Comparison of separation performance of absorption column and membrane contactor system for biohydrogen upgraded from palm oil mill effluent fermentation

Rosiah Rohani^a,Izzati Izni Yusoff^a,Nur Fatinah Ainaa Amran^a,Rosmawati Naim^b,Mohd Sobri Takriff^a ^a Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia ^b Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia

ABSTRACT

Treatment of palm oil mill effluent (POME) via fermentation under controlled conditions can produce a high-value biohydrogen (H₂) mixture containing carbon dioxide (CO₂). This H₂ can be enriched before it can be used for renewable energy, that is, in fuel cell. In this work, H₂ was upgraded via two techniques, namely absorption column and membrane contactor system. Ammonium hydroxide (NH₄OH), potassium hydroxide (KOH), and mixed solution of NH₄OH and KOH were used as the chemical absorbents for both techniques. In the absorption column, it was found that the mixed solution provided the highest H₂ purity (99%) at 1 M concentration with a gas flow rate of 0.2 L/min. Meanwhile, the mixed solution and KOH solution showed similar separation performance with H₂ purity of up to 75% in the gas–liquid membrane contactor. On investigating the separation performance for each of the compared techniques, it was found that the absorption column has a superior ability to purify H₂ than the membrane contactor system. However, the membrane contactor is more sustainable as it has the least drop in H₂ purity at a longer separation time during the separation process. Both techniques have their own advantages in purifying H₂, and thus they can be fairly considered for gas upgrading.

KEYWORDS

Absorption; CO₂; Hydrogen; Membrane technology; Separations

ACKNOWLEDGEMENT

The authors would like to acknowledge the financial support from the Ministry of Higher Education for Fundamental Research Grant Scheme (FRGS/1/2018/TK02/UKM/02/2) and Dana Impak Perdana Grant (DIP/2019/012) of UKM and also support from the Department of Chemical and Process Engineering of Universiti Kebangsaan Malaysia.