and reliability

of AVs is regarded as one of the most important criteria that
must be met before mass production and deployment in real-
world traffic systems [3].The analysis of the collision risk of
AVs and of autonomous traffic flow is an essential phase in
the development of AVs, and it has attracted considerable at-
tention in recent years [4]. For example, the European NCAP
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FIGURE 1. Illustration of four consequence phases of chain collision in AVs.

(European New Car Assessment Program) has developed a
number of test scenarios to assess the adaptability of AV
control logic in the context of collision avoidance [5].

Another key research area is collision prevention among
multiple vehicles. The majority of earlier research focused
on two-dimensional route-planning issues in the setting of
a group of AVs attempting to prevent stationary objects [6].
Recently, experts have highlighted the necessity of automo-
bile collision avoidance for multi-agent systems. In some
attempts [7], [8], for each vehicle agent, other road partici-
pants vehicles are treated as movable obstacles. By projecting
observed velocities, one can estimate where other cars will
be in the next state and prevent collisions accordingly. This
solitary approach, however, is incapable of imposing limita-
tions on the continuous speed of vehicles or their turn radius
[9]. As a result, what appears to be a safe manoeuvre in the
present time step may result in crashes in the coming state.
Vehicles may be forced to change course in an instant due
to the kinematic limits of the vehicles involved. However,
this is not practicable in many actual circumstances [10]. In
other studies, parametric curves are used to simulate the path
to ensure that all movable objects in the environment can
get smooth diversions and eventually reach their projected
destination [11], [12]. However, vehicles must constantly
adjust their speed and positioning to trace these routes [13],
and the consequence of the shift is rather large, which is not
feasible. It presents a potential direction for overall issues
in the safety efficiency analysis of the collision avoidance
scheme of AVs.

Although numerous advances have been made in the field
of leading vehicle–follower vehicle traffic flow control, the
challenge of chain collision avoidance has yet to be thor-
oughly explored. In dynamic environment, chain collision
avoidance and mitigation of its severity among multiple
agents, becomes increasingly difficult. There are three main
types of conventional algorithms for avoiding collisions: off-
line planning, artificial potential field approaches, and the
sense-and-avoid technique. However, the computational cost
of these approaches is high. It is also inconvenient to im-
plement in a dynamic traffic environment because the entire
environment’s information must be known ahead of time. The
current state of the art in these methods can be divided into
two categories: reaction-based methods and prediction-based
techniques. Due to the fact that they do not take into account

future states, all reaction-based approaches are limited in
their scope and may be unreliable in some critical situations
[14]. However, there are two issues that must be addressed,
however: the estimating inaccuracy caused by a variety of
uncertainties and the high computational complexity required
to perform the prediction operation as a result of the different
uncertainties. To address the limitations imposed by tradi-
tional collision avoidance processes, numerous researchers
have been working on techniques centered on deep learning
as well as deep reinforcement learning (DRL). In recent
years, deep neural networks (DNNs) have demonstrated their
ability to extract features, classify objects, and grasp compli-
cated scenes. However, this strategy only takes into account
static obstacles. To depict a complicated traffic scenario
using DNN, one needs high-dimensional features as well as
a huge amount of training data (samples). Moreover, huge
amounts of data, especially in emergency traffic situations,
are incredibly difficult to gather. Due to these constraints,
recent research has focused on time-dependent back prop-
agation as Recurrent Neural Network (RNN) based models
for aggregated data through time to help the agent learn to
adopt an optimal driving policy based on both the present
and prior observations. There are several algorithms in RRN,
such as basic RNN, Long Short Term Memory (LSTM),
and Gated Recurrent Unit (GRU). We selected LSTM for
this experiment for the following reasons: 1) In comparison
to other RRNs, LSTM has less computational cost and is
better at extracting temporal features while also being able
to deal with the difficulty of training without a substantial
amount of samples [15]. 2) The LSTM structure supports
direct sensor inputs such as camera and 2D-lidar data.This
includes the high-accuracy map, traffic data, and the planner-
centric objective location stated in polar coordinates. 3) DRL
uses LSTM to discover an optimal driving policy, while the
feature extraction layer uses supervised learning to train the
network in the feature extraction layer. And finally, LSTM
has an advantage over hidden Markov decision models as
well as the sequence learning approaches since it is less
sensitive to the length of the gaps between the data points.

This study seeks to provide a chain collision avoidance
strategy and its safety efficiency analysis process for au-
tonomous traffic flow [16] equipped with deep reinforcement
learning in uncertain traffic flows, notably in the two severe
scenarios of quick deceleration and lane shift, [12], to resolve
collision avoidance challenges [17]. In particular, we strive
to achieve an advanced method for taking decisions by ana-
lyzing the weaknesses and limitations of driving manoeuvres
supported by existing DRL algorithms that consider a range
of specific action approaches, including lane change, lane
retention, velocity maintenance, acceleration, and braking.
Sugiyama et al. [18] used the optimum velocity model cri-
terion for the collision to study factors which influence the
chain collisions in traffic flow. Figure:1 depicts the impact
with the consequences of a sudden slowing scenario on the
chain collision. Z. Li et al. [19] investigated the likelihood
of a chain collision induced by an abrupt stop in view of the
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impact of the modern intelligent control system. The affect of
the velocity friction-dependent on the multiple car collision
was explored by Nagatani et al. [20]. In our prior work
[21], we presented a learning-based potential risk assessment
method to forecast multiple vehicle collision risks as a means
of solving this critical problem.

The developed systematic safety efficiency measurement
[22], [23] process has two primary aspects, namely the mod-
elling of uncertainty [24] and the safety efficiency analysis. In
the phase of uncertainty modeling, we proposed an approach
to avoiding chain collisions that is considered as an MDP
(Markov Decision Process) that might be solved by applying
DRL [25]. In the phase of safety efficiency analysis, we con-
ducted an in-depth investigation of existing RL algorithm-
based [26] decision-making methods parameter impacts [27].
During the training phase, we investigate the active learn-
ing function to efficiently perform the collision avoidance
scheme safety efficiency analysis. The summary of these
aspects allows us to evaluate the accurate collision avoidance
scheme safety of AVs control rationality in a precise and effi-
cient way. The possible applicability of the suggested method
in the safety efficiency analysis based design optimization
of controlled parameters is reviewed in accordance with the
developed collision-avoidance efficiency analysis.

Therefore, the research contributions are summarized as:
• This article proposes a driving strategy to address the

issue of multiple-vehicle collisions. Two critical scenar-
ios are viewed as a new, comprehensive challenge as
opposed to the design of a technique for avoiding this
type of collision. The agent will learn how to balance
driving behavior by interacting with the environment
and making the right decision in these two critical
situations.

• A rewarding and punishment structure is being devel-
oped to address the challenge of multiple vehicle col-
lision avoidance. A perception network structure based
on formation, as well as actor-critic methodologies, is
also used to enhance the decision-making process.

• To demonstrate an accurate safety efficiency analysis,
we used Unity3D to deploy the driving strategy in both
single-agent and multi-agent simulation environments,
and we used three cutting-edge Deep Reinforcement
Learning algorithms to compare which one is optimal.

