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ABSTRAK 

Pengawal selalu digunakan untuk meningkatkan prestasi sistem kawalan. Kerja-kerja 

yang menggunakan pengawal menjadi perhatian para penyelidik kerana pengawal dapat 

diaplikasikan untuk menyelesaikan banyak masalah industri yang melibatkan kepantasan 

dan kedudukan. Pengawal logic kabur (FLC) terkenal kerana ia digunakan secara meluas 

dalam aplikasi industri. Walaubagaimanapun, struktur FLC masih kurang dari segi 

ketepatan dan tindak balas masa. Oleh itu, penyelidikan ini membincangkan tentang 

sistem FLC yang akan dioptimumkan oleh algoritma sonar kelawar adaptif (MABSA) 

untuk mengawal kedudukan motor servo DC. MABSA akan dioptimumkan dengan 

rangkaian input dalam sistem FLC yang akan direka. Tujuan kajian ini adalah untuk 

mencapai ketepatan sambil meminimumkan tindak balas masa motor servo DC. Ini 

dilakukan dengan mereka bentuk FLC menggunakan perisian Matlab. Setelah FLC 

direkabentuk sepenuhnya, gambarajah blok Simulink untuk motor servo DC dan FLC 

akan dibina untuk menganalisis prestasi pengawal. Julat fungsi untuk input dan output 

akan dioptimumkan oleh MABSA untuk mendapatkan nilai kedudukan terbaik. Prestasi 

FLC yang dibangunkan dengan MABSA yang dioptimumkan disahkan melalui ujian 

simulasi dan ketahanan dengan sistem yang tidak menggunakan FLC dan juga sistem 

tanpa MABSA. Hasil kajian mendapati bahawa FLC yang dicadangkan dengan 

pengoptimuman algoritma MABSA mampu menghasilkan peningkatan 3.8% 

sehubungan dengan waktu kenaikan dibandingkan dengan skema kawalan lain yang 

dinilai. Semasa membandingkan dengan algoritma PSO, FLC yang dicadangkan yang 

dioptimumkan oleh MABSA menunjukkan peningkatan sebanyak 12.5% pada waktu 

kenaikan dan 10% dalam masa penyelesaian. Kesimpulannya, hasilnya mengesahkan 

prestasi yang lebih baik dari segi waktu kenaikan dan waktu penyelesaian FLC yang 

dicadangkan yang telah dioptimumkan oleh MABSA. 
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ABSTRACT 

Controllers are mostly used to improve the control system performance. The works 

related to controllers attract researchers since the controller can be applied to solve many 

industrial problems involving speed and position. Fuzzy logic controller (FLC) gains 

popularity since it is widely used in industrial application. However, the FLC structure is 

still lacking in terms of the accuracy and time response. Although there are optimization 

technique used to obtain both accuracy and time response, it is still lacking. Therefore, 

this research presents works on the FLC system which is the fuzzy inference system that 

will be optimized by the modified adaptive bats sonar algorithm (MABSA) for the DC 

servo motor position control. The MABSA will be optimized with the range of the 

membership input in the FLC. The research aims are to achieve accuracy while 

minimizing the time response of the DC servo motor. This is done by designing the FLC 

using the Matlab toolbox. After the FLC is designed completely, the Simulink block 

diagram for the DC servo motor and FLC are built to see the performance of the 

controller. The range of the membership function for inputs and outputs will be optimized 

by the MABSA to get the best positional values. The performance of the developed FLC 

with the optimized MABSA is verified through the simulation and robustness tests with 

the system that did not use the FLC and also the system without MABSA. It was 

demonstrated from the study that the proposed FLC with optimization of MABSA 

algorithm was able to yield an improvement of 3.8% with respect to the rise time in 

comparison to other control schemes evaluated. When compared with PSO algorithm, 

proposed FLC optimized by MABSA showed improvement by 12.5% in rise time and 

10% in settling time. PSO-FLC also give 0.6% steady state error compared to the 

MABSA-FLC. In conclusion, the results validate the better performance in terms of rise 

time and settling time of the developed FLC that has been optimized by the MABSA. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Introduction 

This chapter introduces an overview of the research that has been carried out. 

Firstly it discusses the background of research and also the problem statement. This 

chapter explains briefly the overall description of the research and highlight the problem 

faced in the industry nowadays. Then, the objectives and scope of this research are 

defined and finally flow of the research process is formulated. 

1.2 Research Background 

In recent years, Industry Revolution 4.0 (IR 4.0) which is also known as the 

Fourth Industrial Revolution is introduced to a new stage of technological change where 

a highly automated, interconnected and smart production processes is developed (Peters 

and Yang, 2007). With the introduction of machine, driver, actuator, and sensor 

especially in factory, a new level of optimization and productivity is applied (Murray, 

2017). IR 4.0 is also an initiative with technology revolution like big data, automation, 

cloud computing, connection and electric vehicles (Xu et al., 2018). In the context of IR 

4.0, there are also advanced technologies in the smaller manufacturing industry but 

successfully improving product quality, maximizing production, increasing preventative 

maintenance, and reducing downtime (Li et al., 2017).  

One of the categories of manufacturing and electrical industry that is relevance to 

the IR 4.0 is the use of electric vehicles (Mosterman and Zander, 2016; Chan and Wong, 

2004). Electric vehicles are not limited to electric cars but also include electric aircraft, 

road and rail vehicles, manufacturing forklift trucks and industry crane (Rad et al., 2011). 

Since the term IR 4.0 represents the advanced connectivity for machines in manufacturing 

with the aid of electric vehicles, the electric motors also acts as a key technology of that 

current trends (Hidrue et al., 2011). 
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For the electric vehicles, it is control by an electric motor that is running by 

utilizing power put away in the batteries (Bhatt et al., 2019). Relating with the developing 

of revolution in electric vehicle, it has come out to be essential to obtain a far reaching 

comprehension of the criteria linked in regulation of electric motors (Mayr et al., 2018). 

It is discovered that the implementation of electric motor has been varied from an industry 

to another. As a result, various types of electric motors are presently used based on the 

power needed (Yin et al., 2018). There are many types of electric motors such as 

Alternating Current (AC) motor, Direct Current (DC) motor, linear motors, servo motors, 

and steppers motors, however DC motors are often used in the manufacturing industry 

(Tomar et al., 2014). Many applications such as robot manipulator, electric trains and 

electric vehicles use DC motors especially when speed and position control is required 

(George, 2008). 

DC motors become elements of movement which obtain electrical power in terms 

of direct current and transform the current into the mechanical rotation (Meshram and 

Kanojiya, 2012). Nearly all forms of DC motors have some inner function, namely 

electromechanical or electrical. The reason is that the DC motor system is essential 

especially when exactness positioning as well as speed control is required (Huh and Lee, 

2018). DC motors utilize feedback controller for speed or position control, or both. There 

were also several types of DC motors including brushed, brushless, and servo motors. 

However, the DC motor that is widely used in a variety of application such as industrial 

electronics and robotics is DC servo motor (Meike and Ribickis, 2011).  

More technologies starting to use DC servo motor because of the suitability and 

efficiency that can be used for varies purposes (Shanmugasundram, et al., 2012). DC 

servo motor can be equipped with controller to regulate speed, controlling position and 

also protecting the motor from overloads and faults (Dimeas et al., 2017). With the 

introduction of a controller to the motor, faster response can be generated (Szabat and 

Orlowska-Kowalska, 2007). 

There are various types of controller use in DC servo motor for example 

Proportional–Integral-Derivative (PID) controller, lead controller, lag controller, fuzzy 

logic controller (FLC) and neural network controller. However, PID controller is by far 
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the most prominent and commonly utilized type of controller across manufacturing 

sector. PID is often used since it has accurate set point and fast reaction to disturbances 

(Verna et al., 2013). Even so, PID controllers do not give adequate outcomes whenever 

it needs adaptive algorithms but FLC offers some solutions (Al-Odienat and Al- Lawama, 

2008). Basic advantage of FLC is it would not involve fully knowledge and 

understanding of an entire mathematical structure model (Nanda and Mangla, 2004). 

FLC’s success is demonstrated by the fact that the algorithm manages the direct and easy 

execution of human reasoning.  

However, the current situation is that the performance of FLC cannot be more 

precise since there are problems faced like the interruption of fuzzy inference system 

when controlling the input and output of the desired point/position (Chang and Chang, 

2006). Fuzzy inference system problem that cannot achieve the motion and stabilization 

control of desired point/ position becomes an interesting issue to investigate. Fuzzy 

inference system which are fuzzification, membership function, rule-based and 

deffuzification cannot function properly when there have to optimize 2 parameters 

(Subramanian et al., 2013). Since FLC is designed automatically by Matlab toolbox, the 

optimization on input or output parameters will be difficult (Rong et al., 2011). 

