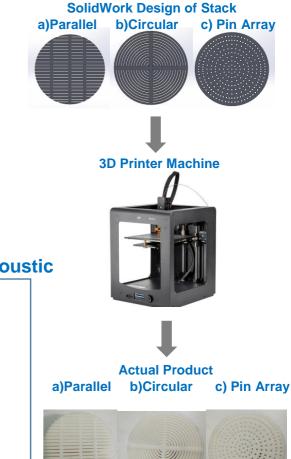
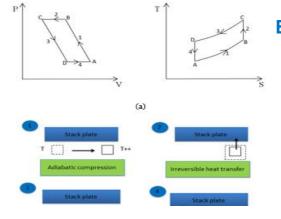


DEVELOPMENT OF STACK COMPONENT FOR THERMOACOUSTIC REFRIGERATOR USING 3D PRINTER

Fabrication of Stack Compenent Using 3D Printer

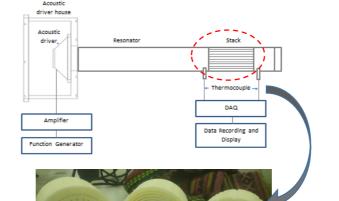
INVENTOR: NOR ATIQAH BINTI ZOLPAKAR FACULTY: FACULTY OF MECHANICAL AND AUTOMOTIVE ENGINEERING TECHNOLOGY UNIVERSITY: UNIVERSITI MALAYSIA PAHANG EMAIL: noratiqahz@ump.edu.my CO-INVENTOR: PROF. DR. NORMAH MOHD GHAZALI

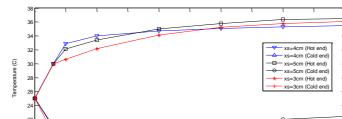


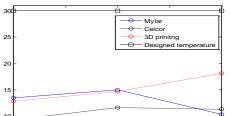

Product Background

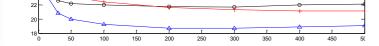
ITREX 2021

- The development of thermoacoustic technology is motivated by the prospect that this technology will replace or reduce the dependence on the current vapor compression technology
- The thermoacoustic refrigerator is an innovative alternative for clean cooling
- The thermoacoustic effect is significant for intense sound waves in pressurized chamber. This effect can be utilized to produce a powerful engine, pulsating combustion, heat pumps, refrigerators, and mixture separators


Property	Stack (Custome made)	Stack (Off- the-shelf)	Stack (3D Printed)
Material	Mylar	Ceramic	ABS
Thermal Conductivity (W/mK)	0.16	1.46	0.2376
Specific Heat (Kkg ⁻¹ K)	1100	1000	1000

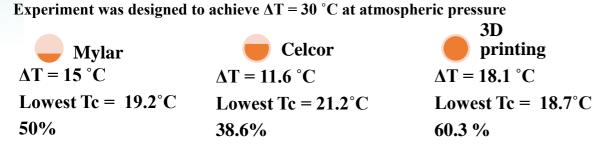

Benefits/Usefulness/Applicability





Result and Discussion

Experiment Test Rig for Standing Wave Thermoacoustic



Time response of temperature with parallel (3D printed) stack with different stack length, L_s , at stack center position, $x_s = 4$ cm

Time response of temperature with parallel (3D-printed) stack with different stack center position, x_s , at stack length, $L_s = 5$ cm

The temperature difference of the stack for the length of the stack, $L_s = 4$ cm at different stack center position

Ls=3cm (Cold end Ls=4cm (Hot end) Ls=4cm (Cold end Ls=5cm (Hot end) Ls=5cm (Cold end

Acknowledgement

The researcher wish to thank the Universiti Malaysia Pahang for the facilities and Ministry of Higher Education for Fundamental Research Grant Scheme (FRGS) (FRGS/1/2019/TK10/UMP/03/2) (RDU1901193), through the course of this research.

Conclusions

- 3D printed stack shows the best stack performance by achieving Tc = 18.9 °C and temperature difference ΔT = 18.1 °C about 60% from designed temperature difference due to the accuracy of the machine.
- The fabrication of the stack using 3D printing method shows a big potential

Q

www.ump.edu.my