The remaining sections in this article are: Section II is the
literature review that will provide a detailed perception of
chain collision avoidance in AVs. Section III reveals the
basic insights of DRL algorithms focused on chain collision-
avoidance strategy and the safety efficiency analysis aspects.
Section IV represents the simulation implementation proce-
dure of the proposed approach, results and safety efficiency
analysis and finally Section V renders the concluding re-
marks.

II. RELATED WORK
The majority of current research goes considerably beyond
the single autonomous vehicles (AVs) control aspect. In real-

ity, the demands of diverse driving scenarios and the emer-
gence of robust embedded systems, sensors, and networks
have led to a broader interest in the subject of cooperative
motion control by multiple vehicles. The challenges of mak-
ing decisions on vehicle control are generally split into three
sections for a single autonomous vehicle: 1) localization and
surrounding mapping, 2) trajectory tracking, and 3) path
planning. And for multiple vehicles, forming a coordinated
path generation for multiple vehicles is a major challenge.
Each vehicle, in particular, takes a collision-free path, and all
vehicles arrive at their individual destinations. Environment
sensing results are crucial for intelligent vehicle decision-
making and control because they influence how the vehicle
operates [28]. When it comes to modeling the vehicle sur-
rounding environment, a robust perception framework is only
the responsible. The situation of the ego-vehicle (i.e., speed,
position, , and heading) as well as data collected by sensors
are fed into the system for this function [29]. Now a days,
Cooperative perception is now being developed further, with
the aim of sharing not just one’s own state information but
also the objects captured by other participants. With regard
to future technological developments, the ultimate target is to
make a means of combining data from on-board sensors with
data from other external sources, allowing for the creation
of a high-level understanding of the surrounding that encom-
passes both navigable space and objects. In [30], N.Sugiyama
et al. analyze and depict a region map for single, double,
triple, and chain vehicle collision scenarios in the context of
unexpected deceleration. The authors [31] in the situations
of automatic and manual driving, which are restricted for
safety reasons, to evaluate the stringent steadiness of multiple
vehicles. In fact, a series of unsteady connected vehicles is
more likely to cause a chain collision.

1) Chain Collision
Drivers on the road sometimes rely largely upon the tail brake
lights of the leading vehicle to decide whether they need
to slow down by braking or not. Conversely, multi-vehicle
collisions occur when a car shifts from its own lane to the
next lane on a two-lane roadway. These generate potentially
dangerous scenarios when a vehicle closely follows another,
especially when it is only possible to look behind the vehicle
in front of the vehicle. The driver’s reaction time is usually
0.85 to 1.6 seconds between the onset and frequency of the
braking [32]. If narrow vehicle-to-vehicle distances are main-
tained to prevent collisions in abrupt braking situations, there
may be little margin of defense [33]. In addition, in heavy
traffic flows, the cumulative reaction times of subsequent
drivers would result in a number of secondary incidents and
multi-vehicle collision chains [34].

2) Traffic situation ontology
The optimum understanding of environmental sensing it
mostly results crucial [29] of the ontology of highway traffic
mostly depends on the perception of uncertain traffic condi-
tions in a group of vehicles, and it is investigated in [35]. The
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FIGURE 2. The depiction of traffic situation ontology by representing the risk mapping and path re-planing scheme of ego vehicle in the aspect of chain collision
avoidance in AVs.

circumstances in which vehicles are involved must be under-
stood. This is the basis for other various implementations,
including sophisticated chain collision detection and chain
collision mitigation schemes. The benefit of understanding
the surroundings would enable multiple vehicles to operate
autonomously at high speeds in dangerous circumstances and
in complex highway or inner-city surroundings or cooper-
ative maneuvers [36]. Typically, the first collisions disrupt
traffic flow, block the road, and create severe congestion.
The blocking sometimes causes secondary or chain colli-
sions. They are one of the worst traffic collisions, most
of which occur on high-speed and high-capacity highways,
including expressways. Figure:2 depicts the traffic situation
ontology of chain collisions and their prevention or mitiga-
tion.WhereFigure:2a and Figure:2b represent, respectively,
the potential risk assessment and path re-planning to avoid
chain collisions caused by sudden blockage and abrupt lane
change.

3) Chain Collision Avoidance Techniques
For autonomous vehicles, traffic situations with multiple
vehicles interacting are difficult. Even if another traffic par-
ticipant’s rough intent is understood, all participating vehi-
cles must agree on a coordinated and conflict-free motion
plan, indirectly or explicitly. For each vehicle, the movement
must be secure and comfortable, and it must accommodate
all individual goals and desires, [37]. We may calculate
the average interval of all these distances by realizing the
collision-free distance for each participating agent. When all
of the agent velocities are chosen at the same time, conflicts
will almost definitely be avoided due to velocities at non-
intersecting distances. In a common interval, the selection of
competing speeds involves the agreement protocol [38]. Col-
lision detection and avoidance in agents [39] or multi-agent
scenarios [40] have also been discussed as a navigation query.
Considering the contemporary achievements and identifying
the challenges and flows, we concerned ourselves with the
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Vehicle Control

Collision
Avoidance

Planning & Decision
Domain

Potential Obstacle
Detection Domain

Cooperation Domain

Multimodal Sensor
Domain

Action Domain

FIGURE 3. Taxonomy of Chain collision avoidance in AVs

remedies to form a taxonomy of Chain Collision Avoidance
in AVs, as shown in figure:3.

Theoretically, chain accidents can be avoided or decreased
in severity by reducing the time between an emergency
occurrence and the moment when approaching vehicles are
informed of it. Propagating a vehicle-to-vehicle incident
warning alert is one way to do this. This could make it
possible to circumvent the usual chain of drivers responding
to the activation of vehicle brake lights immediately ahead
of them and even allow drivers to react to an incident before
seeing it. This function is hereinafter referred to as the CCA
(Car Accident Avoidance). The secondary crash mitigation
strategies are discussed in [41]. Common strategies are em-
ployed for chain collision avoidance systems as Platooning,
Active Brake Control, Time-Critical Cooperative Control,
Trajectory Re-planning. U. Z. A. Hamid et al. [42] proposed
a new chain crash avoidance technique in Figure:2.
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III. METHODOLOGY
In order to address the subsequent chain events of an au-
tonomous vehicle chain collision as well as the traffic sit-
uation ontology, we will examine the problem of collision
avoidance as a Markov Decision Process that can be ad-
dressed using DRL in this section. Our earlier study [43]
compared two DRL methods as the foundation for select-
ing the DRL methodology in this work for more in-depth
examination and investigation. In comparison to previous
approaches such as mathematics and physics-based methods,
chain collision avoidance applications using DRL do not
necessitate the use of a significant mathematical model. As
an alternative, a competent model was created automatically
by altering the parameters of a neural network (NN) that
was centred on the observations obtained from the sensors
as inputs. Furthermore, this strategy enables the robot to
work efficiently in the absence of an accurate map or a
high-quality sensor. To evaluate the safety efficiency of the
DRL based decision making process immediately, it is indeed
an elaborate discussion of the insights of DRL algorithms.
The mathematical details of the training environment in
simulation and the implementation specifics of DRL-centred
collision avoidance approach are described in the subsections
that follow.