1.3 Problem Statement 

The issue with most of the fuzzy inference system is that the performance is still 

lacking since it cannot achieve best accuracy while minimizing time response (Prabu et 

al., 2016). Besides, excellent balance between these two characteristics in the FLC can 

be beneficial for certain process (Kusagur et al., 2010). Therefore, this problem must be 

tackled so that the FLC can be used effectively for controlling any type of DC servo 

motor position system. 

(Rahmani et al., 2012) designed fuzzy logic controller optimized by particle 

swarm optimization for DC motor speed control. The result is that the designed FLC-

PSO speed controller obtains much better dynamic behaviour compared to PID. 

However, the designed FLC-PSO faced problem with the rise time. Another approaches 

to solve the problem with the optimization is by designing fuzzy logic controller by 

particle swarm optimization for wind turbine (Bachache and Wen, 2013). The simulation 
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results demonstrate that the Optimized Fuzzy Logic Control (OFLC) gets a better 

parameters of fuzzy sets using PSO, and realizes a good dynamic behaviour compared 

with conventional FLC. But the PSO algorithm still give steady state error in the rotation 

of the wind turbine. 

(Manikandan and Arulmozhiyal, 2014) developed the fuzzy logic controller for 

controlling the position of DC servo motor drive. The position of DC motor can be 

controlled and return back to desired value easily but the settling time is very still high. 

Besides that, (Yadaz, 2015) suggested to control the position of DC Motor by using Fuzzy 

Logic Controller (FLC) with MATLAB application and comparing with conventional 

PID control. In spite of the easy implementation of traditional control "PID", its response 

is not so good for non-linear systems. The improvement is remarkable when controls with 

fuzzy logic are used, obtaining a better dynamic response from the system. 

Researcher Premkumar and Manikandan, 2018 tried approaches that optimization 

of fuzzy controller is carried out using nature inspired optimization algorithms such as 

particle swarm, cuckoo search, and bat algorithms. The bat optimized fuzzy proportional 

derivative controller has superior performance than the other optimization considered. 

However, optimized fuzzy still has noise at rise time. 

(Subramanian et al., 2014) reported that several methods have been suggested in 

recent years to address the issue with the fuzzy inference system efficiently. However, 

the technique still cannot solve the main problem with the fuzzy inference system (Koçak 

et al., 2018) (Uraon and Kumar, 2016) (Wieczorek, 2018) (Vyas et al., 2015). 

Subramanian et al. (2014) stressed that many algorithm to optimize the fuzzy inference 

system was suggested too for tackling the problems facing by most FLC. But, all 

proposed methods cannot optimize the accurate position while minimizing time response 

simultaneously (Premkumar and Manikandan, 2015). Since new optimization algorithms 

are introduced at almost yearly, many optimization problems have been solved (Mahdavi 

et al., 2007). Thus, the fuzzy inference system shall take the opportunity to utilize this 

kind of technique for producing a better trade-offs between accuracy and time response 

characteristics of FLC. 
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For the optimization of the DC servo motor position control using FLC, the 

MABSA is chosen to be used. The main reason is because there is no method that used 

MABSA for tackling the problem with the fuzzy inference system problem. MABSA also 

performs better in terms of accuracy and convergence speed for optimization problem 

compared to other several existing algorithms. Hence, this research investigates whether 

the DC servo motor can achieve accurate positioning while minimizing time response by 

adopting FLC optimized by MABSA on its control system. 

1.4 Research Objectives 

The three objectives of this research are: 

1. To design and develop an optimization technique by applying modified adaptive 

bats sonar algorithm on fuzzy logic controller for DC motor accuracy. 

2. To compare the performance of the proposed optimization technique by applying 

modified adaptive bats sonar algorithm on fuzzy logic controller for DC motor 

accuracy with PSO algorithm. 

3. To analyse the performance of the proposed optimization technique fuzzy logic 

controller optimized by the modified adaptive bats sonar algorithm for DC servo 

motor position control when compared with PSO algorithm. 

1.5 Research Scope 

In order to achieve the research objectives, research scopes have been identified: 

1. The designing and validation performance of fuzzy logic controller (FLC) by 

MABSA for DC motor control using MATLAB/Simulink software. 

2. The FLC is designed using the Matlab toolbox. 

3. The type of DC motor used is DC servo motor. 

4. The transfer function use for DC servo motor modelling is based on mathematic 

calculation and design by Simulink transfer function block diagram. 



 

 6 

5. The comparison of response system only using standard MABSA and PSO. 

6. The optimization value using MABSA and PSO are in offline method and 

iteration value only run for 30 times. 

7. This research only focuses on the DC servo motor position control using fuzzy 

controller. Input signal use is step, sine-wave and pulse generator and output will 

be the step response. 

8. This performance of proposed FLC is comparing by using optimization with PSO 

algorithm only. Another type of controller and algorithm is not part of this 

research. 

1.6 Thesis Organisation 

The thesis is structured as follows: 

Chapter 1: Introduces the background and the problem statement of the research, 

research objectives, research scope, research methodology, research contribution and 

publications and lastly the organisation of the thesis. 

Chapter 2: Discusses the varies types and methods of modelling DC servo motor, 

structures of fuzzy logic controller (FLC) and the modified adaptive bats sonar algorithm 

(MABSA) in the perspective of the research literature and background knowledge. 

Chapter 3: Elaborates in detail the modelling of DC servo motor transfer function, 

the designing of FLC and the optimization of design FLC with MABSA. 

Chapter 4: Deliberates the simulation result of proposed FLC optimized by 

MABSA and compared with the experimental result. 

Chapter 5: Presents the conclusions of the research as well as the recommendation 

for the future work of the research. 
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1.7 Summary 

This chapter has discussed the background of the research, highlighted the 

problem statement and identified the objectives and scopes of the research. Besides that, 

research methodology has been planned so that the flow of work can be done smoothly. 

For the next chapter, more explanation on the DC servo motor, fuzzy logic 

controller and the modified adaptive bats sonar algorithm will be discussed. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter is divided into several sections. For the first section, it covers about 

the optimization technique by using the modified adaptive bats sonar algorithm 

(MABSA). Second section discusses the fuzzy logic controller (FLC). This section 

reviews the application of FLC and how FLC is able to improve the accuracy of position. 

The third section is all DC motor including the types and transfer function of DC servo 

motor. The application of MABSA with FLC is explained in details in this section. 

2.2 Optimization 

Optimization is the proses to maximize or minimise some function to some set, 

often representing a range of choices available in a certain situation. The function allows 

comparison of the different choices for determining which might be “best.” (Cheng et al., 

2015). Optimization commonly be used in applications such as for the minimal cost, 

maximal profit, minimal error, optimal design, optimal management, variation principles. 

In optimization of a design, the design objective could be simply to minimize the cost of 

production or to maximize the efficiency of production (Cheng et al., 2015). An 

optimization algorithm is a procedure which is executed iteratively by comparing various 

solutions till an optimum or a satisfactory solution is found. With the advent of 

computers, optimization has become a part of computer-aided design activities (Rini and 

Yuhaniz, 2011).  

Optimization by algorithm is widely be used since there are many advantages of 

the system or process in terms of faster response or slower response depends on the users 

requirement (Mirjalili, 2016). There are two distinct types of optimization algorithms 

widely used today. The first one is the Deterministic Algorithms. They use specific rules 

for moving one solution to other. These algorithms are in use to suite some times and 
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have been successfully applied for many engineering design problems (Kelner, 2008). 

The second is the Stochastic Algorithms. The stochastic algorithms are in nature with 

probabilistic translation rules. These are gaining popularity due to certain properties 

which deterministic algorithms do not have (Kelner, 2008). 

2.2.1 Optimal Problem Formulation 

A naive optimal design is achieved by comparing a few (limited up to ten or so) 

alternative solutions created by using a priori problem knowledge. In this method 

feasibility of each design solution is first investigated (Coello, 2000). Thereafter an 

estimate of underlying objective for example cost and profit of each solution is compared 

and best solution is adopted. Figure 2.1 shows an outline of the steps usually involved in 

an optimal design formulation. 

 

Figure 2.1 A flowchart of the optimal design procedure 

Source: Mirjalili (2016). 

It is impossible to apply single formulation procedure for all engineering design 

problems, since the objective in a design problem and associated therefore, design 

parameters vary product to product different techniques are used in different problems 
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(Rini and Yuhaniz, 2011). Purpose of formulation is to create a mathematical model of 

the optimal design problem, which then can be solved using an optimization algorithm. 

