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INTRODUCTION 
The superior characteristics of fibre Bragg gratings (FBG) as a transducer have increased interest among researchers 

and industrial players. FBG is capable of operating in hazardous environments, providing multiple sensing points on a 
single cable, remote sensing, and being impervious to electromagnetic fields. These advantages enable FBG to be used 
in a wide variety of measurement applications, including vibration monitoring in gas exploration, military vehicles, and 
footbridges [1-4]; pressure measurement in pipeline leakage detection [5]; temperature monitoring in lubricating oil; and 
aircraft engine control systems [6]. However, the main concern of FBG in acceleration measurement is sensitivity, which 
is directly related to the reliability of the accelerometer. Teven et al. [7] addressed the sensitivity of the FBG accelerometer 
early on, using a simple harmonic oscillator to generate less than 1ug. Kersey et al. [8] demonstrated that the Fabry–Pérot 
accelerometer has high sensitivity and linearity, but no sensitivity value is given. Gerges et al. [9] then adapted and 
integrated the Fabry-Perot principle with a diaphragm-type FBG accelerometer, resulting in increased sensitivity. Weng 
et al. [10] continued to study Gerges et al. successful's work but with the addition of a U-shape rigid cantilever beam that 
produced 100 pm/g; this novel mechanism was developed to increase the vibratory effect. Meanwhile, Muller et al. [11] 
presented a two-diaphragm FBG accelerometer with a reported sensitivity of 1 pm/g in order to minimise cross-coupling 
of non-directional accelerations. Liu et al. [12] also presented the concept of two diaphragms with a distinct design, with 
a reported sensitivity of 45.9 pm/g. 

Researchers have proposed various design and encapsulation techniques to improve the sensitivity of the FBG 
accelerometer. The introduction of a tip mass is one of the most well-known methods in cantilever beam FBG 
accelerometer [1, 13-18] Gagliardi et al. [1] presented the use of a tip mass in conjunction with laser-based interrogation 
methods to increase sensitivity and frequency response range, but no sensitivity value was provided. Basumallick et al. 
[13, 14] also considered the addition of tip mass, where the sensitivity found at 450 pm/g was improved by tailoring the 
effective distance between the sensor axis and the neutral axis of the cantilever. In their most recent work [18], the 
sensitivity can be increased to 450 pm/g by introducing a patch element between the FBG sensor and the beam. On the 
other hand, elastic diaphragm FBG accelerometers were discovered to have high sensitivity and resonant frequency, and 
are commonly available with single [19] or double diaphragms [11, 12, 20, 21]. Furthermore, Liu et al. [12, 21] 
demonstrated that double-point encapsulation improves FBG accelerometer sensitivity. Moreover, double-point 
encapsulation can effectively prevent FBG chirp, spectrum split, and wavelength detection ineffectiveness. A 
combination of cantilever beam and single diaphragm was also proposed, with extremely high sensitivity for 
approximately 100 pm/g [10]. 

The process of determining the sensitivitiy of the FBG accelerometer can be accomplished in two methods: (i) through 
prediction of the sensitivity using numerical data computed from the FBG accelerometer's mathematical model; or (ii) 

ABSTRACT – The frequency-dependent issues and instrumentation requirement for FBG sensors 
necessitate the identification of the sensitivity of the cantilever FBG accelerometer using machine 
learning. As result, this article presents a cascade-forward backpropagation (CFB) neural network 
with an orthogonally-phase chirp signal with a range of constant forcing frequency and steadily 
increasing base acceleration amplitude as its input. This input/output data set was numerically 
calculated by integrating modal model and Euler-Bernoulli beam approach (FBG-MM). The 
maximum amplitude of the base acceleration was 200 m/s2 and the forcing frequencies and 
location of the FBG sensor mounted on the beam measured from the fixed end were 1 to 90 Hz 
and 0.03 m, respectively. The trained CFB predicted the wavelength shift very well, but it was 
restricted to one-half of the forcing frequencies of those used in the CFB training process, whereas 
the base acceleration is not an important element in determining the sensitivity of the FBG 
accelerometer. In terms of the FBG sensor’s location on the beam, considering a few positions will 
greatly expand the CFB’s capabilities. Future work will include the use of the trained CFB as  “black-
box sensitivity” for actual acceleration measurement, as well as the use of empirical data to replace 
the numerical FBG-MM as the input/output training data set. 