A. REINFORCEMENT LEARNING (RL) AND MARKOV
DECISION PROCESS (MDP)
It is possible to portray RL as a coherent mathematical form
for solving the problems of sequential decision-making by
interacting with both the agent and the surrounding environ-
ment. This is how an agent learns about the environment
around it. It adjusts its behaviour in response to the input
(a reward or a penalty) it receives as a result of its actions.
Considering the foregoing, the real-world environment for
RL can be thought of as a Markov Decision Process (MDP).

Typically, an MDP consists of four components, which are
represented by ⟨S,A, T, r⟩ as a tuple, in here the S and A are
state space action space. The transition function which can
express as T : S × A → S, and the reward function can be
identified as r : S × A→ R. At each stage of the sequential
process of this decision-making, the agent takes different
actions and alters the state of the environment. The environ-
ment then rewards (or punishes) the agent. Afterwards, the
procedure is repeated as necessary until the episode comes
to an end. When it comes to making decisions, the aim
of an agent is to find an optimal set of actions (called a
policy) that maximises the expectation of cumulative reward
R =

∑T
t=0 γ

trt, where γ and T denotes as a discount factor,
and the experimental time horizon respectively.

In fact, an agent can figure out the optimal policy by
performing iterative searches in a small state space. Since
state space expands, standard RL methods are limited in
their ability to deal with it as the dimensional explosion
problem arises. Even if deep learning has made it possible
to resolve issues of additional complexity of dimensions and,
the DRL approaches have been developed in response. DRL
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FIGURE 4. Proposed Decision-Making Model

tackles the issue of dimensional explosion by using a deep
neural network to approximate the optimal value function.
Furthermore, the approach of replay memory and the target
network is implemented in order to reduce the correlation
of state distribution, resulting in a satisfactory level of per-
formance. As a result, DRL has found widespread use in a
variety of fields, including video games, self-driving cars,
and even healthcare. Also noteworthy is the fact that DRL
is considered a major technique for artificial intelligence.

B. PROPOSED MODEL
This work proposes a driving strategy and investigates the
safety efficiency of decision-making with the aid of Deep
Reinforcement Learning (DRL) in uncertain traffic flows to
resolve chain collision avoidance difficulties among multiple
autonomous vehicles, especially in the two severe scenarios
of rapid deceleration and lane shift. In particular, we strive
to achieve an advanced method for taking decisions by ana-
lyzing the weaknesses and limitations of driving behaviours
supported by existing DRL algorithms that consider a range
of specific action approaches, including lane change, lane
retention, velocity maintenance, braking, and acceleration.
In this study, we define our autonomous vehicle driving
decision-making strategy to avoid the chain collision prob-
lem corresponding to the MDP. In order to find an optimal
action policy that is represented by an actor network, as
shown in Figure 4, we propose our strategy. There are sensors
on both the ego vehicle and all of its participants. The
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network, called an actor, takes this information and generates
optimal outputs as a result of driving decisions. The optimal
outputs are then passed on by the actor network to a controller
in the ego vehicle.

State space(S) : We consider the state space of the
environment as, S = (xi, yi, dx,i, dy,i; i ∈ 0, ......nvehicle)
A traffic scenario is made up of a set of vehicle positions
(xi, yi) and respective speeds (dx,i, dy,i) where 0 index
corresponds the ego vehicle. Within the range xb = 20m,
a controlling agent can see the state of all vehicles in sur-
rounding.

Action space(A) : At each time step, the agent has the op-
tion of selecting any combination of lateral and longitudinal
actions. These actions are "stay in lane", "change left,"
and "change right" for lateral action, and set acceleration
to "1, 0, −1m/s2" for longitudinal movement. The fourth
option is to set the longitudinal deceleration −4m/s2 and
apply the hard brake. In total, there are a total of 10 different
alternative actions. A lane shift cannot be reversed after it
has begun. It is configured to "stay in lane" laterally and to
travel at −4m/s2 longitudinally as the fallback action.

The aim of the ego vehicle is to develop a policy that
maximizes the cumulative reward over time. Usually, we can
express the policy π a probability function of the state space
π : S → (A = a|S). Our system, However, the policy as a
function that relates states and actions. The accelerator and
steering values of the ego vehicle can be determined by the
policy based on the present state values of the environment.
In our proposed DRL model, a neural network is used to
embody the policy.

To avoid collisions, the agent must collect data from
the surroundings (considering the above state space S =
{s1, s2, ......sn}, and action space A = {a1, a2, .....a10})
utilising sensors and produce directives to prevent obstacles.
A mathematical model can reflect the association between
sensor observations and action. Generally, equation:1 and
equation:2 can be used to define the problem.

For single agent approach,

dt, ut = fbt (1)

where dt, ut and bt represent the linear velocity, the angular
velocity, and the sensor observation at each of the time steps,
respectively.

For multiple agent approach,

dt,i, ut,i = fbt,i ; i = 1, 2, 3, ....n (2)

where dt,i, ut,i and bt,i are the i-th number of agents linear
velocity, the angular velocity, and the sensor observation at
each of the time steps, respectively. By this approach we will
evaluate the safety efficiency of DRL in terms of existing
three algorithms.

C. DRL METHODS
DRL is an approach that combines reinforcement learning
with deep learning. Based on the current policy, an agent can
generate the training data by itself in the learning scheme

of reinforcement learning through the interaction with its
environment. Therefore, there is a continual change in ob-
servation and reward data distribution as the agent gains
experience, which might produce instability in the learning
procedure. Basically, the neural network is fed by the obser-
vations of the agent, which outputs the action based on the
current policy in the deep reinforcement learning approach.
Hyperparameter adjustments are extremely sensitive to these
methods. PPO overcomes all these challenges by being sim-
ple to tune and implement. It directly learns from the data that
it gets from the present states of its surroundings as an on-
policy gradient technique, rather than through the Q-learning
process used by DQN (deep Q-Networks); the entire learning
procedure is based on such data, which is offline data that has
been acquired before. When evaluating the performance and
trustworthiness of these DRL algorithms, it is important to
understand how they work. The algorithm PPO has two parts:
policy gradient loss and trust-region. These will be explained
first.

In PPO approaches, the equation: 3. is policy gradient loss
defined initially, which allows for an increase in positive-
rewarding actions and a decrease in negative-rewarding ones.

Lpg(θ) = Êt

[
log πθ(αt|st)B̂t

]
(3)

here πθ(αt|st) denotes the action αt executed in time t
with a policy parameter πθ given state st. The loss function
Lpg(θ) is represented here as the estimated reward of the
carried out action at time t, while the second term Êt and
a advantage function B̂t represents the comparative cost
function of the prudently carried out action at time t. In
the procedure of Critic architecture, use of the Generalized
Advantage Estimator (GAE) is very common method to
calculate the Advantage function B̂t) as:

B̂ + (γε)B̂t+1 + .........+ γεN−t+1, (4)

With
B̂ = rt + γVθ(St+1)− Vθ(St) (5)

Where, γ and ε are discount factor and GAE estimator
parameter respectively and t = 0, 1, 2, . . . ., N .