The formulation of an optimization problem begins with identifying the 

underlying design variables, which are primarily varied during the optimization process 

(Kelner, 2008). A design problem usually involves many design parameters, of which 

some are highly sensitive to the proper working of the design. These parameters are called 

design variables in the parlance of optimization procedures. Other (not so important) 

design parameters usually remain fixed or vary in relation to the design variables. The 

first thumb rule of the formulation of an optimization problem is to choose as few design 

variables as possible (Kelner, 2008). The outcome of that optimization procedure may 

indicate whether to include more design variables in a revised formulation or to replace 

some previously considered design variables with new design variables (Mirjalili, 2016). 

The constraints represent some functional relationships among the design 

variables and other design parameters satisfying certain physical phenomenon and certain 

resource limitations (Coello, 2000). The nature and number of constraints to be included 

in the formulation depend on the user. Constraints may have exact mathematical 

expressions or not. For example, maximum stress is a constraint of a structure (Coello, 

2000). If a structure has regular shape they have an exact mathematical relation of 

maximum stress with dimensions. But in case irregular shape, finite element simulation 

software may be necessary to compute the maximum stress. 

The next task in the formulation procedure is to find the objective function in 

terms of the design variables and other problem parameters (Cheng et al., 2015). The 

common engineering objectives involve minimization of overall cost of manufacturing 

or minimization of overall weight of a component or maximization of total life of a 

product or others. Although most of the objectives can be quantified (expressed in 

mathematical form), there are some objectives (such as aesthetic aspect of a design, ride 

characteristics of a car suspension design and reliability of a design) that may not be 

possible to formulate mathematically (Coello, 2000). In such a case an approximating 

mathematical expression is used. 
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The final task of the formulation procedure is to set the minimum and the 

maximum bounds on each design variable (Coello, 2000). Certain optimization 

algorithms do not require this information. In these problems, the constraints completely 

surround the feasible region. Other problems require the search algorithm with in these 

bounds (Kelner, 2008). 

2.2.2 Swarm Intelligence Algorithm 

Swarm intelligence algorithms are getting popular in the optimization fields since 

engineering design problem can be solved through it (Janga Reddy and Nagesh Kumar, 

2007). Swarm intelligence algorithms for example particle swarm optimization (PSO), 

fish swarm optimization, artificial bee colony (ABC), bats algorithm (BA) and whale 

optimization algorithm (WOA) have been proven as a better methods for handling 

difficult optimization problems (Mavrovouniotis. et al., 2017). Nonetheless, the smart 

behaviours of bats echolocation have motivated many researchers to create new 

algorithms, particularly over the last decade (Tsai et al., 2012). 

Within the last two decades, swarm intelligence algorithms have been recognised 

in the field of optimisation (Karaboga and Akay, 2009). Swarm intelligence algorithms 

are influenced by the behaviours of numerous animal and insect swarms, like birds, rats, 

bees, fish and bats (Lope and Coelho, 2005). Researchers also studied animal, plant, and 

human behaviours, examined the underlying force behind the phenomenon, and 

motivated researchers towards create different forms of algorithms. It began with the 

particle swarm optimization (PSO) suggested by Kennedy and Eberhart (1995) which 

represented fish or bird swarms behaviour. In 1999, Dorigo and Di Caro pioneered ant 

colony algorithm (ACO) and then artificial bee colony (ABC) were suggested by 

(Karaboga and Basturk, 2007) which observe the forage of ants and bees respectively. 

  Then, bat sonar algorithm (BSA) was proposed by inspiration from the 

intelligence features in behaviours of bats (Tawfeeq, 2012). From BSA, adaptive bats 

sonar algorithm (ABSA) was introduced for solving unconstrained single objective 

optimisation problems (Yahya et al., 2016). After that, a new improved version that can 

solve constrained optimization problem called modified adaptive bats sonar algorithm 

(MABSA) was proposed (Yahya and Tokhi, 2017). 
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Bat algorithm, proposed by Yang (2010) is inspired by the echolocation behaviour 

of bats when finding their prey, hunting, and avoiding obstacles. The advantages of BA 

are to provide a better optimum solution for a specific nonlinear problems, excellent 

global optimization ability, and less control parameters compared to other existing swarm 

intelligence algorithms (Gandomiet al., 2013). As the BA has a clear and specific 

definition, ease of implementation and rapid convergence, it has currently received 

significant interest and wide-ranging implementations in multiple areas (Dashtiet al., 

2010).  

The application of BA has been utilised in solving various engineering problem 

especially in ergonomic research for example by Raghav et al. (2011). BA with fuzzy 

modification is used to quickly screen the workplaces of the company that have high 

ergonomic risk. Besides that, BA also indicates a possible solution for full human body 

pose estimation in video sequences (Akhtar et al., 2012). Other applications that 

embedded BA in manufacturing is the development of the bat algorithm based scheduling 

tool (BAST) that is used to solve multi-stage multi-machine multi-product scheduling 

problems (Malakooti et al., 2012). The algorithm is aimed to minimise the combination 

of earliness and tardiness penalty costs. BA has also been used in electrical and electronic 

areas such as using BA for controlling speed of brushless DC motor (Premkumar and 

Manikandan, 2015). 

Apart from bat algorithm (BA), another significance bats-based algorithm was 

bats sonar algorithm (BSA) by Tawfeeq (2012). BSA is inspired from echolocation 

process of a colony of the bats. A bat's sonar is an efficient echolocation device. The bat 

sonar evokes knowledge regarding the target's relative velocity, the scale of the target's 

various characteristics and the target's height for learning the range of a target (Denny, 

2004). However, some drawbacks have been detected in BSA such as not efficient in 

making a searching process due to small number of bats and exists the possibility of 

redundancy location (Denny, 2004). Therefore, in order to modify the shortcomings of 

the BSA based on the nature of echolocation of bats, an adaptive bats sonar algorithm 

(ABSA) by Yahya et al.(2016) is presented. The purpose of ABSA is to improve 

precision, accuracy and convergence rate of BSA for single objective optimisation 

problem. 
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The application of ABSA can be seen by (Yahya and Osman Zahid, 2016) where 

a practical business optimization problem for a single objective needs to be solved. The 

outcomes is that ABSA can obtain the optimal parameters which are the cost optimization 

of shipping refined oil and profit optimization of selling television sets (Yahya and 

Osman Zahid, 2016). However there is a limitation in ABSA especially when dealing 

with a constrained single objective optimization problems (Yahya et al., 2016). 

Therefore, a new algorithm called a modified adaptive bats sonar algorithm (MABSA) is 

proposed.  

Through redefining some elements in ABSA and even reformulating the key 

feature of BSA (Yahya, 2016), MABSA will be able to address constrained optimisation 

problems. MABSA has been used to overcome vehicle side effect design weight 

optimisation. Besides, MABSA is also efficient to optimize brushless wheel DC motor 

performance (Yahya and Tokhi, 2017). A study by (Yahya and Tokhi, 2017) proposed 

MABSA for solving the constrained optimisation problems coupled with penalty function 

method as constraint handling technique.  

The performance of the algorithm is verified through rigorous tests with four 

constrained optimisation benchmark test functions. The acquired results show that the 

proposed algorithm performs better to find optimum solution in terms of accuracy and 

convergence speed. The statistical results of MABSA to solve all the test functions also 

has been compared with the results from several existing algorithms taken from literature 

on similar test functions. The outcomes from the findings displayed that MABSA 

outperforms other establish algorithms, and thus, it can be an efficient alternative method 

in the solving constrained optimisation problems. 

2.2.3 Modified Adaptive Bats Sonar Algorithm (MABSA) 

The MABSA is developed after the initial ABSA has updated three search 

techniques and introduced a new element to it. The three procedures are on how to set the 

beam length (L), decide the starting angle (𝜃𝑚) and angle between beams (𝜃𝑖) and also 

measure the end point position (𝑝𝑜𝑠𝑖). The bounce back method, on the other hand, is a 

new feature which may have been implemented in the MABSA and was not previously 

included in ABSA. The other MABSA components will not be addressed further though, 
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as they are close to the ABSA described in Yahya et al. (2016). The latest L is setup in 

MABSA as: 

𝐿 = 𝑅𝑎𝑛𝑑𝑥 (
𝑆𝑆𝑠𝑖𝑧𝑒

10% 𝑥𝐵𝑎𝑡𝑠
) 

Where the solution range (𝑆𝑆𝑠𝑖𝑧𝑒) is the value between the upper search space 

(𝑆𝑆𝑚𝑎𝑥) limit and the lower search space (𝑆𝑆𝑚𝑖𝑛) limit. Every dimension (Dim) has its 

specific or known as Dim constraints. The selection of solutions is categorized into 

micron size, such as 10% of the overall search space bats population. The percentage of 

each bat's search space size is labelled as practicable for transmitting sound without 

collision with each other. The random value of L is given to allow actual difference in 

the beam lengths of increasing the number of beams (NBeam) at each Dim (but staying 

within the Dim constraints) at each iteration. This emphasis forces each bat to look for a 

greater perimeter each time with the potential to diversify the search strategies through 

iterations and therefore discover the best global approach which can be near to them. 