Khalid et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 19, Issue 1 (2022) 

9420   journal.ump.edu.my/ijame ◄ 

through identification of the sensitivity using empirical data obtained from real acceleration measurements. Li et al. [22] 
proposed an ultra-compact FBG accelerometer and determined its sensitivity to be 244 pm/g and 633 pm/g using 
numerical and empirical data, respectively. Both numerical and empirical data are generated with a forcing frequency of 
5 Hz and a steadily increasing base acceleration. In contrast to Li et al. [22], Liu et al. [23] calculated the sensitivity of 
the symmetrical bent spring plates FBG accelerometer using: (i) numerical data at a single maximum base acceleration 
of 1 m/s2 at two forcing frequencies of 5 and 10 Hz, and (ii) empirical data at maximum base accelerations between 1 and 
6 m/s2 and forcing frequencies of 5, 10, 15, and 20 Hz (see Figure 1). The sensitivity was determined to be 1067 pm/g 
using numerical data, which is comparable to the empirical value found. Despite this, the sensitivity of the FBG 
accelerometer increases slightly with increasing forcing frequencies (1067 pm/g at 5 Hz, 1084 pm/g at 10 Hz, 1126 pm/g 
at 15 Hz, and 1166 pm/g at 20 Hz). 

 

  

(a) (b) 
Figure 1. Wavelength shift of the FBG accelerometer: (a) under different base acceleration at single forcing frequency 

of 5 Hz [22]; and (b) under different base accelerations and frequencies [23]. 

Based on the results of [23], it is possible to conclude that the wavelength shift of the FBG accelerometer is essentially 
frequency-dependent. In contrast to most common analogue voltage/electrical-charge accelerometers, the sensitivity is 
relatively flat over a wide frequency range, as illustrated in Figure 2, cited from one of the well-known vibration tool 
manufacturers [24]. Even though the sensitivity of the FBG accelerometer in [22] is linear, the sensitivity is computed at 
a single forcing frequency of 5 Hz rather than against a wide range of frequencies as in [24]. As proposed by the authors 
in [25], the cantilever FBG accelerometer was modelled using the more accurate approach, namely FBG-MM. Using this 
FBG-MM, it is discovered that the predicted amount of wavelength shift is frequency-dependent, and the sensitivity has 
yet to be discussed. As compared to [23], the relationship between wavelength shift and base acceleration was non-linear, 
and its sensitivity could not be fit using any basic fitting method, such as polynomial, etc. 

To address the frequency-dependent issue, the authors have proposed in the primary study to use a cascade-forward 
backpropagation neural network to identify the sensitivity of a cantilever FBG accelerometer [26]. This identification 
process uses two input data to the network which is the maximum base acceleration and forcing frequency range from 0 
to 90 Hz comes from sinusoidal signal and wavelength shift as its output. Unfortunately, in real application of the FBG 
accelerometer, the forcing frequencies are unknown beforehand, thus prescribing the forcing frequencies, as its input is 
deemed an inappropriate technique. As a result, this paper proposes a cascade-forward backpropagation neural network 
to identify the sensitivity of a cantilever FBG accelerometer using a single input, a chirp acceleration with a range of 0 to 
200 m/s2 and a forcing frequency of 0 to 90 Hz.  

 

 
Figure 2. Accelerometer sensitivity (mV/g) for analogue voltage/electrical-charge accelerometer [24]. 
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Data Extraction from Numerical and Empirical Data for Sensitivity Identification 
Sensitivity is typically expressed in units of mV/g for an analogue-voltage based accelerometer. This sensitivity, 

which is documented in a calibration certificate, must come together with the accelerometer's datasheet. The use of an 
analogue-voltage accelerometer with vibration data acquisition and software does not necessitate a complicated setup; it 
is most likely a plug-and-play instrument. However, in the case of the FBG sensor, where the measurement is wavelength 
shift, the acceleration given to the FBG accelerometer may not be as simple to translate as in the case of the voltage-based 
accelerometer. Some kind of investigation into the relationship between the given acceleration and wavelength shift must 
be carried out, using either numerical or empirical data. Figure 3 demonstrates the procedure for obtaining these data as 
follows:  

a) Identification of sensitivity using empirical data obtained from an actual FBG accelerometer 
i. The actual FBG accelerometer is mounted on a shaker; 
ii. A set of acceleration inputs must be provided to the shaker, which must be initialised by the voltage and 

