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Abstract

Reaction automata direct graph (RADG) is a new technique that uses the automata direct graph
method to represent a certain design for encryption and decryption. Jump states are available in
the RADG design that enables the encipher to generate different ciphertexts each time from the
same plaintext and wherein not a single ciphertext is related to a certain plaintext. This study
created a matrix representation for RADG designs that allows the calculation of the number of cases
(FQ)mathematically possible for any design of the set Q. FQ is an important part of the function
F(n,m, λ) that calculates the total number of cases of a certain design for the values Q,R,

∑
, ψ, J

and T . This paper produces a mathematical equation to calculate FQ.
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1. Introduction

Cryptography is the science of encryption and decryption and uses many mathematical concepts,
such as algebra, number theory, graph theory and combinatorial mathematics [1]. Many relationships
that exist between combinatorial mathematics and theoretical computer science enumerate and count
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with graph theory [2], [3]. Graph theory is involved in RADG algorithm (or method) [4],wherein
its mathematical model is represented by a pair of objects that transfers between each other (object
relation). The theory is based on combinatorial mathematics and its application is generally used
in communication [5], [6]. This study treated the mathematical side of RADG algorithm. RADG
algorithm is one of methods that minimizes ciphertext-breaking because of the random ciphertext
[4]. The relation between the number of designs of the RADG and the random ciphertexts is trivial
whenever many designs are involved. The first step in optimization is to find the function FQ(n, λ)
for every n > 3, λ > 1, and the number of jump states is 1, 2, or more[4].

Radi proposed new methods dependent on the RADG cryptosystem called BRADG (Block
RADG) and RBC (Random Block Cipher) that use key block ciphers on the basis of the struc-
ture of unbalanced Fiestel and new S-boxes [7]. Alwan proposed a faster and changeable design that
developed RADG by using multireaction states called MRADG [8]. Nathim solved the problem of
transition states in the design by proposing a system dependent on the chaotic map equation (logistic
map equation) called CRADG [9]. Mahdi use the RADG to develop the stream cipher automata
algorithm [10].

2. Reaction Automata Direct Graph (RADG)

The mathematical model of RADG is affected by graph theory and is expressed by the sextuple
{Q,R,Σ,Ψ, J, T}, where the function FQ(n, λ) is the number of cases that consist of the design of
the set Q, which containsa jump state. The jump state in the set Q is represented by |J | ≤

∣∣n
2

∣∣ where
k = 1, . . . ,

∣∣n
2

∣∣ and is expressed as follows [4]:

FQ(n, λ) ≤ n(n−k)(λ−1)(n− 1)(n−k), where k = 1, . . . , |n
2
|, (n− k) ≥ λ

Suppose α denotes the number of data values in Q and |Q| = n is the size of a nonempty finite set
Q of standard states including jump states J, where the size of the non-empty finite set J is |J| = k,
which is a subset of the set Q, where J is called a jump set and n− 1 ≥ λ, where λ is the size of the
set Σ, which is a non-empty finite set of an alphabet input data, then α = λτ and τ = n− k,

3. Space of RADG Designs(SRDs)

For each collection of n, k and λ, a finite number of possible designs exists. Albermany gave an
example on the design size [4]. If a system has a certain number of standard and jump states and
data, then the existing finite number of possible designs can be described as a space of designs

Definition 3.1. The space of all the RADG designs of n standard states, k jump states and λ data
of each state is called a space of RADG designs(SRD), as denoted by Dλ

n,k

where n > 2, k <
⌊n

2

⌋
and λ > 1 .

Definition 3.2. The representation of the space of all the matrices of size α ∗n in a RADG design
is called a space of RADG matrices (SRM), as denoted by Mλ

n,k,∀M ∈ Mλ
n,k, such that M = [mij],

where mij = 1 if a transition exists between the states Sa and Sb in Dλ
n,k otherwise mij = 0 in the

following conditions:

1- If Sb is a jump state, then j > τ, b = j and a = b (i−1)
λ
c.

