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ABSTRAK 

Pergerakan robot tradisional bergantung kepada modul pergerakan yang telah 

diprogramkan, menyebabkan keterbasan fungsi dan operasi robot. Genggaman sistem 

penglihatan komputer atau visi komputer (computer vision) bagi tujuan pengesanan 

genggaman robot (grasp detection) telah terbukti sebagai bidang penyelidikan yang aktif 

dan menjadi tumpuan para penyelidik. Seiring dengan kajian semasa, penghasilan 

konfigurasi genggaman penuh objek sasaran merupakan dikenalpasti sebagai cabaran 

utama bagi penghasilan operasi robot di tahap optimum.  Pengintegrasian teknologi 

penglihatan komputer (computer vision) dan penderian taktil (tactile sensing) dijangka 

menjadi inisiatif yang mampu untuk mengoptimumkan fungsi robot. Walau 

bagaimanapun, kajian terkini telah menggunakan penderian taktil (tactile sensing) 

berdasarkan model pengesanan genggaman bagi meningkatkan ketepatan pengesanan, 

tetapi tidak melaporkan kejayaan genggaman fizikal. Oleh itu, kajian ini mengetengahkan 

isu gelinciran genggaman (genlincir event) yang berpunca daripada faktor-faktor tertentu. 

Kajian ini dijalankan bertujuan untuk membangunkan model pengesanan genggaman 

Deep Learning dan algoritma pengesanan gelinciran, seterusnya menghasilkan satu 

sistem genggaman robot yang inovatif. Menerusi teknik empat langkah augmentasi data 

(four-step data augmentation), ketepatan genggaman yang dicapai adalah 98.2%, 

melebihi ouput data terbaik yang dilaporkan di mana 625 contoh baru dihasilkan bagi 

setiap gambar asal dengan label genggaman yang berbeza. Selain itu, teknik dua langkah 

pemindahan pembelajaran (two-step transfer learning) telah Berjaya meningkatkan 

output yang diperolehi bagi fasa kedua kajian sebanyak 0.3% berbanding dengan fasa 

pertama. Manakala bagi genggaman fizikal robot, kaedah perwakilan genggaman tujuh 

dimensi (seven-dimensional grasp representation) yang dicadangkan membolehkan 

pengesanan kendiri bagi saiz dan kedalaman genggaman dilakukan. Model yang 

dibangunkan mencatat 74.8 milisaat sebagai masa pengesanan. Ketepatan pengesanan 

yang tinggi memungkinkan genggaman model tersebut dilakukan untuk aplikasi robot 

yang bersifat masa nyata (real-time). Berdasarkan pemerhatian terhadap maklum balas 

masa nyata (real-time) dari sensor perintang pengesan daya (force sensing resistor 

sensor), algoritma pengesanan gelinciran yang dicadangkan menunjukkan tindak balas 

pantas dalam dengan catatan masa sepantas 86 milisaat. Penemuan ini membolehkan 

sistem untuk terus menahan objek sasaran dengan peningkatan kekuatan genggaman 

dengan kadar segera. Pengintegrasian model Deep Learning dan pengesanan gelinciran 

telah menunjukkan peningkatan yang signifikan sebanyak 18.4% menerusi hasil 

penyelidikan genggaman yang dilakukan pada robot SCARA. Selain itu, alat pengesan 

tepi (edge detector) Zerocross-Canny yang digunakan telah meningkatkan ralat 

kedudukan robot sebanyak 0.27 mm berbanding dengan kajian terdahulu, seterusnya 

memperkenalkan sistem genggaman robot yang inovatif dengan menggunapakai skema 

Grasp-NoDrop-Place. 
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ABSTRACT 

Traditional robots can only move according to a pre-planned trajectory which limits the 

range of applications that they could be engaged in. Despite their long history, the use of 

computer vision technology for grasp prediction and object detection is still an active 

research area. However, the generating of a full grasp configuration of a target object is 

the main challenge to plan a successful robotic operation of the physical robotic grasp. 

Integrating computer vision technology with tactile sensing feedback has given rise to a 

new capability of robots that can accomplish various robotic tasks. However, the recently 

conducted studies had used tactile sensing with grasp detection models to improve 

prediction accuracy, not physical grasp success. Thus, the problem of detecting the slip 

event of the grasped objects that have different weights is addressed in this research. This 

research aimed to develop a Deep Learning grasp detection model and a slip detection 

algorithm and integrating them into one innovative robotic grasping system. By 

proposing a four-step data augmentation technique, the achieved grasping accuracy was 

98.2 % exceeding the best-reported results by almost 0.5 % where 625 new instances 

were generated per original image with different grasp labels. Besides, using the two-

stage-transfer-learning technique improved the obtained results in the second stage by 

0.3 % compared to the first stage results. For the physical robot grasp, the proposed seven-

dimensional grasp representations method allows the autonomous prediction of the grasp 

size and depth. The developed model achieved 74.8 milliseconds as prediction time, 

which makes it possible to use the model in real-time robotic applications. By observing 

the real-time feedback of a force sensing resistor sensor, the proposed slip detection 

algorithm indicated a quick response within 86 milliseconds. These results allowed the 

system to maintain holding the target objects by an immediate increase of the grasping 

force. The integration of the Deep Learning and slip detection models has shown a 

significant improvement of 18.4% in the results of the experimental grasps conducted on 

a SCARA robot. Besides, the utilized Zerocross-Canny edge detector has improved the 

robot positioning error by 0.27 mm compared to the related studies. The achieved results 

introduced an innovative robotic grasping system with a Grasp-NoDrop-Place scheme. 
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