signal profile from the measurement software (DASYLab); 
iii. The optical spectrum analyser's software is used to record the wavelength shift output from the FBG 

accelerometer (SENSE); and 
iv. These acceleration inputs in a(ii) and wavelength shift outputs in a(iii) are then used to computed the 

sensitivity. 
b) Identification of sensitivity using the FBG accelerometer's numerical model 

i. The set of acceleration can be taken as either (i) the set of acceleration input as used in a(i) or (ii) prescribed 
acceleration; 

ii. This set acceleration is fed into the FBG-MM in order to obtain the wavelength shift output; and 
iii. These acceleration inputs in b(i) and wavelength shift outputs in b(ii) are then used to calculate the 

sensitivity.  
 

 
 

Figure 3. Measurement set-up for FBG accelerometer for real acceleration measurement and/or sensitivity 
identification. 

BASIS FOR NON-PARAMETRIC IDENTIFICATION OF SENSITIVITY OF THE FBG ACCELEROMETER 
Figure 4 depicts the measurement configuration of a cantilever FBG accelerometer, as well as its absolute motion due 

to base motion. The base excitation of the FBG accelerometer resulted in the strain being computed based on the relativity 
between the absolute motion and the base motion. Previous publication [25] provides a detailed derivation for the relative 
motion of a cantilever FBG accelerometer.  
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(d) 
 

 
 
 

 

Figure 4. (a) Cantilever FBG accelerometer measurement configuration; (b) close-up of cantilevered FBG 
accelerometer (red dotted circle) under translational and rotational base motions; (c) absolute motion of FBG due to 

shaker-accelerated base motion; and (d) actual cantilever FBG accelerometer. 

The mathematical model of the cantilever FBG accelerometer resulting from the application of the Euler–Bernoulli 
theorem and the modal model approach, namely, FBG-MM, can be used to construct the basis for identification [25]. 
Under base excitation, the steady-state response of the cantilevered FBG accelerometer is given as:  

 

𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥, 𝑡𝑡) = 2𝑈𝑈0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖���𝑐𝑐𝑐𝑐𝑐𝑐ℎ
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where, 𝑈𝑈0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 , 𝜎𝜎𝑟𝑟, 𝜔𝜔𝑟𝑟, 𝜔𝜔, 𝜆𝜆𝑟𝑟 are harmonic base displacement, a constant for mode ‘r’, natural frequency of mode ‘r’, 

the forcing frequency, and the dimensionless frequency numbers, in that order. Equation (1) is used to calculate the beam 
curvature in Eq. (3), which reflects the amount of strain and wavelength shift of the FBG sensor; the strain of the FBG 
sensor is given as:  

 

𝜀𝜀𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥, 𝑡𝑡) = −(ℎ + ℎ𝑓𝑓)
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The wavelength shift of the FBG is known to be directly proportional to the strain of the FBG, as shown in Eq. (4) 

[14, 18]. 
 

𝛥𝛥𝜆𝜆 ≈ 1.2 × 𝜀𝜀𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥, 𝑡𝑡) (4) 
 
where, 1.2 denotes FBG strain sensitivity with peak wavelengths in the C band regime (1.2 pm/ in general). In 

comparison to the SDOF model proposed by [27], the FBG strain is given as:  
 

𝜀𝜀𝐹𝐹𝐹𝐹𝐹𝐹 =
6(𝐿𝐿 − 𝑥𝑥)𝑚𝑚
𝑏𝑏𝑑𝑑2𝐸𝐸

�̈�𝑢𝑏𝑏(𝑥𝑥, 𝑡𝑡) (5) 

 
The sensitivity of the FBG sensor is given as: 
 

𝑆𝑆 =
𝛥𝛥𝜆𝜆

�̈�𝑢𝑏𝑏(𝑥𝑥, 𝑡𝑡) (6) 
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Replacing both the FBG-MM (in Eq. (2)) and the SDOF model (in Eq. (5)) into Eq. (6) resulted in the sensitivity of 
the FBG accelerometer, as shown by Eqs. (7) and (8). 