The advantage function is usually divided into two parts:
the first one is the discounted sum of rewards, and the second
one is the baseline estimate. The discounted sum of rewards
in equation: 6the weighted sum of all rewards obtained by the
agent during each and every timestep in the current episode.

∞∑
k=0

γkrt+k (6)

Here γ is the discount factor, mostly laid between of 0.9
to 0.99, implies that rewards in close proximity are priori-
tised over rewards provided further ahead. It calculates all
values of rewards limited to t to t + ∞. The awards are
compounded through a discount factor equivalent to same
number of timesteps forward. Because of advantage function
is determined once the episode sequence is gathered from
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the environment, all the rewards are then known. The fact
that the reward function is calculated following the episode
sequence from the environment is known to all rewards. The
second portion of the reward function is the neural network
baseline function. The calculation of the baseline function
is a discounted return estimate from the position it holds
now. Depending on the previous experience, it forecasts the
expected reward from the ending of every episode. The neural
networks input is each state, and its output is the sum of the
discounted anticipated rewards.

A difficulty with the gradient descent is the excessive
update of the parameters, creating a policy that is inadequate
for the agent to collect suboptimal data. When updating a
policy, TRPO makes sure that it is not too out of the way
from the prior policy.

maximizeθÊt

[
πθ (αt|st)

πθpre (αt|st)

]
B̂t

subject to Êt [CL [πθpre(.|st), πθ(.|st)]] ≤ δ (7)

Because here all the policies are stochastic, the action se-
lected for them is called πθ(.|s). The CL constraint is added
to the goal to prevent over-fitting, and the quantity of policy
shift is constrained. The limited CL, on the other hand, limits
the optimization strategy and might occasionally result in
undesirable training behaviours. Due to the need to diminish
the issue in equation:7, this new constraint is explicitly
mentioned in PPO.

1) PPO
Consider rt(θ), which represents the new-to-old policy ratio.
The ratio value greater than 1, means the action is more
probable now than under the old policy. It is possible to
multiply the ratio rt(θ) and the objective function for making
better readability as equation:8.

LCPI(θ) = Êt

[
πθ (αt|st)

πθpre (αt|st)

]
B̂t = Êt

[
rt(θ)B̂t

]
(8)

Maximizing the LCPI(θ) would cause in overly massive
policy changes if there was no constraint. As a result, an
objective function could be changed as equation:9 to punish
policy changes that shift rt(θ) from 1.

LCLIP (θ) = Êt

[
min(rt(θ)B̂t, clip(rt(θ), 1− ϵ, 1 + ϵ)B̂t

]
(9)

Here the ϵ denotes hyperparameter, and the value sup-
posed ϵ = 0.2. Ê represents the expectation operator of the
objective function that PPO optimizes calculated by lots of
experiences. This operator of expectations shall be accepted
for at least two terms. The first one is rt(θ)

ˆ̂
Bt guarantees the

policy adopts actions that give the baseline a high favorable
advantage. clip((rt(θ), 1 − ϵ, 1 + ϵ)

ˆ̂
Bt is the second term,

removes the chance for rt to migrate away from the interval
[1− ϵ, 1+ ϵ] over clipping the likelihood ratio, which affects

FIGURE 5. The effect of the advantage function on the clipping functionality.

the aim. The positive or negative value estimation may affect
the operator’s effect.

The positive or negative value of advantage function be-
longs to the limited probability ratio, as shown in figure 5.
During each cycle, each N agent, in this example, only 1,
acquires T timesteps data. All the experience is gathered.
The policy gradient is then done for every lot of K epochs
on the policy network to adopt the policy and use a limited
PPO target.

Parameter
Distribution

Communication
& Cooperation

Collision Risk
Prediction

RL Algorithm

Agent

FIGURE 6. Presentation of the deep reinforcement learning agent.

2) Soft Actor-Critic
The Soft Actor-Critic (SAC) method is an off-policy tech-
nique with entropy regularisation as a core component. Mea-
suring the randomness of policies, SAC policy seeks to
maximise the equilibrium between an anticipated return and
entropy. The situation is analogous to the trade-off between
exploration and exploitation, which might further enhance
the learning rate and prevent policy convergence early. To
illuminate soft actor-critique, the setting of reinforcement
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learning that poses entropy-regularized learning is first in-
troduced. Entropy can be evaluated as the amount of ran-
domness of a variable. The probability function X will be as
follows in the case of considering the x as a random variable,
and this distribution function P defines F the entropy of
random variable x in equation:10.

H(P ) = E
x∼p

[− logP (X)] (10)

In reinforcement learning, entropy-regularized learning, a
bonus in line with entropy, is granted to the agent in every
timestep, adjusting the problem of reinforcement learning.

π∗ = argmax
π

E
τ∼π

[ ∞∑
t=0

γt(R(st, αt, st+1) + αF (π(.|st)))

]
(11)

Here, τ denotes the sampled policy trajectory π, α > 0
is an entropy term controlled by the relative significance pa-
rameter versus reward, which controls, thus, the stochasticity
of optimal policy π. In order to guarantee that the predicted
amount of rewards is reduced by how far the future rewards
are achieved, the γ discount factor is implemented. The best
policy is one that maximises the policy’s expected return. The
expected reward calculation is the summation of discount
factors multiplied with the transition reward of state s to state
st+1 when the action is αt, as well as the entropy. In this way,
it is possible to describe the value functions that determine
the expected return for a certain policy or state action pair.

In the equation: 12 the Zπ is the expected return when the
starting state s and the given policy π, which incorporates the
entropy bonus from each timestep.

Zπ(s) = E
τ∼π

[ ∞∑
t=0

γt(R(st, αt, st+1) + αF (π(.|st)))s0 = s

]
(12)

In the equation: 13 the Qπ is the calculation of the expected
return when the starting state is s and an arbitrary action α at
all the actions of policy π. Furthermore, except for the first
timestep, all entropy bonuses will be added.

Qπ(s, α) = E
τ∼π

[ ∞∑
t=0

γt

(
R(st, αt, st+1)

+α
∞∑
t=1

γtF (π(.|st))
]
s0 = s, α0 = (α)

(13)

Combining the Zπ and the Qπ from the above two equations,

Zπ(s) = E
α∼π

[Qπ(s, α)] + αF (π(.|s)) (14)

The equation: 21 defines the Bellman equation as expressing
the value of a decision making task at a given moment in
terms of the payoff from some initial option, as well as the

value of the remaining decision problem that comes from
those initial choices.

Qπ(s, α) = E
s′∼p

α′∼π

[
R(s, α, s′) + γ

(
Qπ(s′, α′) + αF (π(.|s′))

)]
= E

s′∼p
[R(s, α, s′) + γZπ(s′)]

(15)

Cell Cell Cell Cell
h1 h2 hn-1 hn

stst st st
O1 O2 O3 On

FIGURE 7. LSTM Module.

LSTM

st

O1 O2st , st

st
O

st
LV

st
FV

FC FC FC

FIGURE 8. Input Network Structure.