Each NBeam with L is emitted from specific angle location. In the ABSA, the 𝜃𝑚 

and 𝜃𝑖  are determined randomly in every iteration. Thus all bats would transmit the 

NBeam from a collection of equivalent angle position at each iteration. For incorporating 

another randomisation character within MABSA, θm and θi will be calculated arbitrarily 

and independently for each bat at each iteration. Thus at each iteration, each bat would 

transmit the NBeam from a specific set of angle position. Consequently, this 

randomization would also lead to the diversification of the search phase at MABSA. 

2.3 Fuzzy Logic Controller 

As a distinction between PID and FLC for servomotor control, PID parameters 

have to be adjusted again under differences of plant variables or noise whereas FLC 

parameters need not to be defined and adjusted (Maraiya and Ray, 2018). Fuzzy logic is 

utilized in a variety of controls, since it does not allow a specific device model to be 

managed (Monmasson and Cirstea, 2007). Fuzzy logic operates by implementing rules 

which equate controller inputs with the desired output. The subsequent topic is regarding 

the Fuzzy logic’s main features.  
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FLC has several benefits compared to other traditional controls, such as access 

flexibility, low cost and the potential to build without understanding the specific 

mathematical model of the mechanism (Nanda and Mangla, 2004). Fuzzy logic provides 

an innovative form of thought that facilitates complex system simulation utilizing greater 

degrees of abstraction from information and practice. Fuzzy logic may be defined literally 

as 'word computation instead of counting' and 'sentence control instead of equation 

control' (Monmasson and Cirstea, 2007). 

Fuzzy Logic Controller (FLC) is focused on rational thinking and is a way to turn 

the linguistic regulation technique into an automated one by creating a rule based and 

regulates the system's behaviour (Nanda and Mangla, 2004). Fuzzy offers a surprisingly 

clear means of drawing definitive conclusions from unclear, uncertain or imprecise 

details. It is ideal for applications such as DC motor speed regulation with non-linearity 

(Yen and Pfluger, 1995). Fuzzy logic method was developed in 1965, by Zadeh, and is a 

mathematical tool to deal with uncertainty (Passino et al., 1998). It offers a method for 

coping with the complexity of inaccuracies and details. Fuzzy logic offers a structure of 

inference which allows for reasonable human thinking capability. 

2.3.1 Method of Fuzzy Inference System 

There are two different methods of fuzzy inference system (FIS) which are 

Mamdani FIS and Takagi-Sugeno Fuzzy model (TS Method). The different method will 

provide different consequent of fuzzy rules. 

2.3.1.1 Mamdani Fuzzy Inference System 

Mamdani Fuzzy Inference system is developed for synthesizing a set of linguistic 

control rules collected from expert human operators in fuzzy control system (Mamdani 

and Assilian, 1999). From the findings on the fuzzy algorithms for complex systems and 

decision making, Mamdani method is widely used for understanding the fuzzy logic 

works. Since the output from Mamdani FIS is easier for understanding the rule bases, 

researchers recommended using this method for decision support application (Hamam 

and Georganas, 2008). Mamdani is more suited to human input because it entails a 

substantial computational burden (Kaur and Kaur, 2012). 
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The detailed process of the Mamdani FIS is shown in Figure 2.2. The two inputs 

x and y is applied to the two rule Mamdani FIS for deriving the overall output, z. 

 

Figure 2.2 Mamdani fuzzy inference system model 

Source: Kothamasu and Huang (2007). 

The Mamdani FIS uses the original min and max composition for producing the 

output result (Kothamasu and Huang, 2007). The fuzzy reasoning behind the output is 

because of the scaled down of each rule in the fuzzy set via algebraic reduction. 

The advantages of using Mamdani FIS are easy to interpreted and also easy to be 

formalized since the output can transform to a linguistic structure before defuzzification 

process (Blej and Azizi, 2016). Besides that, the output obtained is reasonable based on 

the relatively simple design. Mamdani FIS can also be used for multiple input single 

output (MISO) system and multiple input multiple output (MIMO) system (Zaheret al., 

2014). 
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2.3.1.2 Takagi-Sugeno Fuzzy Model (TS Method) 

Takagi-Sugeno fuzzy model (TS method) is proposed in 1985 by Takagi, Sugeno 

and Kang. TS method is produced only one output membership functions that are either 

a linear or constant based on the input value (Wang and Chen, 2014). A common fuzzy 

rule in TS method is in the form: 

𝑖𝑓 𝑥 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵 𝑡ℎ𝑒𝑛 𝑧 = 𝑓 (𝑥, 𝑦) 

Where A and B are the input variables and z is the output variable that indicates 

the appropriate function suitable for the fuzzy region. The output variable f(x,y) can be 

either zero-order Sugeno fuzzy model or a first-order polynomial depending on the rule 

based that have been proposed (Cao and Frank, 2001). Since the zero-order Sugeno model 

mostly will not happen and can be viewed as special case of the Mamdani FIS or 

Tsukamoto fuzzy model (Abonyiet al., 2002), this model is neglected. Therefore only the 

first-order polynomial is discussed. 

 

Figure 2.3 First order of Takagi-Sugeno method model 

Source: Hamam and Georganas (2008). 

Figure 2.3 illustrates the fuzzy reasoning steps in producing the first order of TS 

method. The overall output is gained by weighted average because each rule has a crisp 
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output (Du and Zhang, 2008). Therefore, there is no defuzzification process in TS 

method. The weighted average can be replaced with the weighted sum depending on the 

user demands (Chen et al., 2007). However, the weighted sum could lead to the loss of 

membership function parameters. 

The advantage of using TS method is more flexibility in the system design 

resulting in getting more parameters in the output (Blej and Azizi, 2016). Moreover, the 

processing time is better compared to Mamdani FIS because the weighted average 

deducts the defuzzification time. However, TS method can only be used for multiple input 

single output (MISO) system (Zaher et al., 2014). 

Therefore for this project, Mamdani type is chosen because Mamdani type 

inference system gives the output based on the fuzzy set. While for Sugeno type, it is 

more suitable to be used if mathematical calculation is involved. 

2.3.2 Functional Block of Fuzzy Inference System 

Generally fuzzy logic inference system comprises of fuzzy sets, membership 

functions, linguistic variables, fuzzy rules and fuzzy reasoning (Nanda and Mangla, 

2004). The important specifications of FLC are the fuzzy conceptual skill in perceiving 

the output of system dynamics and implementing these consistency concepts to control 

device simultaneously.  

A basic block diagram of a fuzzy logic system that contains the position of input 

that goes through the fuzzification, rule base, decision and defuzzification for getting an 

output as shown in Figure 2.4. 
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Figure 2.4 Structure of FLC 

Source: Williams(2009). 

2.3.2.1 Fuzzification 

With each input fuzzy collection with the fuzzification method, data inputs or 

crisp measurements from certain measuring equipment are transformed into fuzzy values 

(Wang and Feng, 2013). The fuzzification system carries out the following functions 

(Khan and Engelbrecht, 2007). 

i. Calculate the value of input variables. 

ii. Carries out a scale mapping that shifts the range of values of input variables into 

the corresponding universes of discourse. 

iii. Conducts the function of fuzzification that transforms input data to suitable 

linguistic values which can be interpreted as labels of fuzzy sets. 

 

2.3.2.2 Membership Function 

The fuzzy engine is the kernel of a fuzzy logic controller capable of modeling 

human decision-making based on fuzzy principles and inferring fuzzy control behavior 

utilizing fuzzy implication (fuzzy relation) and inference rules in fuzzy logic (Espin-

Andrade et al., 2016).This ensures further that fuzzy inference engine performs rule 

inferences as human knowledge being conveniently inserted by linguistic rules. 



 

 20 

2.3.2.3 Rule Based (Knowledge Base) 

The collection of rules is called a rule base. The rules are in the form of "If Then," 

and technically the If side is called the terms, and the conclusion is called the Then side 

(Angelov and Buswell 2002). Based on the calculated input error (e) and the change of 

error (ce) the machine will implement the rules and determine a control signal. The 

control technique is processed in a more or less natural language, in a rule-based system. 

For a non-specialist end-user, a rule base controller is simple to grasp and simple to 

manage and an analogous system may be introduced using traditional methods. 