 
𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹−𝑀𝑀𝑀𝑀 =

1.2 × 𝜀𝜀𝐹𝐹𝐹𝐹𝐹𝐹
�̈�𝑢𝑏𝑏(𝑥𝑥, 𝑡𝑡)  (7) 

  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹 =
7.2(𝐿𝐿 − 𝑥𝑥)𝑚𝑚

𝑏𝑏𝑑𝑑2𝐸𝐸  (8) 

 
It is evident that the sensitivity computed by the FBG-MM model (in Eq. (7)) is affected by the position of the FBG 

sensor (x), time (t), and forcing frequency (𝜔𝜔). Meanwhile, the SDOF model (in Eq. (8)) is only dependent on the position 
of the FBG sensor (x) and is no longer affected by time (t) and forcing frequency (𝜔𝜔). Figure 5(a) and 5(b) show plots of 
wavelength shift versus base acceleration for the FBG-MM and SDOF models, respectively. The wavelength shift 
increases linearly as the base acceleration increases in the SDOF model (Figure 5(b)), unaffected by the varying forcing 
frequencies. Nevertheless, the wavelength shift computed by FBG-MM (Figure 5(a)) was significantly affected by the 
forcing frequencies, making it difficult to determine its sensitivity. 

The sensitivity of the FBG accelerometer SDOF model can be easily determined using a simple polynomial function, 
but in the case of the FBG-MM, the polynomial function may result in inconsistency in the predicted wavelength shift. 
As a result, using artificial intelligence, such as genetic algorithms (GA) and fuzzy logic, among others, is one of the best 
candidates for determining its sensitivity. The authors prefer to propose neural network identification in this paper because 
it has been used successfully by the co-author of this work in identifying the foil-air bearing forces [28]. 

 

  

(a)  (b)  
Figure 5. The wavelength shift plot against base acceleration for (a) FBG-MM; and (b) SDOF model. 

NEURAL NETWORK IDENTIFICATION 
In this research, a non-parametric model called a cascade-forward backpropagation neural network (CFB) is proposed, 

in which inputs from previous layers are fed to subsequent layers [29]. Figure 6 depicts the schematic diagram of the 
network and the scheme used to train it. The chirp base acceleration, �̈�𝑢𝑏𝑏(𝑥𝑥, 𝑡𝑡) over a range of forcing frequency, 𝜔𝜔 will 
be the CFB's inputs. These inputs are normalised to a range of [–1, 1] [29] before being fed into the network (where 
�̈�𝑢𝑏𝑏� (𝑥𝑥, 𝑡𝑡), Δ𝜆𝜆�  and Δ�̃�𝜆�  denote the network-normalised of the variable �̈�𝑢𝑏𝑏(𝑥𝑥, 𝑡𝑡), Δ𝜆𝜆 and Δ�̃�𝜆, respectively). The network’s 
output and its normalised form for the estimated ∆𝜆𝜆 is denoted by ∆�̃�𝜆 and ∆�̃�𝜆� , respectively. In addition, Figure 6 depicts 
the identification (training) procedure, where the parameters of given assumed network architecture are optimised to 
minimise the difference (error) δ between the true (target) output ∆�̃�𝜆 and the network output ∆�̃�𝜆� , which is less than the 
specific convergence limit/tolerance. 
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Figure 6. CFB model of the wavelength shift ∆λ and its identification procedure 

(N: network normalisation; N-1: denormalisation). 

Training Data Generation and Training Process 
According to the FBG-MM theory and Figure 3 and Figure 4, identifying the sensitivity of an FBG accelerometer 

using CFB requires training data sets that include the true output for the given inputs. These data sets can be generated in 
two ways, depending on whether the identified cantilever FBG accelerometer is numerical or an actual transducer, as 
detailed in the Data Extraction from Numerical and Empirical Data for Sensitivity Identification subsection. 

It is best practice to specify the harmonic base displacement 𝑈𝑈0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  as a sinusoidal form for an acceleration that 
consists of a single forcing frequency 𝜔𝜔. These inputs, which are then replaced by 𝑈𝑈0 sin𝜔𝜔𝑡𝑡, are then substituted into Eq. 
(3), which provides the curvature of the beam. The wavelength shift is calculated using Eq. 3, as well as the dual-
differentiation of 𝑈𝑈0 sin𝜔𝜔𝑡𝑡, resulting in input/output data to the FBG accelerometer, which will then be used for CFB 
training. The authors perform this data generation process in the preliminary research, where forcing frequencies are also 
considered as the second input to the CFB network. 