The following state s′ is sampled from the current state
transition rules, as indicated by the shorthand s′ ∼ P for
s′ ∼ P (.|s, α). And the shorthand α ∼ π is for α ∼ π(.|s),
which denotes that the action was taken based on the policy
rules. As a result, the Bellman equation equivalent the sum-
mation of both the expected reward of a state change and the
value of the state to which the transition is made. Soft actor-
critic learns a policy as well as two Q-functions, Q1 and Q2,
simultaneously. These Q-functions are the approximators for
optimum function of action value. With the definition of
entropy, the Bellman equation can be rewritten The Bellman
equation may be reformulated under the notion of entropy
equation: 16.

Qπ(s, α) = E
s′∼p

α′∼π

[
R(s, α, s′) + γ

(
Qπ(s′, α′) + α log π(α′|s′)

)]
(16)
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Since Qπ is expected in future states from the replay buffer
and the future actions, it could be approximated and rewritten
with samples equation: 25.

Qπ(s, α) ≈ r+γ(Qπ(s′, α′)−α log π(α̃′|s′)), (α̃′ ∼ π(.|s′)
(17)

The next actions must be fresh sampled from the policy
instead of α′, while r and s′ are taken from the buffer for
the replay. When compared to PPO, the replay buffer should
make sure that SAC is always more sample efficient, with
more buffer experience being preserved. Sample efficiency
implies the agent’s expertise to achieve a specific degree of
efficiency. In the equation: 18 the Mean Squared of Bellman
error will reflect how near the Q function is to the Bellman
equation. SAC uses a dual-Q method, which is clipped, and
between the approximating two Q values is minimum.

L(θi,K) = E
(s,α,r,s′,k)∼K

[(
Qθi(s, α)− v(r, s′, k)

)2
]
(18)

In equation: 19, K is here replay buffer with a target
function and k is the finished signal.

v(r, s′, k) = r + γ(1− k)(min
j=1,2

Qϕtαrgj(s
′, α̃′)

− α log πθ(α̃′|s′)), α̃′ ∼ πθ(.|s′)
(19)

In equation: 20 each of the state, in addition to projected
future entropy, the policy attempt to maximise expected
return and hence maximise Zπ .

Zπ(s) = E
α∼π

[Qπ(s, α)] + αF (π(.|s))

= E
α∼π

[Qπ(s, α)] + α log π(α|s))
(20)

3) DDPG
Typically, Deep Deterministic Policy Gradient (DDPG) [44]
utilize DPG-algorithms with the help of Neural Networks as a
generic function approximator. Three difficulties arise when
Neural Networks (NN) are utilised in RL for any continu-
ous type of action space: instability, insufficient exploration,
and correlated data. This chapter is to demonstrate three
methodologies to solve these difficulties as a result of the
examination of safety efficiency. The neural network training
data must be scattered independently and uniformly. When
samples are produced in a sequential manner in a simulated
environment, this is not always the case. To store collected
data as previous experience, the DDPG algorithm uses the
replay buffer. When enough data has been accumulated, a
replay buffer may be used. The purpose is to avoid the
correlation data curse. The squared loss from the samples
may then be used to build the loss function for Actor-Critic.

L(θQ) = Êst∼ρβ ,αt∼β,rt∼E

[
Q(st, αt|θQ)− vt)

2
]

(21)

where

vt = r(st, at) + γQ(st+1, µ(st+1)|θQ) (22)

The Critics Neural Network is prone to divergence because vt
is calculated by the same network that is optimising. Making
clones of networks and updating them along with gradual
upgrades can solve the problem. Making duplicates of both
actors and critics has been shown to be the most effective
approach for ensuring stability.

Environment

TD error

Actor 
(st)

Critic 
Q (st,at)

Actor activities

St

Value Function

Policy

Text

Critic activities

FIGURE 9. Form of the Actor Critic model network settings.

The clones are defined as

Q′(s, α|θQ)
µ′(s|θµ

′
)

(23)

and the soft updates can mathematically be formulated as

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ

′
+ (1− τ)θµ

′ (24)

Here τ ≪ 1. Because of the limitless number of possible
permutations, exploring continuous action spaces is difficult.
In the off-policy techniques, the exploration can be developed
independently of the learning mechanism. Incorporating an
exploration noise into the actors’ action may be the simplest
method to generate an exploring actor.

uexp(st) = µ(st|θµt ) + P (25)

where P is a variable that can be changed depending on the
environment.

4) LSTM Structure
The states of the ego vehicle and the other participant vehi-
cles serve as the input to the value network in this experiment.
It is particularly unpredictable as to how many moving obsta-
cles (one to four) will collide in the environment, which has a
significant effect on policy implementation. It is evident that
the driving decision-making process should not consider all
states of the environment equally. The manoeuvre policy is

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3167812, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

affected by the position and velocity of each agent. LSTM is
used to collect information from the environment when the
quantity of barriers is unknown. LSTM is typically used to
manage time series data while also encoding a series of time-
independent data. The obstacles are sorted from distant to
near in order to generate artificial spatial relations, this means
that the most important factor in determining the ultimate
hidden state is the barrier that is closest to the narrator. In
addition, this type of method reduces the impact of the early
states in forgetting state of LSTM. Even with an enormous
number of obstacles in its path, the concealed state can handle
them all if it is sufficiently big. A sequential input to the
LSTM is illustrated in Figure 7, where the states information
of obstacles is deemed as a serial input to the LSTM, which
gets the state information of each barrier one by one and,
eventually, outputs an encoded state for all of the barriers. By
using this method, we can deal with the problem of multiple
obstacles. The value network is created using an LSTM
module and the network structure depicted in Figure 8. As
a final step, we feed this information into three layers of fully
connected (FC). As a final step, the value network calculates
an estimate of how much the current state is worth. It should
be noted that the statuses of participant cars are handled
identically in the suggested structure, and no elements of the
formation are extracted, which requires the settings of neural
network learning how to determine the upkeep quality of the
development.

5) Training Network Settings
The speed of the participant vehicles was evenly formed in
the range of [ui(t) , dm(t)] after the beginning state, as well
as maintaining a same speed across all of the participating
vehicles.The actor network was made up of two hidden
layers, that had a total of 64 and 64 units in each and was fully
connected. The critic network, on the other hand, was made
up of two hidden layers consisting of 64 and 64 + 2 units (the
action output: accelerator and steering) in each that are fully
connected. Figure 9 illustrates how actor networks and critic
networks work in general.In both the actor network and the
critic network, the activation function ReLU (rectified linear
unit) was utilized to activate all hidden layers. Because of
the action space range, the tanh activation function is used in
the output layer of the actor network. The output layer of the
critic network, on the other hand, does not have an activation
function. A uniform distribution [−3× 10−3,−3× 103] was
used in both the actor and the critic networks as the weights
for the output layer. Actor and critic networks are updated
with the Adam optimizer. Table 1 shows all parameters of
the traffic condition and DRL algorithms.