2.3.2.4 Defuzzification 

Defuzzification happens as all triggered activities are merged and transformed 

into a continuous non-fuzzy output signal since that is the system's control signal. The 

performance values rely upon its rules and positions of the mechanisms, and on the non-

linearity of the structures. To accomplish the goal, establish the control curve of the 

system reflecting the system's I/O relationship and depending from the details, determine 

the degree of output of the membership function in order to reduce the impact of the non-

linearity (Khan and Engelbrecht, 2007).The output is output gain which can be tuned as 

well as becoming an integrator. The crisp output value may be determined by centre of 

gravity or by weighted average (Teimouri and Baseri, 2015). 

The structure of fuzzy logic controller can be optimized for better performance in 

terms of faster response (Din et al., 2016). Since optimization method especially by 

swarm intelligence algorithm can improved the performance of a fuzzy logic controller 

by tuning the parameterized structure, a new optimization method for fuzzy logic 

controller design is proposed.  

2.4 DC Motor 

The electrical motors can be divided into two main types which are the direct 

current (DC) and also the alternating current (AC) motors. The electrical current that 

flowed will be based on the reference of either DC or AC (Krishnan, 2001). Both AC and 

DC motors serve the same functions but should be used depending on the user demands 
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since the control will be totally different (Polat et al., 2011). DC motor can be divided 

into two common types which are brushes or brushless (synchronous motor). AC motor 

also has two different types which are single phase and three phases (Lee and Kim, 2007). 

For this research, only the design of DC motor transfer function is covered and the next 

subtopic will discuss the details on types of DC motor and the method for producing 

transfer function of DC motor. 

2.4.1 Type of DC Motor 

DC motor such as brushed motor, brushless motor and servo motor are generally 

used in the industry for various purposes. 

2.4.1.1 Brushed Motor 

Basically in a wound rotor (the component which spins), a brushed motor 

generates a magnetic field by transmitting an electrical current through a commutator and 

a carbon brush assembly (Yedamale, 2003). The magnetic field of the stators (the 

stationary part) is generated either by winding the wound stator field, or by permanent 

magnets. Commonly brushed DC motors are inexpensive, small and simple to control. 

A typical brushed DC motor generally consists of two parts, the motor's stationary 

body named the Stator and the internal component that rotates to generate the movement 

called the Rotor or "Armature" for DC machines (Afjei et al., 2007). The motor wound 

stator is an electromagnetic circuit consisting of electrical coils linked in a circular 

structure for generate the appropriate North Pole then a South Pole and a North Pole style 

magnetic field network for rotation, unlike AC machines whose stator field rotates 

continuously with the frequency applied (Vazquez et al., 2011).  

The current flowing inside such field coils is regarded as the current of the motor 

sector. These electromagnetic coils that generate the stator field are being linked 

electrically with the motor armature in series, parallel or both combined (compound) 

(Hernández-Guzmán et al., 2015). A wound DC motor of the series does have stator field 

windings attached to the armature in series. Similarly, as seen in Figure 2.5, a shunt 

wound DC motor has its stator field windings attached in parallel to the armature. 
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Figure 2.5 Series and shunt connected DC motor 

Source: Williams(2009).  

A DC machine's rotor or armature comprises of current bearing conductors 

attached to electrically separated copper parts, named the commutator, with one point 

(Xueet al., 2008). The connector makes an electrical link to an external power supply 

through carbon brushes (herewith the term "Brushed" motor) as the armature rotates 

(Scottet al., 2008). The rotor's magnetic field configuration attempts for coordinate well 

with stationary stator field that causes the rotor to rotate on its axis, yet might not 

coordinate itself attributable of delays in switching (Liet al., 2013). The motor's rotational 

speed depends on the power of the magnetic field of the rotors, and the more voltage 

added to the motor the quicker the rotor can spin (Xue et al., 2008). The rotational speed 

of the motor will also be adjusted by modifying the DC voltage. 

2.4.1.2 Brushless Motor 

This type of motor generates a magnetic field in the rotor through the use of 

permanent magnets connected with each one as well as electronic commutation is 

obtained (Krishnan, 2001). They are usually smaller but more powerful than traditional 

brushed style DC motors as they utilize "Hall effect" switches in the stator to generate 

the necessary stator field rotational sequence but have improved torque / speed 

characteristics, are far more effective and have a longer operational life than comparable 

brushed types (Song and Choy, 2004). A revolving permanent magnet in the rotor and 

stationary magnetic magnets in the motor housing are utilized for brushless DC motors 

(Nam et al, 2006). Brushless motor is a system required for transforming DC to AC 
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(Ozturk and Toliyat, 2010). This concept is easier from brushed drive, as it avoids the 

problem of power transfer from elsewhere in the drive to the rotating rotor (Yedamale, 

2003). Compared to the brushed engine mentioned, this sort of motor requires less 

maintenance and more performance. 

2.4.1.3 Servo Motor 

This sort of motor is essentially a brushed DC motor with some kind of rotor 

shaft-connected positional feedback control (Bindu and Namboothiripad, 2012). They are 

attached and operated by a PWM form controller and are primarily required for control 

systems and devices operated by radio (Liu et al., 2009).  

DC Servo motors have been utilized in closed loop based systems where the 

output motor shaft direction is passed directly to the motor control circuit. Standard 

"feedback" positional instruments include solvers, encoders and potentiometers required 

for remote control models including aircraft and boats (Akbar, 2014).  

A servo motor typically has a built-in gearbox to minimize speed and seems to be 

able to specifically producing high torques (Shanmugasundram et al., 2012). Owing to 

the gearbox and feedback devices connected the output shaft of a servo motor will not 

spin loosely as do the shafts of DC motors.  

A servo motor mainly comprises of a dc motor, a reduction gearbox, a positional 

feedback unit and some type of error correction (Bhushan and Singh, 2011). The speed 

or position is regulated with respect to a positional feedback or reference signal added to 

the system as seen in Figure 2.6. 
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Figure 2.6 DC servo motor block diagram 

Source: Brushan and Singh (2011). 

The error detecting amplifier focuses on that input signal and relates it via the 

feedback signal from the output shaft of the motors and decides if the output shaft of the 

motor is in an error state and, if so, the controller then speeds up or slows down the motor 

(Maraiya and Ray, 2018). This response to the positional feedback device implies the 

servo motor is working inside a "Closed Loop Network" In addition to wide engineering 

applications, servo motors are often found in small remote control models and robots, 

with most servo motors are capable of moving in both directions up to around 180 

degrees, allowing it to ideally suited for precise angular positioning (Chen and Sheu, 

2002).  

Nevertheless, when specifically adjusted, these RC model servos are reluctant to 

spin continuously at high speeds as typical DC motors do (Park et al., 2003). A servo 

motor comprises of many tools for regulating position, orientation or speed in one kit, 

including the engine, gearbox, and feedback system and error correction (Park et al., 

2003). They are commonly utilized in numerous robotics and small prototypes, because 

they are conveniently operated by three wires, Power, Ground and Signal Control 

(Qureshi, et al., 2016). In order to control the motor, controller is used for changing the 

motion direction by the Signal control. A controller is also known in making sure that 

any type of DC motors have precise angular position and have a quick response. Based 
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on the characteristic of controllers, fuzzy logic controller is chosen to be used for 

monitoring the angular position. The reason for the selection of the controller is briefly 

explained in the fuzzy logic controller section. 

2.4.2 Method of Modelling of DC Servo Motor 

There are several methods that can be used to design the transfer function of DC 

motor.  

2.4.2.1 Torque 

The torque produced by a DC motor is usually proportional to the current of the 

armature and the power of the magnetic field (Ozturk and Toliyat, 2010). For this case 

the magnetic field is presumed to be constant and thus that the torque of the motor is 

proportional only to the armature current 𝑖  by a constant factor 𝐾𝑇 as shown in the 

equation below. This is called a motor operated by the armature. 

𝑇 =  𝐾𝑇𝑖 2.1 

The back emf, e, is proportional to the angular velocity of the shaft by a constant 

factor, 𝐾𝑒. 

𝑒 =  𝐾𝑒𝛳̇ 2.2 

In SI units, the motor torque and back emf constants are equal, that is 𝐾𝑇 = 𝐾𝑒; 

therefore, K is used to represent both the motor torque constant and the back emf 

constant. 

From the Figure 2.7, the following equations can be derived. 

𝐽𝜃̈ + 𝑏𝜃̇ =  𝐾𝑖 2.3 

𝐿 
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 =  𝑉 − K𝜃̇ 2.4 
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Figure 2.7 DC motor torque 

Source: Ozturk and Toliyat (2010). 

Where v = armature voltage (V)  

R = armature resistance (Ω)  

L = armature inductance (H)  

i= armature current (A)  

e = back emf (V) 

T = motor torque (Nm) 

ᶿ = angular position of rotor shaft (rad) 

J = rotor inertia (kg𝑚2) 

b = viscous friction coefficient (Nms/rad) 

Applying the Laplace transform, the above modeling equations can be expressed 

in terms of the Laplace variable s. 