In this paper, however, the wavelength shift is represented by orthogonally-phased chirp signals with constant forcing 
frequency 𝜔𝜔 and steadily increasing acceleration amplitude, �̈�𝑈: 

 

�̈�𝑢𝑏𝑏(𝑥𝑥, 𝑡𝑡) = �
�̈�𝑈𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚 − �̈�𝑈𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚
𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚

𝑡𝑡 + �̈�𝑈𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚� sin𝜔𝜔𝑡𝑡 (9) 

 
It is worth noting that prescribing the chirp acceleration will result in the dual-integration of Eq. (9), yielding Eq. (10). 
 

𝑢𝑢𝑏𝑏(𝑥𝑥, 𝑡𝑡) =  −
2�̈�𝑈𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚 − 2�̈�𝑈𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚 + 𝜔𝜔�̈�𝑈𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚𝑡𝑡 + 𝜔𝜔�̈�𝑈𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 − 𝜔𝜔�̈�𝑈𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚𝑡𝑡 − 𝜔𝜔�̈�𝑈𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚)

𝜔𝜔3(𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚)  sin𝜔𝜔𝑡𝑡 (10) 

 
Finally, Eq. (10) is subtituted into Eq. (3) and Eq. (4) subsequently to obtain the wavelength shift. 
 

𝛥𝛥𝜆𝜆 = 1.2 × �ℎ + ℎ𝑓𝑓� 

⎣
⎢
⎢
⎢
⎢
⎡�
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These input/output data (wavelength shift – Eq. (11) and chirp base acceleration – Eq. (9)) are then fed into CFB for 

training purposes. Table 1 and [25] can be used as a reference for the mechanical properties of the cantilever beam.  
Figure 7 depicts the entire procedure for determining the sensitivity of the cantilever FBG accelerometer using the 

CFB network. Meanwhile, Table 2 shows that the procedure begins with the preparation of the input/output data set using 
the chirp signal. The CFB network is then trained with a random number of hidden layers and neurons until it meets the 
criteria specified in the CFB algorithm. If the criterion is not met, the training process is repeated until the CFB criteria 
are met. The trained CFB network is then validated with a new set of input/output data for an efficiency test. Because 
some of the new input/output data sets used for validation are generated with parameters that differ from those used in 
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training, it is expected that the trained CFB will not be as perfect as desired. If this occurs, the training process can be 
stopped and trained CFB is said to be satisfactory. The process of generating data for validation purposes is covered in 
the results and discussion section.  

Table 1. Properties of cantilever beam and FBG sensor. 
Parameter Value 
Length, l 50 mm 
Width, b 10 mm 
Thickness, d 0.3 mm 
Location of centre of FBG 
measured from fixed end, lFBG 30 mm 

Density, ρ 8000 kg/m3 
Young’s Modulus, E 193 GPa 
Poisson's ratio, ʋ 0.29 
Wavelength of FBG sensor 1544 nm 

 

 
Figure 7. Complete process in the identification of sensitivity of the cantilever FBG accelerometer. 

CFB Architecture and Training 
Following several trial-and-error attempts, the best architecture for a CFB network was two hidden layers with 8 and 

8 neurons, respectively (see Figure 8). The hidden and output layers used hyperbolic purelin and tangent sigmoid transfer 
functions, respectively, and the Levenberg–Marquardt optimisation method to optimise the weights and biases of network. 
The input/output data set is divided into 70% for training, 15% for validation, and 15% for testing. Meanwhile, 𝐪𝐪𝑘𝑘 is 
defined as 1 × k matrix that contains the input to layer no. 1. 

 
𝐪𝐪𝑘𝑘 = ��̈�𝒖𝒃𝒃𝒇𝒇=𝟏𝟏𝟏𝟏𝟏𝟏   �̈�𝒖𝒃𝒃𝒇𝒇=𝟐𝟐𝟏𝟏𝟏𝟏. . . �̈�𝒖𝒃𝒃𝒇𝒇=𝟗𝟗𝟗𝟗𝟏𝟏𝟏𝟏� (12) 

 
where �̈�𝑢𝑏𝑏 at each forcing frequency is a vector of input over a period of time t. 
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The output of the 1st layer as: 
 

𝐚𝐚𝑘𝑘
(1) = 𝐡𝐡(1) �𝑾𝑾(1)𝒂𝒂𝑘𝑘

(1) + 𝒃𝒃(1)� (14) 
 