2- If Sb is a non-jump state, then j ≤ τ, b = j and a = b (i−1)
λ
c
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Definition 3.3. A map H from the finite SRD Dλ
n,k to the SRM Mλ

n,k is defined by H : Dλ
n,k →Mλ

n,k

and is called the matrix representation of RADG design.

Definition 3.4. The representation of the space of all the matrices of size α∗n in a RADG design is
called a space of standard RADG matrices (SSRM), as denoted by Mλ

n,k with the following conditions:

1-
∑n

j=1mij = 1 , i = 1, · · · , α,∀M ∈ Mλ
n,k,( Only one transition exists from each data in each

state)

2- mij = 0 , 1 ≤ j ≤ τ and i = λ(j − 1) + 1, λ(j − 1) + 2, · · · , λj, ∀M ∈ Mλ
n,k (to eliminate

the loops)

3-
∑α

i=1mij ≥ 1, j > τ,∀M ∈Mλ
n,k. (Each jump state must be included in at least one path.)

Example 3.5. The matrix M belongs to RADG matrix space M2
7,3, where λ = 2, k = 3 and n = 7

are the number of columns in matrix M, then τ = 7− 3 = 4 and α = λτ = 8 are the number of rows
in matrix M.

Figure 1: Standard RADG Matrix

Definition 3.6. The summation of all the elements of M is called the norm of M, as denoted by
‖M‖∀M ∈Mλ

n,k

Lemma 3.7.

‖M‖ =
α∑
i=1

n∑
j=1

Mij = α∀M ∈Mλ
n,k
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Proof . The proofis straightforward. �

Lemma 3.8. ‖A ∨ B‖ = α if and only if A = B ∀A,B ∈Mλ
n,k, where V is a logical OR.

Proof . Since A = B, then A ∨B = A = B, which means ‖A ∨B‖ = α from Lemma(3.7).
Suppose A 6= B, then ∃aij 6= bij i = 1, 2, . . . , α and j = 1, 2, .., n means that aij ∨ bij = 1, then
‖A ∨B‖ > α but ‖A ∨B‖ = α, then A = B. �

Lemma 3.9. The size of SRDDλ
n,1 is

∣∣Dλ
n,1

∣∣ =
α∑
i=1

(n− 1)α−i ∗ (n− 2)i−1

Proof . Every design belongs to the space Dλ
n,1 in the corresponding matrix that belongs to Mλ

n,k

because the map H of the matrix representation of RADG design is one to one on the map, where
the number of matrices in the range of H is equivalent to the number of designs in domain of H,
which means

∣∣Dλ
n,1

∣∣ =
∣∣Mλ

n,1

∣∣, then suppose M ∈Mλ
n,1, where

M =


M11 M12 · · · M1(n−1) M1n

M21 M22 · · · M2(n−1) M2n
...

...
...

...
Mα1 Mα2 · · · Mα(n−1) Mαn

 (3.1)

If k = 1, then one state exist in the set J represented by the column n in matrix M and is denoted
on the matrix of one column by K = [kij], where the size of K is α ∗ 1 and

kin =

{
0 ,if there is no edge from state [i/λ | to jump state n
1 ,if there is edge from state [i/λ to jump state n

Several probable cases are available for connecting the single jump state with the other states in the
set Q by one edge.From the summation of each required status, then
First status:

In this case K =


1
x
...
x

 , where k1n = 1 and kin = x, 1 < i ≤ α.(x = 1 or 0)

The element k1n (in the last column of matrix M ) is equal to 1 , and the other elements in K is
equal to 0 or 1 and denoted by x, such that (n− 1) cases for each row have 1 (each row from 2 to α
has only one element of value 1 ), then in each row of M (from row 2 to row α ) except the first row
are connected with the other n− 1 cases, such that the number of all cases is (n− 1)α−1 cases in the
first status.
Second status:

In this case K =


0
1
x
...
x

 , where k1n = 0, k2n = 1 and kin = x, 2 < i ≤ α.(x = 1 or 0)

In this case, changing the value of element k1n = 0 is forbidden, and the value k2n = 1 in the column
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K will replace the value of x to 1 or 0, then each case in the second status by the number of cases
in the first row of M is calculated byn −2, and each row from the third row to α ’th row is (n− 1),
then the number of all the cases in the second status is (n− 1)α−2(n− 2).
r -th status:

In this case the column K =



0
...
0
1
x
...
x


, where kin = 0 for 1 ≤ i < r, krn = 1 and kin = x, r < i ≤

α.(x = 1 or 0), then the number of all cases in r− th status is (n− 1)α−r(n− 2)r−1

The last status of column K is K =


0
...
0
1

 , then the number of all the cases in this status is (n−2)α−1

and by the summation of each of the above statuses with all the cases. This proof is done. �

Lemma 3.10. The size SRDDλ
n,2 is∣∣Dλ

n,2

∣∣ = 2
α∑
i=1

(n− 1)α−i ∗ (n− 3)i−1

Proof . The same as the proof given above with k = 2, and ∀M ∈Mλ
n,2, then

M =


M11 M12 · · · M1(n−2) M1(n−1) M1n

M21 M22 · · · M2(n−2) M2(n−1) M2n
...

...
...

...
...

Mα1 Mα2 · · · Mα(n−2) Mα(n−1) Mαn

 (3.2)

A total of two states exist in the jump set J represented by the matrix K = [kij], where the last two
columns in the matrix M with the size of K is α ∗ 2 and the same previous statuses in lemma (3),
but each status has two parts with the first part to the first column of K and the other to the second
column of K. The first status is

K =


0 1
x x
...

...
x x

 or K =


1 0
x x
...

...
x x


where k1(n−1) = 0, k1n = 1 for the first part and k1(n−1) = 1, k1n = 0 for the second part. If
kij = x, 2 < i ≤ α.j = 1, 2 and x = 1 or 0, then the number of all the cases in first status is
2(n− 1)α−1.
The second status is

K =


0 0
0 1
x x
...

...
x x

 or K =


0 0
1 0
x x
...

...
x x





826 Kadhum, Firdaus, Zolkipli, Saferali, Razak

where k2(n−1) = 0, k2n = 1 for first part and k2(n−1) = 1, k2n = 0 for the second part. If kij = 0, i =
1, j = 1, 2, kij = x, 3 < i ≤ α, j = 1, 2 and x = 1 or 0, then the number of all the cases in the second
status is 2(n− 1)α−2(n− 3).
The r -th status is

K =



0 0
...

...
0 0
0 1
x x
...

...
x x


or K =



0 0
...

...
0 0
1 0
x x
...

...
x x


.

where kr(n−1) = 0, krn = 1 for the first part and kr(n−1) = 1, krn = 0 for the second part. If

kij = 0, i = 1, . . . , r − 1, j = 1, 2, kij = x, r + 1 < i ≤ α, j = 1, 2 and x = 1 or 0

then the number of all cases in the r-th status is 2(n− 1)α−r(n− 3)r−1

The last status of matrix K is

K =


0 0
...

...
0 0
0 1

 or K =


0 0
...

...
0 0
1 0


then the number of all the cases in this status is 2(n − 3)α−1 and by the summation of each of the
above statuses with all cases. This proof is done.

From above, α for k = 1 is denoted by α1, where α1 = λτ1 and τ1 = n − 1, k = 2 is denoted by
α2, where α2 = λτ2 and τ2 = n− 2, in general, for k = r

αr = λτrandτr = n− r, where r ≥ 1 (3.3)

�

Lemma 3.11.