𝑠(𝐽𝑠 + 𝑏)𝜃(𝑠)  =  𝐾𝑖(𝑠) 2.5 

(𝐿𝑠 + 𝑅)𝑖(𝑠) =  𝑉(𝑠) − 𝐾𝑠 𝜃(𝑠)  2.6 

i(s) can be eliminated from the two above equations, where the rotational speed 

is considered the output and the armature voltage is considered the input. 

𝜃̇(𝑠)

𝑉(𝑠)
=  

𝐾

(𝐽𝑠 + 𝑏)(𝐿𝑠 + 𝑅) +  𝐾2
 

2.7 
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2.4.2.2 Lagrange function 

The DC motor’s dynamic function is calculated using second-type equation from 

Lagrange. Initially, the device's kinetic energy T and potential energy, U, are measured 

and the dissipative function of the Rayleigh is incorporated into the equation of Lagrange 

that compensate for the damping and resistive forces inside the electromechanical 

framework (Song and Choy, 2004). For explaining the physical activity of the 

electromechanical DC motor, pick charging charge,𝑞1 and the angle of the rotor, 𝑞2 as 

the generalized coordinates, such that 𝑞1𝑞1 ,𝑞2 and the first derivative as generalized 

current and speed as 𝑞1 = 𝑖𝑎t,𝑞2= t. Thus, the Lagrange function, L is defined as the 

difference of the system’s kinetic and potential energy. 

𝐿 =  𝑇 − 𝑈 2.8 

By denoting  𝑇0 , 𝑈0  and,  𝑇1, 𝑈1, the kinetic and potential energy in the electrical 

part and mechanical part respectively, the equation below can be obtained 

𝐿 = (𝑇0 +  𝑇1) − ( 𝑈0 +  𝑈1) 2.9 

According to conservation of energy, the kinetic and potential energy for the 

electromechanical DC motor are as follows:  

𝑇 = (
1

2
𝐿𝑎𝑞1

2) + (
1

2
 𝐽 𝑞2

2 )   
2.10 

𝑈 =  −(𝑉𝑠 −  𝑉𝑏) 𝑞1 2.11 

Rayleigh dissipative function in the electromechanical DC motor is: 

𝑅 =  (
1

2
𝑅𝑎𝑞1

2) + (
1

2
𝐵𝑚𝑞2

2 )  
2.12 

Combining above equation into Lagrangian gives: 

𝐿 =  
1

2
𝐿𝑎𝑞1

2 +  
1

2
𝐽𝑚𝑞2

2 +  (𝑉𝑠 −  𝑉𝑏) 𝑞1 
2.13 
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2.5 Examples of Controller Optimized by Algorithm on DC Motor 

There are several examples of controller such as fuzzy logic controller (FLC) and 

proportional-integral-derivative (PID) that has been optimized by the swarm intelligence 

algorithm on DC motor as shown in Table 2.1. 

Table 2.1 The example of controller optimized by algorithm for varies applications 

Researchers Approaches Outcome 

Nasri et al., 

(2007) 

A particle swarm optimization 

(PSO) method for determining the 

optimal proportional-integral 

derivative (PID) controller 

parameters, for speed control of a 

linear brushless DC motor. 

The maximum overshoot can be 

minimized but the PSO designed 

PID is still unsatisfactory in terms 

of the rise time and the settling 

time. 

Thomas and 

Poongodi 

(2009) 

Design a position controller of a 

DC motor by selection of a PID 

parameters using genetic algorithm. 

The designed PID with GA has 

much faster response than 

response of the classical method 

but still needs starting point of the 

PID values from other classical 

method. 

Ibrahim et al., 

(2011) 

Developing fuzzy modelling of 

knee joint with genetic 

optimization 

The new approach of modelling 

using fuzzy can eliminate the 

complicated mathematical 

modelling process. Simulation 

result shows some benefits when 

using fuzzy logic and genetic 

algorithm. But basically the 

performance is only proven in 

simulation only and not in 

experiment. 

Rahmani et al., 

(2012) 

Designing fuzzy logic controller 

optimized by particle swarm 

optimization for DC motor speed 

control. 

The designed FLC-PSO speed 

controller manages considerably 

improved the dynamic behavior 

as opposed to PID. 
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Table 2.1 Continued 

Researchers Approaches Outcome 

Bachache and 

Wen 

(2013) 

Design fuzzy logic controller by 

particle swarm optimization for 

wind turbine. 

The findings of the simulation 

demonstrate that the Optimized 

Fuzzy Logic Control (OFLC) 

uses PSO to achieve improved 

variables of fuzzy sets and 

perform better dynamic 

performance relative to traditional 

FLC. 

Manikandan and 

Arulmozhiyal 

(2014) 

The fuzzy logic controller is 

developed for controlling the 

position of DC servo motor drive 

DC motor location had been 

easily controlled and come back 

to desired value however the 

settling time is still very high. 

Yadav 

(2015) 

Control the position of DC Motor 

by using Fuzzy Logic Controller 

(FLC) with MATLAB application 

and comparing with conventional 

PID control. 

While conventional control "PID" 

is simple to implement, its 

solution is not so good for 

nonlinear systems. When using 

controls with fuzzy logic, the 

modification is impressive, 

achieving good dynamic response 

from the system. 

 

2.6 Summary 

This chapter has elaborated concisely on the types of DC motor. The DC motor 

is divided into three different sections that are: brushed motor, brushless motor and servo 

motor. In the same times, the method to obtain the transfer function was discussed. The 

different method such Kirchhoff’s law, torque and Lagrange function were explained in 

details. Besides that, the main structure of fuzzy logic controller which is fuzzy inference 

system was explored from the methods and functional blocks accordingly. Then, it is 

followed by a brief introduction from a swarm intelligence algorithm to a modified 
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adaptive bats sonar algorithm. Finally, the literature review on several applications that 

used controller optimized by existing algorithm was also deliberated. 

For the next chapter, the designing process of the fuzzy logic controller, the 

optimization process, and simulation specifications will be presented. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

The chapter starts with presenting the transfer function of the DC servo motor, 

the designing of fuzzy logic controller (FLC), the optimization of FLC using the modified 

adaptive bats sonar algorithm (MABSA), the simulation for proposed design FLC using 

MABSA and the comparison between PSO-FLC and MABSA-FLC. Lastly, is the 

specification’s detail for giving more information about the method use for the simulation 

process. Details about the method can be useful for referring back when error occurred 

during running the simulation or implementing the hardware. 

3.2 Research Methodology 

In order to achieve the research objectives, the flow of work is planned. The 

research methodology can be divided into 4 phases. 

Phase 1: Design fuzzy logic controller (FLC). It involves the design of fuzzy logic 

controller (FLC). Fuzzy logic toolbox will be used in order to build up the FLC in 

MATLAB software. The input and output variables will be determined and inserted into 

the fuzzification part. In the toolbox, the type of fuzzy inference system can be easily 

chosen either Mamdani or Takagi-Sugeno type. Once the type of fuzzy inference has 

been chosen, the appropriate design will be automatically loaded for each type of fuzzy 

inference system. 

Phase 2: Optimization by the modified adaptive bats sonar algorithm (MABSA). 

The MABSA is employed to tune the FLC parameter. From the 4 structures of FLC which 

are fuzzification, membership function, rule based and deffuzification, membership 

function is chosen to be optimized by the algorithm. Since the parameters of membership 
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function is fixed for a given range, the best position for the parameters need to be 

determined. MABSA will be used to get the best position for the value of parameters. 

Phase 3: Simulation of proposed fuzzy logic controller (FLC) optimized by the 

modified adaptive bats sonar algorithm (MABSA) and particle swarm optimization 

(PSO) on DC servo motor position control. MATLAB Simulink software is required for 

simulation and research purposes which construct the FLC in sequential with transfer 

function of a DC motor. Additionally, the embedded MATLAB feature can be used to 

enforce MABSA to find an optimal FLC. William's (2019) transfer function for motor 

position control device will be utilized for evaluating the output of the latest designed of 

fuzzy logic controller optimized by the algorithm. In all simulations, the step response is 

used as an indicator of the controller performance. The simulation results will be 

evaluated to prove the capability of the proposed FLC optimized by MABSA to achieve 

best accuracy while minimizing time response. If the proposed design performs as 

desired, the research will proceed to hardware implementation. However, if the 

simulation results are not convincing, the proposed design will be adjusted and tuned 

back by MABSA.  