While the output of the subsequent layer mth layer are: 
 

𝐚𝐚𝑘𝑘
(𝑚𝑚) = 𝐡𝐡(𝑚𝑚) �𝑾𝑾(𝑚𝑚)𝒂𝒂𝑘𝑘

(𝑚𝑚−1) + 𝑾𝑾(𝑚𝑚)𝒂𝒂𝑘𝑘
(𝑚𝑚−2) + 𝑾𝑾(𝑚𝑚)𝒂𝒂𝑘𝑘

(𝑚𝑚−3)  … 𝑾𝑾(𝑚𝑚)𝐪𝐪𝑘𝑘  +𝒃𝒃(𝑚𝑚)� ,    𝑚𝑚 = 1, 2, …𝑀𝑀 (15) 
 

where, 𝐖𝐖(𝑚𝑚) and 𝐛𝐛(𝑚𝑚) are the matrix of weights and vector of biases of the mth layer, respectively; and 𝐡𝐡(𝑚𝑚)( ) is a 
vector operator comprising the transfer functions of the neurons of the mth layer. 

 

 
Figure 8. CFB model of the wavelength shift ∆λ and its identification procedure. 

Table 2 shows the input/output data set for the CFB training process. The left side of the table shows the chirp 
acceleration, while the right side shows the chirp wavelength shift computed from the FBG-MM model. The maximum 
and amplitude of the base acceleration are defined as �̈�𝑈𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚  and �̈�𝑈𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚 , respectively with values of 200 and 1 m/s2. There 
are 90 sets of input/output data that are combined in a single 1 × k matrix (refer to Eqs. (12) and (14)) where k depends 
on the length of each data set and is 1,215,045 in this case. Only three sets of input/output at frequencies of 1, 2, and 90 
Hz are presented to demonstrate how the amplitude chirp signal pattern looks. The forcing frequencies are limited to 90 
Hz because the basic principle of the accelerometer allows it to operate at frequencies lower than its fundamental 
frequency (in this case, 95.6 Hz), thereby preventing the vibration signals from appearing much higher than they actually 
are [25].  

RESULTS AND DISCUSSION 
Along with the 15% of input/output data designated for validation during the CFB training process, a new set of 

input/output data was generated from FBG-MM for usage during the validation phase to examine the efficiency of the 
trained CFB's sensitivity. The following three input/output data sets are available:  

i. Set 1 – input/output (base acceleration-wavelength shift) time series data with forcing frequencies ranging from 
1 to 90 Hz and a maximum base acceleration of no more than 80 m/s2 – within the range of the forcing frequencies 
and maximum base acceleration used in the training process (it means the maximum base acceleration does not 
exceed 200 m/s2, the forcing frequency is less than 90 Hz and the position of the FBG sensor is 0.03 m from the 
fixed end of the cantilever beam); 

ii. Set 2 – input/output (base acceleration-wavelength shift) time series data with forcing frequencies ranging from 
1 to 90 Hz but with a maximum base acceleration greater than the maximum base acceleration used in the training 
process; and 

iii. Set 3 – the forcing frequencies and maximum base acceleration of the time series of input-output (base 
acceleration-wavelength shift) data were randomly chosen, and the position of the FBG sensor on the cantilever 
beam was changed from 0.03 to 0.04 m. 

An In-Depth Discussion of the Trained CFB Efficacy on Input/Output Data Set 1 
As shown in Figure 9, the trained CFB accurately predicts the wavelength shift for input/output data set 1 at very low 

forcing frequencies of 10 and 15 Hz (Figure 9(a) and 9(b)). Increasing the forcing frequencies to 45 Hz results in an 
acceptable predicted wavelength shift where the maximum base acceleration is less than the actual wavelength shift 
computed by FBG-MM, as shown in Figures 9(c) and 9(d). It is worth mentioning that, as shown in Figures 9(e) and 9(f), 
if the forcing frequencies close to the maximum forcing frequency used in the CFB training process, the maximum base 
acceleration will decrease but the phase between the predicted and actual wavelength shift remains in phase. Despite the 
fact that all parameters in input/output data set 1 are within the range of those used in the CFB training process, the trained 
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CFB could not predict the wavelength shift very well as the forcing frequencies increased, especially when the forcing 
frequencies exceeded one-half of its fundamental frequency (45 Hz is around half of the 95.6 Hz). As a result, it can be 
concluded that the trained CFB can still be used to predict the wavelength shift of the FBG accelerometer, but the forcing 
frequencies must be less than or equal to 45 Hz. This limitation is acceptable because [23] once stated that the maximum 
forcing frequency of the FBG accelerometer should be approximately one-third or one-half of the fundamental frequency.  