IV. SIMULATION AND SAFETY EFFICIENCY ANALYSIS
In this section, we run the simulations in both single vehicle
and multi-agent contexts to validate the effectiveness and
accuracy of the anticipated autonomous driving approach.
Furthermore, in order to analysis the safety efficiency, we
look at how an ego car would interact with the other three

participant vehicles as well as with each other in order to train
for optimum driving. TensorF low is used to execute the
simulation that implements our deep reinforcement learning
methods. To begin, we will go through the simulation sce-
nario creation as well as the parameter settings. Following
that, we evaluate the safety efficiency of the techniques
by analyzing their uncertainty modeling. According to the
state space and action space description mentioned in
Section III we have the state space of the environment as,
S = (xi, yi, dx,i, dy,i i ∈ 0, ......4vehicle), and the traffic
scenario is made up of a set of vehicle positions (xi, yi)
and respective speeds (dx,i, dy,i) where 0 index corresponds
the ego vehicle, while it can see the range xb = 20m,in
surrounding.

A. AGENT
The created DRL agent has two features: the first is target
destination or goal achievement, and the second is partner
road user consideration. In this manner, it will be possible to
perform effective autonomous braking and avoid the abrupt
deceleration and lane change of the leading participant car.
For good driving behaviors, a positive reward will be paid to
the agent at the end of the episode. It will also be positively
rewarded for passing through checkpoints and for its speed.
If a speed control fails, the agent will be fined. A small
punishment is applied to each decision made by the agent
in order to ensure that the most efficient decisions are taken,
eventually leading to immediate driving. While modern self-
driving automobiles mostly employ effective sensors such as
LiDAR, this form employs two sets of rays, with eight rays
per direction, covering 180 degrees of the entire environment
at a 20meters length. The first pair of rays determines the
distance between the lanes (3.6m in this experiment) and
the pavement or roadside infrastructure. The second set of
sensors predicts the distance to other cars in the vicinity of the
ego vehicle. In addition, the agent vehicle is aware of its own
velocity and steering direction, which allows it to drive the
vehicle at the appropriate speed. We train two approaches to
demonstrate the reliability analysis a single vehicle approach
and a multiple agent approach involving 4 Agents per train-
ing instance. Figure: 9 presents the RL agent of our training
process.

B. REWARD
The reward function here indirectly establishes the optimiza-
tion target, which is an important aspect because the reward
function is used to characterize optimal behavior. Defining a
reward function for driving a vehicle that describes optimal
driving behavior. The job is tricky, as there are many different
types of driving scenarios that can be hard to derive into an
explicit equation. However, because the scope of this study is
restricted to the Ego-Vehicle (EV ) and four participant cars
acting, many of the issues of constructing a driving reward
function can be overlooked. We consider a one-way with two-
lane scenario in the simulation, as represented in figure:2a
The vehicle in front of it and the vehicle behind it are in
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(a) The average rewards of training process of the single agent environment. (b) The average rewards of training process of the multi-agent environment.

FIGURE 10. The average rewards of algorithms in the training process of both single and multi-agent environment.

TABLE 1. The vehicle dynamics parameter details

Description Parameter Value
Agent vehicle (Ego Vehicle) EV Red color marked
Participant vehicles FV or LV Green color marked
Vehicle initial speed ui(t) 30 ∼ 90km/h
Vehicle maximum speed dm(t) 90 ∼ 120km/h
Deceleration rate ap(t) −4 ∼ 0m/s2

Vehicle normalize steering sstr(t) −1 ∼ 1
General following distance Sgd(t) 7.25m
Therashold distance Sthr(t) 4.25m
Ego Vehicle (EV) position LEV , (0) (0,0)
Flowing Vehicle (FV) initial
position LFV , (0) (0,5)

Other participants vehicle
initial position i

Li, (0) (0,0)

Memory size (Reply) - 1,000,000
Minibatch size N 256
Learning rate (actor and
critic) - 0.001

Hidden units (actor network) - 64,64
Hidden units (critic network) - 64,64+2=66
Learning rate (actor critic) - 0.001

the same lane. Randomly, one obstacle will be created in
front of the leading vehicle, and the ego vehicle will receive
warning from the signal of the taillight of the leading vehicle.
Similarly, in figure:2b. One Following Vehicle (FV ) is driv-
ing in the same lane of EV and the Leading Vehicle (LV )
moving just right-side lean of the ego lane. Suddenly, the
Leading vehicle changes its lane and shifts into the following
ego lane. The initial position of the EV and other vehicles
is fixed by Unity 3D game engine physics. The initial
vehicle speed is chosen at random between 30km/h and
90km/h. The vehicle’s deceleration ranges from−4m/s2 to
0, with 0 indicating no braking. The EV , FV and LV have
a greater beginning space headway than the safety spacing,
and the following distance is equal to 4.25meters, which
is the length of a vehicle. The driving styleLV is chosen
at random from the following three scenarios: LV sudden
slowdown (the EV , LV , and the FV will be in the same
lane or parallel); LV abruptly changes lanes to the EV s

front. The LV determines the shifting time at random before
changing lanes. LV continues to drive in the same manner
as before (the LV and the EV will be in the same lane
or parallel). When the distance between the EV and LV
goes beyond a threshold value in either of these conditions,
the EV chooses a new autonomous control decision to cope
with the emergency, namely braking and steering. EV is not
required to take any driving action in the third condition. The
goal of our agent is to traverse from the starting point to the
ending point while staying safe and on schedule. In order
to attain this goal, a straightforward and rewarding style is
employed. A positive reward based on 2 − dmax−dmin

dmax
(d

indicate the velocity in this study) is received by the agent
at each time step, which encourages efficient driving, such
as overtaking slow participant vehicles. Alternatively, when
a collision happens, or if the EV drives off the road (e.g.,
if the lane changing happens outside of road boundaries),
a penalty or negative reward equivalent to rcol = −2 is
added, and immediately the episode is ended. In addition,
the episode does not end when the EV induces another
vehicle to emergency brake, which is defined as deceleration
with a scale greater than the value for ae = 4m/s2 or
when the EV travels closer to another participant vehicles
than the temporal gap of tgap = 2.5seconds. For further
safety and discouraging excessive lane changes, an additional
negative reward rlc = .2 is given when a lane change is
undertaken. Table:1 shows the precise parameter settings for
vehicle dynamics.

C. SIMULATION SETUP

Unity 3D was used to train our DRL agent vehicle on how
to avoid multiple collisions. The Microsoft-developed open-
source Unity 3D platform is being utilised to bridge the
gap between real-world and computer-simulated autonomous
vehicle development. Unity 3D has a lot of advantages.
It is a simulator that was made with the Unreal Engine.
Besides providing superb visual rendering, the Unreal Engine
includes a wealth of capability for collision-related analysis,
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(a) The length of episode in training process of single-agent environment. (b) The length of episode in training process of multi-agent environment.

FIGURE 11. The length of episode in training process.

which is very useful. In the process of training an agent
through trial and error, it is conceivable for the DRL agent to
directly experience collision conditions. The neural network
must be fed with data from the developed environment in
order to be properly trained. Driving the agent vehicle and
the participant vehicle in Unity 3D allows us to acquire the
data that is required for learning. Different types of vehicle
sensors can be used with Unity 3D. In particular, the LiDER
and the Inertial Navigation System (INS) are equipment on
agent and participant vehicles. Using these sensors, we can
assemble important data about the current state of the vehicle.