Phase 4: Verification of proposed fuzzy logic controller (FLC) optimized by the 

modified adaptive bats sonar algorithm (MABSA) and particle swarm optimization 

(PSO) on DC servo motor position control by comparing with PSO algorithm. To verify 

the performance of the proposed controller, the PSO algorithm is used to compare in 

terms of rise time, settling time and percentage of overshoot. Two types of response will 

be taken into account which are response to sudden load increment and decrement. 

Finally, the result will be analysed. The process flowchart is shown in Figure 3.1. 
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Figure 3.1 Flowchart of overall process 

For the first specification that the target need to reach the 15cm in distance, the 

distance represent the maximum turning of the DC servo motor. However, for comparing 

between proposed optimization of MABSA and PSO, the distance will be reduced to 

0.5cm since simulation take longer time to run. Therefore, the target specification of 
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15cm is only done with the optimization by MABSA for knowing whether the proposed 

design of MABSA-FLC can function properly. For the second specification, steady state 

error required to be zero since (Dai and Lin, 2015) (Komurcugil et al., 2017) stated that 

a good control system will be the one that has a low steady-state error. And the overshoot 

need to be less than 20%. The reason is because researchers discovered that overshoot 

must below 20% from the final value to ensure that the signal receive will not be 

distortion (Ang et al., 2005) (Morgan et al., 2013). 

PSO was inspired by having a population of candidate solutions which move 

around in the search space using a few pre-defined rules. The movements of these 

candidates are guided by their best position and the entire swarm’s best known position. 

The movement of the swarm is then guided by improved positions. This process is a 

continuous one, until a reasonable solution is discovered. 

 

Figure 3.2 Flowchart of PSO implementation 
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The flowchart in Figure 3.2 shows the implementation of the PSO algorithm. This 

flowchart was then coded and used in the simulation. The parameters were initialized and 

the population that is generated works towards optimizing the objective function. Figure 

3.3 illustrates the implementation of the MABSA. This flowchart was then adapted into 

coding for the simulation purposes. The parameters are initialized at the beginning of the 

algorithm. In the case of this research, it will work towards optimizing the controller 

parameters. 

 

Figure 3.3 Flowchart of MABSA implementation 
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3.3 DC Servo Motor Modelling 

First step for DC servo motor modelling is by mathematical calculation. The 

voltage supplied to the motor's armature is regulated in the armature control of 

independently excited DC servo motors, without varying the voltage added to the ground. 

Figure 3.4 presents an identical model of a separately excited DC servo motor. 

 

Figure 3.4 DC servo motor model 

Source: William (2019). 

𝑣𝑎(𝑡)  =  𝑅𝑎 . 𝑖𝑎(𝑡)  + 𝐿𝑎.
𝑑𝑖𝑎 (𝑡)

𝑑𝑡
 +  𝑒𝑏(𝑡)  

3.1 

𝑒𝑏(𝑡)  =  𝐾𝑏 . 𝑤 (𝑡)  3.2 

𝑇𝑚(𝑡)  =  𝐾𝑇 . 𝑖𝑎(𝑡)  3.3 

𝑇𝑚(𝑡)  =  𝐽𝑚.
𝑑𝑤 (𝑡)

𝑑𝑡
 +  𝐵𝑚. 𝑤 (𝑡) 3.4 

 

 

Where𝑣𝑎= armature voltage (V)  

𝑅𝑎= armature resistance (Ω)  

𝐿𝑎= armature inductance (H)  

𝐼𝑎 = armature current (A)  

𝐸𝑏= back emf (V) 

w = angular speed (rad/s) 

𝑇𝑚= motor torque (Nm) 
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ᶿ = angular position of rotor shaft (rad) 

𝐽𝑚= rotor inertia (kg𝑚2) 

𝐵𝑚= viscous friction coefficient (Nms/rad) 

𝐾𝑇= torque constant (Nm/A) 

𝐾𝑏= back emf constant (Vs/rad) 

Combining the upper equations together: 

𝑣𝑎(𝑡)  =  𝑅𝑎. 𝑖𝑎(𝑡)  +  𝐿𝑎.
𝑑𝑖𝑎 (𝑡)

𝑑𝑡
 +  𝐾𝑏 . 𝑤 (𝑡) 

3.5 

𝐾𝑇 . 𝑖𝑎(𝑡)  =  𝐽𝑚.
𝑑𝑤 (𝑡)

𝑑𝑡
 +  𝐵𝑚. 𝑤 (𝑡)  

3.6 

The relation between rotor shaft speed and applied armature voltage is represented 

by transfer function: 

𝑊(𝑠)

𝑉𝑎(𝑠)
=  

𝐾𝑇

𝐿𝑎 . 𝐽𝑚. 𝑠2 + (𝑅𝑎. 𝐽𝑚 +  𝐿𝑎. 𝐵𝑚). 𝑠 +  (𝑅𝑎. 𝐵𝑚 + 𝐾𝑏 . 𝐾𝑇)
 

3.7 

The relation between position and speed is: 

ᶿ (𝑠)  =  
1

𝑠
 𝑊(𝑠) 

3.8 

Then the transfer function between shaft position and armature voltage at no load 

is: 

ᶿ(𝑠)

𝑉𝑎(𝑠)
=  

𝐾𝑇

𝐿𝑎. 𝐽𝑚. 𝑠3 + (𝑅𝑎. 𝐽𝑚 + 𝐿𝑎. 𝐵𝑚). 𝑠2 +  (𝐾𝑇 . 𝐾𝑏 + 𝑅𝑎. 𝐵𝑚). 𝑠  
 

3.9 

The transfer function will be used in the Simulink motor model. 
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The parameters is determined by the type of DC motor used. Every motor type 

has different DC motor functions that need to be included for the simulation. Table 3.1 

below shows the parameter values of the DC motor. 

Table 3.1 The motor parameterization 

Parameters Values 

Armature resistance (Ra) 4 Ohm 

Armature inductance (La) 2.75e-6 H 

Back emf constant (Kb) 0.0274 V/ (rad/s) 

Rotor inertia (Jm) 3.2284e-6 kg*m^2 

Moment coefficient (KT) 1.28 Nm/A 

Rotor damping (Bm) 3.5077e-6 N*m/(rad/s) 

 

3.4 Fuzzy Logic Controller Modelling System 

For the fuzzy logic controller (FLC) design, it can be divided into two parts. First 

one by designing the controller in MATLAB toolbox and then recalled it back to the 

Simulink block diagram. 

3.4.1 MATLAB Fuzzy Logic Toolbox 

The designed fuzzy logic controller (FLC) from MATLAB software will be using 

the MATLAB toolbox. A typical FLC toolbox as shown in Figure 3.5 consists of the 

basic elements, namely Fuzzy Inference System (FIS) Editor, the Membership Function 

Editor, the Rule Editor, the Rule Viewer, and the Surface Viewer.  
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Figure 3.5 Fuzzy inference system 

So, firstly add the variables for the input since two inputs will be used which are 

error and change of error. For the output will be the position of motor. The range for 

inputs and output is from -1 until 1. Equations 3.10 and 3.11 show the inputs for the FLC 

system. 

𝑒 (𝑡) =
𝑤𝑟𝑒𝑓 −  𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑤𝑟𝑒𝑓
 3.10 

ê (𝑡) =  
∆ 𝑒(𝑡)

∆𝑡
=  𝑒(𝑡) –  𝑒 (𝑡 − 1) 

3.11 

After deciding the input and output parameters, the value will be inserted in the 

FIS editor as shown in Figure 3.6. The reason to use FIS editor is because there is no 

limitation of the input numbers in the fuzzy logic toolbox software. 
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Figure 3.6 FIS editor for proposed design of fuzzy logic controller 

The main function of membership function editor is for determining the formation 

of input and output variables. The membership function editor shares some features with 

the FIS editor. The membership function editor lets to arrange and rearrange all the 

membership functions that linked with all inputs and outputs variable. The 7x7 

membership function is chosen for designing the FLC since the performance evaluated 

become more accurate and precision. Table 3.2 shows the membership function of 

designed controller. 

Table 3.2 Rules table for fuzzy logic controller 

 ∆ 𝑒 NL NM NS ZE PS PM PL 

𝑐𝑒   

NL NL NL NL NL NM NS ZE 

NM NL NL NL NM NS ZE PS 

NS NL NL NM NS ZE PS PM 

ZE NL NM NS ZE PS PM PL 

PS NM NS ZE PS PM PL PL 

PM NS ZE PS PM PL PL PL 

PL ZE PS PM PL PL PL PL 
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From the membership function, the rule for the behaviour of the system will be 

identified. The fuzzy inference diagram can be viewed by using the rule viewer. Rule 

viewer displays a roadmap of the whole fuzzy inference process. By using this viewer, 

the individual form of membership function can be seen affecting the result. And for 

viewing the dependency of one of the output on any one or two of the inputs is by surface 

viewer. Surface viewer will generate and plots an output surface map of the system. After 

the rules are applied to both inputs and output, surface viewer will be obtained. Figure 

3.7 shows the surface viewer that has been generated based on the parameters inserted. 