Table 2. Input and output data for CFB. 
Input data Ouput data 

,  �̈�𝑢𝑏𝑏 2𝜋𝜋𝜋𝜋 = ��̈�𝑈𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−�̈�𝑈𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 + �̈�𝑈𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚� sin(2𝜋𝜋𝜋𝜋𝑡𝑡), Eq. 9 𝛥𝛥𝜆𝜆 = 1.2 × 𝜀𝜀𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥, 𝑡𝑡), Eq. 11 

�̈�𝑈𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚 = 200 m/s2 �̈�𝑈𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚 = 1 m/s2 
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Figure 9. Predicted versus FBG-MM wavelength shift where the forcing frequencies, maximum base acceleration, and 
position of FBG sensor within the range of that used in the training process. 

An In-Depth Discussion of the Trained CFB Efficacy on Input/Output Data Set 2 
The input/output data set 2 data is used to investigate the CFB's ability to predict wavelength shifts when the maximum 

base acceleration is greater than the one used in the CFB training process. The frequencies of excitation used in this data 
set are similar to those used in set input/output data set 1. At forcing frequencies of 10, 15, 33, and 45 Hz and maximum 
base accelerations of 315.9, 266.5, 215.0, and 479.8 m/s2, respectively (as in Figure 10(a) to 10(d)), the wavelength shifts 
exhibit a strong correlation with the actual wavelength shift computed by FBG-MM, with a slight decrement in its 
maximum base acceleration, similar to what was observed in the analysis of input/output data set 1. Notably, the 
prediction continues to remain acceptable for the extreme maximum base accelerations of 315.9 and 479.8 m/s2, as in 
Figure 10(a) and 10(d). As was discovered previously when examining the efficacy of CFB using input/output data set 1, 
input/output data set 2 also demonstrates that as forcing frequencies to increase, the wavelength shift is underestimated 
without affecting its phase. Another observation is that, as illustrated in Figure 10(e) and 10(f), regardless of the 
magnitude of the maximum base acceleration (i.e., above the range of the CFB training process of greater than 200 m/s2), 
the CFB could not accurately predict the wavelength shift when the forcing frequencies exceeded one-half of its 
fundamental frequency. 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time (s)

-60

-40

-20

0

20

40

60

w
av

el
en

gt
h 

sh
ift

, (
) (

pm
)

forcing frequency,  f  = 10 Hz

maximum base acceleration = 39.5 m/s
2

position of FBG sensor measured from fixed end = 0.03 m

predicted
FBG-MM

0 0.05 0.1 0.15 0.2 0.25 0.3

time (s)

-60

-40

-20

0

20

40

60

w
av

el
en

gt
h 

sh
ift

, (
) (

pm
)

forcing frequency,  f  = 15 Hz

maximum base acceleration = 17.8 m/s
2

position of FBG sensor measured from fixed end = 0.03 m

predicted
FBG-MM

0 0.05 0.1 0.15

time (s)

-60

-40

-20

0

20

40

60

w
av

el
en

gt
h 

sh
ift

, (
) (

pm
)

forcing frequency,  f  = 33 Hz

maximum base acceleration = 64.5 m/s
2

position of FBG sensor measured from fixed end = 0.03 m

predicted
FBG-MM

0 0.02 0.04 0.06 0.08 0.1

time (s)

-60

-40

-20

0

20

40

60

w
av

el
en

gt
h 

sh
ift

, (
) (

pm
)

forcing frequency,  f  = 45 Hz

maximum base acceleration = 56.0 m/s
2

position of FBG sensor measured from fixed end = 0.03 m

predicted
FBG-MM

0 0.01 0.02 0.03 0.04 0.05 0.06

time (s)

-60

-40

-20

0

20

40

60

w
av

el
en

gt
h 

sh
ift

, (
) (

pm
)

forcing frequency,  f  = 77 Hz

maximum base acceleration = 18.7 m/s
2

position of FBG sensor measured from fixed end = 0.03 m

predicted
FBG-MM

0 0.01 0.02 0.03 0.04 0.05

time (s)