The reinforcement learner may successfully regulate the
vehicle speed of a trained agent in a multi-agent collision
avoidance environment using either DDPG or any other
method like SAC and PPO, thanks to an extensive simulation
designed to handle the problem of unexpected slowing and
lane shift. The ML-Agents toolkit from Unity is utilised
to assist the neural network, which uses the open-source
TensorFlow library to construct and form machine learning
models. In this 3D simulation, the car can be subjected
to gravitational, rolling, and dredging impacts. The SAC
algorithm’s training process is seen in Figure:9. The driving
safety effectiveness concerning the evaluation of chain col-
lision avoidance techniques will be determined in this work,
which has two dimensions: single agent and multiple agent
environments.

D. RESULTS
In this section, episode length, average reward, average in-
ference rewards, value loss, and the number of collisions per
episode, in particular episodes during training, are compared
to the driving efficiency and overall safety efficiency of the
three algorithms. The agents are required to execute 5 million
episodes in order to evaluate the three algorithms in the
context of two distinct aspects (single-agent and multiple-
agent environments). Overall safety efficiency is determined
by the agents’ total success rate. To quantify efficiency and
assess the dependability of these three methods, the total

amount of guidance and the average timesteps per episode
are employed. The rest of the time, each vehicle on the
road has its own initial position and travels at velocities
ranging from 90 to 120 kilometres per hour. All vehicles
have sensors attached to them to perceive the existence of
other vehicles. If it becomes vacant, it is a chance to slow
down and operate the vehicle braking system at random. The
agent vehicle will slow down if there is a car in front of it
(Leading Vehicle (LV)). When a vehicle approaches from
behind, it accelerates. When a vehicle is in the front and
back, it ensures that the same spacing between the vehicles
is maintained. We assess the safety effectiveness by exam-
ining the four sets of figures offered, each of which depicts
two different approaches to our training performance. First,
the Figure:10 presents average rewards with time steps, an
illustration of the learning efficiency of our modelled agent
in both single and multi-vehicle environments. Second, the
Figure:11 shows the episode length with time steps, and it
gives valuable insights about how many unusual actions they
take and the number of accidents they have per episode.
Third, the Figure:12 reveals the inference average rewards
that indicate the overall collision avoidance performance and
driving smoothness of the trained agent. The policy loss is
depicted in the fourth Figure:13. From this figure, we can
determine the overall training perspective as to whether the
agent can learn optimum behaviour or not. And finally, the
consecutive two figures of Figure:14 present the particular
time step collision numbers per episode.

E. UNCERTAINTY MODELING ANALYSIS
We initially train our chosen algorithms, PPO, SAC, and
DDPG, to model the uncertainty in traffic circumstances for
both single-agent and multi-agent autonomous traffic flow.
The following table shows the training data table:2 provides
us with useful information for making driving decisions, such
as vehicle speed and the relative distance between a vehicle
and an item in front of it. According to our proposed driving
strategy depicted in both equations equation:1, and equa-
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(a) The average inference rewards of the single agent environment. (b) The average inference rewards of the multi-agent environment.

FIGURE 12. The average inference rewards both single and multiple agent environments.

(a) The value loss presentation of single agent training. (b) The value loss presentation of multi-agent training.

FIGURE 13. The value loss estimation of both single and multi-agent environment

tion:2, it contains both a single and multi-agent environment,
and the training process has been done over a lengthy time
period (24 hours) with a single and multiple vehicles (here
it is 4 vehicles). It is possible that it does not account for
all of the sources of uncertainty in the simulated driving
environment. The results reported in these figures and tables
are assumed to be reflective of the uncertainty sources in
the driving environment of single and multi-vehicle traffic
flow described in this article. Other sources of uncertainty,
such as weather, road conditions, and road profile, should
be incorporated into the future safety efficiency study of
autonomous vehicle driving decision making. Table:2 depicts
two aspects of a single agent environment and a multi-
agent environment for training scenarios in which the three
algorithms perform differently. The agent can control the
vehicle’s velocity on the road with an 88 percent success rate.
When vehicles are close together, the agent either decelerates
or accelerates based on the distance to the other participants.
The three DRL algorithms repeated the process for a total
of 5, 000, 000 times or for a total of 24 hours of training.
Because the episode’s highest reward is 88.2, an average of

55 is considered good. While PPO required less time than
SAC, the DDPG never reached this average value (for the
multiple agent environment). The average reasonable reward
is .6, in which PPO took roughly 2 million (single agent) and
3.1 million (multi agent) timesteps compared to the SAC, 3.1
(single agent) steps, 4.2 (multi agent) steps, and 4.7 million
timesteps for single agent and not applicable (for multi-
agent) of the DDPG method. As indicated by a quick drop in
performance at 1.5 and 1.8 million timesteps, the amount of
time of PPO increase was more than stable DDPG and SAC,
and its performance swings remained reduced. A superior
success rate has been attained. The amount of time each
episode appears is the same for all three methods. The DDPG
and SAC agents, on the other hand, had approximately twice
as much steering each episode. The SAC agent approxi-
mately doubles the number of steering fractions per episode,
despite the fact that the timesteps for the three algorithms are
the same each episode, implying that all agents execute the
episode with the same number of actions.
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(a) Number of collision in per episode in particular time steps of single-agent
environment.

(b) Number of collision in per episode in particular time steps of multi-agent
environment.

FIGURE 14. Number of collision in per episode in particular time steps.

TABLE 2. The overall Reliability Analysis of three RL Algorithms in the aspect of single and multi-agent environments.

Algorithm PPO SAC DDPG

Training Approach Single
Agent Multi-Agent Single

Agent Multi-Agent Single Agent Multi-Agent

Success rate 88% 81% 67% 61% 35% 29%
Timesteps till .6 rewards 2 mill 3.1 mill 4.1 mill 4.2 mill 4.6 mill N/A (within 5 mill)
Timesteps 3 mill 4.1 mill 4.2 mill 4.6 mill 5 mill 5 mill
Time till .6 rewards 8 hours 13 hours 8 hours 15 hours 24 hours 24 hours
Training hours 10 15 12 18 24 hours 24 hours
Per episode avg steering change 54 83 177 197 93 105
Per episode avg timesteps 61 86 72 89 165 192

F. SAFETY EFFICIENCY ANALYSIS

We then do a collision-avoidance safety efficiency analy-
sis utilising the training results stated in the previous sub-
sections, centred on the proposed driving technique for quan-
tifying the uncertainty in chain collision avoidance. The
training process deploys chain collision avoidance strategies
in autonomous driving and analyses the safety efficiency
according to the aspect of chain collision avoidance driving
manoeuvres with respect to the three RL algorithms (DDPG,
PPO, and SAC) by allowing an agent to learn how to do so.

• The training results show that the recommended driving
approach is effective, and they point us in the right
direction to enhance the accuracy and efficiency of the
collision-avoidance trustworthiness analysis. Figure:2
shows the collision risk and avoidance failure prediction
as a function of the controller parameters velocity v and
time t. We look at the training results in both single-
agent and multi-agent scenarios to see how well or
poorly they perform. In terms of overall performance,
the PPO, SAC, and DDPG efficiency evaluations are
all equal, with success rates of 88, 81, and 67 percent
for single vehicle environments, while 61, 35, and 29
percent for multiple vehicle environments, respectively.
In terms of learning rates, the PPO algorithm needed
less time and less episodes than the SAC and DDPG to
reach this rate of success, indicating sample efficiency.