αr+1 = α− λ and τr+1 = τr where r ≥ 1 (3.4)

where τ1 = n− 1 and α1 = λτ1

Proof . If αr+1 = λτr+1 and τr+1 = n−(r+1) from Equation(3.3), then τr+1 = n−(r+1) = (n−r)−1
If τr = n− r, then τr+1 = τr−1, αr+1 = λτr+1= = λ (τr − 1) = λτr − λ = αr − λ �

Theorem 3.12. The size of SRDDλ
n,k is

FQ = k
α∑
i=1

(n− 1)α−i ∗ (τ − 1)i−1 ,where τ = n− k (3.5)
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Proof . The proof of the theorem by mathematical induction is as follows. Let Sk be the statement
of Equation(3.5). The proof will now proceed in the following steps: the basis and the inductive steps.

Basis Step: If k = 1 or k = 2, then S1 and S2 is true, then they satisfy theorem (3.12) by us-
ing lemmas (3.9) and (3.10).
Inductive Step: The inductive assumption assumes that Sr is true, where k = r ≥ 1and proves that
Sr+1 is true for k = r + 1
Suppose

Sr =
ur∑
i=1

Ci

in lemma(3.8).Let Ci be denoted in the r -th status (inside of the proof in lemma(3.10)) as

Ci = r(n− 1)∝r−1 ∗ (n− r − 1)i−1

and from lemma(3.11), then
Ci = r(n− 1)∝r−1 ∗ (τr − 1)i−1

If Ar ∈Mλ
n,r and A(r+1) ∈Mλ

n,(r+1), then the size of matrix Ar is αr×n and the size of matrix A(r+1).
is αr+1 × n, then two differences exist between the matrices Ar and A(r+1). The number of rows in
A(r+1). is the number rows in Ar minus λ, and the column number of the jump states in A(r+1). is
the column number of the jump states in Ar plus one.

From the above difference between matrices Ar and A(r+1), we calculate Ci of matrix A(r+1)· and
for each of the rows in A(r+1) for r-times plus one.

(n− 1)αr−1−λ ∗ (τr − 2)i−1 + (n− 1)αr−1−λ ∗ (τr − 2)i−1 + . . .+ (n− 1)∝r−1−λ ∗ (τr − 2)i−1

= (r + 1)(n− 1)αr−λ−1 ∗ (τr − 1− 1)i−1 = (r + 1)(n− 1)αr+1−1 ∗ (τr+1 − 1)i−1

and
Ci = (r + 1)(n− 1)∝r+1−1 ∗ (τr+1 − 1)i−1

then
Sr+1 =

∑αr+1

i=1 (r + 1)(n− 1)αr+1−1 ∗ (τr+1 − 1)i−1 , the proof is done �
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Figure 2: Typical RADG design with (m = 3, n = 7, k = 3, λ = 2)

Example 3.13. For the RADG design in figure 2, where n = 7, k = 3 and λ = 2, then τ = n−
k = 4, α = λτ = 8RQ can be calculated due to theorem 1 as follows

FQ = k
∑α

i=1(n− 1)α−i ∗ (τ − 1)i−1

FQ = 3 ∗
∑8

i=1(7− 1)8−i ∗ (4− 1)i−1 = 3 ∗ 557685 = 1, 673, 055

4. Conclusion

An inequality formula for FQ produced by Albermany and Safdar to show out that a huge number
of possible designs exist for a certain combination of n, mand λ, but they could not calculate the exact
number of possible designs .The use of a matrix representation simplified the process of expressing
the relations and conditions and by using the mathematical induction, that could be stated as a
new equality formula to accurately calculate FQ. Not all the possible designs are acceptable. The
acceptable designs are called ’standard RADG designs’, which are represented by the SRM and its
space is denoted by SSRM. The matrix representation allows us to identify the conditions easily.
Hence, we can similarly state the conditions that identify the set of optimum designs.
A matrix representation development may be done in future, so that each element (mi, j) in the
matrix M can represent the state address of the transition destination and create another matrix to
represent the output data from each state due to the input data.
Depending on the matrix representation, mathematical conditions can be formulated to identify the
optimal desig.
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