-60

-40

-20

0

20

40

60

w
av

el
en

gt
h 

sh
ift

, (
) (

pm
)

forcing frequency,  f  = 88 Hz

maximum base acceleration = 30.58 m/s
2

position of FBG sensor measured from fixed end = 0.03 m

predicted
FBG-MM



Khalid et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 19, Issue 1 (2022) 

9429   journal.ump.edu.my/ijame ◄ 

  

(a) 
 

(b) 
 

  

(c) 
 

(d) 
 

  

(e) (f) 

Figure 10. Predicted versus FBG-MM wavelength shift, where the forcing frequencies and position of FBG sensor 
within the range of that used in training process but with high maximum base acceleration. 

An In-Depth Discussion of the Trained CFB Efficacy on Input/Output Data Set 3 
The placement of the FBG sensor onto the beam also affects the sensitivity of the FBG accelerometer when developing 

a cantilever FBG accelerometer, as shown in Eq. (5). Refer to [25] for details on the effect of the placement of FBG sensor 
on the beam. In this subsection, the input/output data set is generated at random from the following combinations:  

i. The forcing frequency and maximum base acceleration are within the range of those used in the CFB training 
process, but the FBG sensor is 0.04 m from the fixed end of the beam; 

ii. The maximum base acceleration is within the range of those used in CFB training, but the forcing frequency is 
slightly outside of those used in the CFB training process, and the FBG sensor is 0.04 m from the fixed end of 
the beam; and 

iii. The forcing frequency and maximum base acceleration are far outside the range of those used in the CFB training 
process, and the FBG sensor is 0.04 m from the fixed end of the beam. 

It should be noted that all of the results in Figure 11(a) to 11(f) are based on the input/output data set when the FBG 
sensor is placed 0.04 m from the end of the beam. Figure 11(a) and 11(b) show contradictory findings when compared to 
previous analyses using input/output data sets 1 and 2, despite the fact that forcing frequencies and maximum base 
acceleration are within the range of those used in the CFB training process. The discrepancy was that the predicted 
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wavelength shift was greater than the actual wavelength shift computed by FBG-MM but remained in the same phase. 
When the forcing frequencies are slightly higher than those used in the CFB training process, the predictions are the 
opposite of what is shown in Figure 11(a) and 11(b). It is predicted that the amplitude of the wavelength shift will decrease, 
but the phase will be 180 degrees off, as shown in Figure 11(c) and 11(d). When the forcing frequency and maximum 
base acceleration are significantly greater than those used in the FBG training process (in Figure 11(e) and 11(f)), the 
predicted wavelength shift is unsatisfactory in terms of amplitude and phase, and even worse exhibits a different response 
profile as illustrated in Figure 11(f). As a conclusion to input/output data set 3, it can be confirmed that the trained CFB 
is inapplicable to any input/output data generated with a different FBG sensor position than that used during the CFB 
training process. 
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the position of the FBG changed to 0.04 measured from the fixed end. 
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acceleration, suggesting that the amount of base acceleration is not the most significant factor in determining the 
sensitivity of the FBG accelerometer. The placement of the FBG sensor on the beam must also be varied in order to ensure 
that the input/output training data covers a broad variety of locations since a single position of the FBG sensor will not 
be able to enhance the CFB. Changes in the position of the FBG sensor, as previously mentioned, from its previous 
location to its new position (changed from 0.03 m to 0.04 m from the free end) resulted in an unacceptable prediction. In 
future works: 

i. the trained CFB will be deployed in a real-acceleration experiment to determine the capabilities of a cantilever 
FBG accelerometer for predicting given accelerations; 

ii. CFB network will be trained using an empirical input/output data set; 
iii. the forcing frequencies employed in the CFB training process will be increased such that one-half of the 

permitted forcing frequencies will be two-thirds of the beam's fundamental frequencies; 
iv. an orthogonally-phased chirp signal with steadily increasing forcing frequency 𝜔𝜔 and base acceleration 

amplitude �̈�𝑈 will be introduced to generate a single input/output data set, in this way preventing numerous 
input/output data sets from being used; and 

v. an additional mass at the cantilever tip may enhance the sensitivity of the FBG. 
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