Here we can primarily see that the PPO is more reliable
than the other two algorithms, SAC and DDPG.

• On the other hand, DDPG and SAC took longer to pro-
cess 5 million episodes than PPO, owing to the fact that
both DDPG and SAC are off-policy updates. Because it
learns from all previous experiences, the DDPG or SAC
over PPO should be used when the sample supply is
low. PPO trains more quickly, but it requires more data
to be successful. When it comes to driving efficiency,
the DDPG and SAC agents used more steering in total
and took longer timesteps to complete an episode. The
algorithm PPO took 54 and 83 timesteps to accomplish
speed control, DDPG took 93 and 105, and SAC took
177 and 197 timesteps, demonstrating that SAC con-
ducted more inefficient actions than PPO and DDPG.
It implies that as timesteps are smaller, the likelihood
of chain collision failure decreases. However, increasing
the number of timesteps may increase the frequency of
unneeded braking and steering motions, thereby causing
discomfort for the passenger and increasing fuel usage.

• There was also a significant disparity in the amount of
total direction done by the agents. Although PPO used
more data than the other two, both the DDPG and SAC
agents committed more unneeded and worse actions
on average, making them sub-optimal in comparison
to PPO. However, like with most machine learning
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tasks, the problem of overfitting occurs with all DDPG,
SAC, and PPO. The performance of the three algorithms
is shown in table:2. Based on this table information,
we can derive an adequate measurement of the safety
efficiency of our three algorithms, which is that PPO is
more trustworthy than SAC and DDPG, and the DDPG
performs poorly in both phases of the training period
(i.e., single-agent and multi-agent).

• According to Figure:14, we can evaluate the safety
efficiency in both single vehicle and multiple vehicle
environments. We clearly see that there is no signif-
icant difference between a multiple vehicle environ-
ment and a single vehicle environment. Two figures
show that the algorithms’ performances are more or
less the same. More precisely, the PPO algorithm gives
us a smaller number of collisions at the start of the
episode at 150050. However, the DDPG gives us a lower
number of collisions at the end of this episode range
as 150300-150350, which is 15 (for single-agent) and
around 20 (for single-agent). So, for this, we can say
that the DDPG and SAC also have good perspectives
for avoiding collisions. But the overall performance of
PPO steadily decreases from start to ending episode in
this particular range.

Based on the foregoing data, performing a safety efficiency
study accurately requires a particular number of training ses-
sions regardless of the method of measurement assessment
used. More training will allow us to focus even more on
small regions that are crucial for safety analysis, allowing
us to improve the efficiency of collision-avoidance decision-
making reliability analysis.

G. COMPARISON OF COMPUTATIONAL COMPLEXITY
AND EFFICIENCY
The computational complexity of the proposed method can
be stated as: O(Ψ),

where, Ψ = OH +OMY +HI +MY I
i.e.

O(Ψ) = O(GH +GMY +HI +MY I) (26)

Where G represents the number of output units, H repre-
sents the number of hidden units, M represents the number
of memory cell blocks used, Y represents the size of memory
cell blocks used, and I represents the maximum number of
forward-connected units of memory cells, hidden units, and
gate units, as well as the number of weights. According to the
structure of deployed training networks, it can be said that,
overall, the techniques (PPO, SAC, and DDPG) are local in
time and space, which means that the values of activation
obtained during the sequence processing phase do not need
to be stored or kept. Furthermore, the amount of storage it
requires is independent of the length of the sequence input.

On the other hand, the simulations were focused on
the avoidance of chain collisions among multiple au-
tonomous vehicles. Because of that, we conducted three

well-established RL algorithms and tried to investigate their
performance according to our problem. In this way, we utilize
the off-policy methods as DDPG, and we know that the
DDPG algorithm learns a Q-function and a policy at the
same time. DDPG also performs "soft updates" (also known
as "conservative policy iterations") on both actor and critic
networks. In addition, we used SAC, an off-policy method
that combines off-policy updates with a stable stochastic
actor-critic scheme. To avoid chain collisions, we deployed
it because the policy can learn multiple means of optimal be-
havior. On the other hand, we studied the on-policy updating
method as PPO, in which the agent interacts directly with the
environment, learns and discards a batch of experiences after
performing a gradient update. In the following sections, we
will compare the computational cost of our proposed method
in single agent and multiple agent systems.

1) Single Agent Environment

According to the simulation results mentioned in table:2, it
is clearly seen that in the aspect of single agent environment,
the required training time for reaching considering reward
.6 are for PPO and SAC, which are 8 hours and 8 hours,
whereas the DDPG algorithm took 24 hours but did not reach
this level of reward. So, for these, we can say that the PPO
and SAC algorithms are more cost-effective than the DDPG
algorithm. Another matter is the timesteps: they trained the
model for 5 million timesteps, and in this time duration,
the DDPG algorithm did not complete its training process,
which means it took total timesteps and did not achieve the
expected rewards. whereas PPO took 2 million and SAC took
4.1 million timesteps to train the model perfectly. Hence, we
can consider the PPO to be more cost-efficient than the SAC
and DDPG algorithms.

2) Multi-Agent Environment

In this experiment, we first investigate the single vehicle
environment to evaluate the cost efficiency of both single and
multi-agent driving environments. In the aspect of multiple
vehicle environments, every algorithm faced some curtails
suffering. If we go for the required training time, the PPO
takes 13 hours, and the SAC takes 15 hours. At the same
time, the DDPG algorithm took 24 hours. According to our
reward function, all the algorithms took almost two times
more time to train the model. So, we can decide that the
computational costs are higher in multi-agent systems than
in single-vehicle environments. And the PPO is more cost-
effective than the other two algorithms (SAC and DDPG). In
the second aspect, which is time steps, to collect the reward.
At .6, all algorithms took more time steps compared to the
single vehicle environment. More specifically, PPO took 4.1
million, SAC took 4.2 million, and DDPG took 5 million.
Here also, the computational cost of DDPG is higher than
PPO and SAC.
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V. CONCLUSION
This study presented a deep reinforcement learning-based
driving technique for avoiding multiple vehicle collisions.
Using these strategies, we suggested the challenge of ob-
taining both ego and participant vehicle state information via
sensors. Based on these considerations, we built a Markov
decision process to describe the collision avoidance tech-
nique and a reward function for collision avoidance, as well
as integrate the agent vehicle with the PPO, SAC, and DDPG
algorithms. The results of our study show that the agent ve-
hicle effectively performed the avoidance of multiple-vehicle
collisions.

Various adverse weather circumstances and the road pro-
file are also possible sources of uncertainty that need to be
examined more thoroughly. This should be studied further as
part of our research. This simulation, in actuality, simplifies
things too much. Although tasks using computer vision are
vital for estimating the surroundings of an autonomous vehi-
cle, they are mostly ignored in this simulation. Future sim-
ulation studies should integrate these conditions to simulate
more realistic road situations.
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