 

Figure 3.7 Surface viewer for designed fuzzy logic controller 

After the surface viewer is generated, the block diagram for the overall process 

will be designed. The transfer function used is modelled and the FLC is called back in 

the block diagram that has been provided in the Simulink. 

3.4.2 MATLAB Simulink 

Following the complete design of the fuzzy logic controller (FLC) and also the 

findings produced by Surface Viewer, the MATLAB Simulink model is then built to 

simulate and test the system performance for the fuzzy logic controller. A transfer 

function will be linked to FLC output. This transfer function generally refers to the motor 

and the input to the FLC is the step input. The scope has been utilized for viewing the 

controller performance during the overall process. The resulted response will be in step 

response. 
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The block diagram for the system is shown in Figure 3.8. The block diagram is 

designed based on the closed loop system. There are three different subsystems in the 

block diagram that represent the system without the fuzzy logic controller, with the fuzzy 

logic controller, and also the system that has been optimized by MABSA. 

The step block is placed in front of the design to provide a step for the system 

without FLC and also system with FLC. The Mux is needed since for FLC, two inputs 

will be entered into the fuzzification process. And at the last defuzzification, the output 

will go to the DC motor transfer function. The result from the scope will be compared by 

the different subsystem that has been designed. The output will be saved to the workspace 

in MATLAB for generating automatically all the needed parameters that need to be 

compared.  

 

Figure 3.8 Block diagram for overall system 

The comparison of all three different subsystems will be discussed to verify the 

assumption where the proposed FLC optimized by MABSA will have better step 

response performance compared to other subsystems. The comparison of performance 

will be validated in terms of rise time (𝑇𝑟), settling time (𝑇𝑠) and also the percentage of 

overshoot. 
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Figure 3.9 displays the transfer function of DC motor block diagram. The input 

will be the voltage, while the output for the DC block diagram is the position of the DC 

motor. The voltage is computed to the output position by setting the value of inductance, 

resistance and the final value is also integrated. 

 

Figure 3.9 Block diagram for DC motor transfer function 

 

3.5 Optimizing of Fuzzy Logic Controller by Modified Adaptive Bats Sonar 

Algorithm and Particle Swarm Optimization 

A self-tuning method for fuzzy inference rules employing a descent method for 

Takagi-Sugeno fuzzy rules with constant outputs, and isosceles-triangular fuzzy numbers 

by Maeda and Murakami (1992) has been proposed. Besides that, the gradient descent 

approach for optimizing Takagi-Sugeno rules with symmetric and asymmetric triangular 

membership functions and output functions (Sugeno regular guidelines), suggesting 

"Takagi-Sugeno based rule" to prevent a particular class of local minima (Siarry and 

Guely, 1998).  

Siarry and Guely (1998) suggested a computer-aided tuning method for gradient 

analysis, input variables with width around each side equivalent to the gap between the 
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two adjacent peaks, and output variables utilizing symmetrical, triangular membership 

features of equal width. 

A fuzzy logic controller’s output relies upon its rules of control and membership 

functions. Thus, the application of these variables to the mechanism to be controlled is 

quite critical. There is still no FLC that have been optimized by bats echolocation-

inspired algorithm. Therefore, an example to make the fuzzy logic control systems 

behave as closely as possible to the operator or expert behaviour in a control process is 

by tuning the fuzzy control rules.  

The genetic algorithms are used for the tuning of fuzzy control rules. In (Herrera 

et al., 2005), training data (TRDs) is used for tuning fuzzy controllers. A set of TRDs is 

a pair of input-output data, wherein expected output values are the output data, and the 

input outcomes are applicable for the fuzzy input values. Such tuning data reflect the 

control behaviour of the skilled-operator. The tuning approach matches the membership 

functions of the fuzzy rules provided by the experts with the chosen inference system and 

defuzzification technique, achieving high-performance membership functions through 

reducing a defined error function using a collection of input-output measurement results. 

For this project, the modified adaptive bats sonar algorithm (MABSA) and 

particle swarm optimization (PSO) will be employed to tune the FLC parameter. The 

approach employs MATLAB/M – file coding scheme in the Simulink/Embedded 

MATLAB Function block. Fuzzy inference system and scaling gains for the inputs and 

output signals are the parameters to be optimised. The fitness values for all particles are 

measured at each iteration dependent upon (Park et al., 2003).  

Afterward, modifications are applied based on the updated values and next 

iteration starts. The running code will be run for 30 times. The best position is selected 

based on the set point that are nearer to zero. 
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3.6 Performance Validation 

3.6.1 Comparing FLC-MABSA with FLC-PSO 

As both PSO and MABSA algorithms are commonly ought to solve the DC motor 

issues, the performance of the algorithms should be tracked to understand precisely which 

is better in getting the system's step response performance, which used the fuzzy 

controller optimization in the DC motor position control. The FLC parameter will be 

optimized using a modified bats echolocation-inspired algorithm (MABSA) and particle 

swarm intelligence (PSO). The approach is to introduce a MATLAB / M-file coding 

scheme in the function block Simulink / Embedded MATLAB. The parameters that are 

significantly altered are the fuzzy inference system and the scaling gains for both inputs 

and output signals. The fitness values for all the particles are measured upon each 

repetition, based on the location of the particles. The modifications are then applied 

according to the updated values, and the next iteration begins. 

The position function values are set, as the Fuzzy logic controller is just designed 

based on the minimum and maximum position of the boundary. Hence, the algorithm 

would be applied to optimize the controller for obtaining the best value to determine the 

position of the limit values. MATLAB Simulink software is implemented for evaluating 

and simulating the constructed FLC design when the transfer function of a DC motor is 

applied within the FLC. Additionally, the Embedded MATLAB function is implemented 

for ensuring the FLC can indeed be optimized for the algorithm. The simulations would 

be in step response form, in which the output of the controller may be shown. In order to 

validate the efficiency of the updated developments fuzzy logic controller designed by 

both algorithms a control model for motor position control system will be suggested. 

To tune the FLC parameter, the modified bats echolocation-inspired algorithm 

(MABSA) and particle swarm optimization (PSO) are employed. The membership 

function is selected from the four structures of the Fuzzy Logic Controller (FLC), to be 

optimized by both algorithms. In both algorithms the m-file coding is changed depending 

on the transfer function. Figure 3.10 demonstrates the PSO algorithm for m-file 

application and Figure 3.11 demonstrates the MABSA algorithm. To get the best position, 

the four best values are chosen and inserted in the membership value function. 
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Figure 3.10 M-file coding for PSO algorithm 

 

 

Figure 3.11 M-file coding for MABSA algorithm 
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After defining the four values, the values would then be incorporated into the 

membership function of the developed fuzzy logic controller. Each membership function 

has 3 parameters. The optimized values are placed in the membership function and then 

applied to obtain the optimized values. The following Figure 3.12 indicates the phase 

through which the value is inserted into the controller. The same measures for MABSA 

algorithm will proceed as shown in Figure 3.13.  

 

Figure 3.12 Membership function for optimization using PSO algorithm 

 

 

Figure 3.13 Membership function for optimization using MABSA algorithm 
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The new Surface Viewer will be created after all the procedure is followed. 

Finally, the fuzzy logic controller built for both algorithms may be utilized for controller 

in the Simulink block diagram. The FIS file for designing controller that have been 

optimized by modified adaptive bat sonar algorithm as shown in Figure 3.14 

 

Figure 3.14 The FIS file of fuzzy logic controlller 

The input will be the error and change of error. The iteration runs for 30 times 

and the best fitness is chosen when the value is nearer to zero. Then 4 values for the best 

position will be chosen for creating the centre points of standardized, triangular 

membership functions to categorize the whole fuzzy partition of a variable. This property 

is preserved by a description which codes rather than its absolute position the distances 

between the adjacent fuzzy sets. After getting the new location of centre points, a new 

designing fuzzy logic controller will be built.  

The output of the constructed fuzzy controller with the DC motor transfer function 

are being computed and evaluated in the MATLAB Simulink model, when the modelled 

fuzzy logic controller is completely generated as well as the Surface Viewer obtained the 

data. The rules contained in the fuzzy logic controller have been operating as a "brain"-

controller throughout the whole program. The system's functionality as regards step 
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response should be created via the Simulink model's output scope. MATLAB Simulink 

Library had Fuzzy logic controller blocks. The DC motor is the power output actuator 

used in the Simulink layout. Figure 3.15 shows the controller block diagram, DC motor 

and the overall system. 

 

Figure 3.15 The block diagram for PSO-FLC and MABSA-FLC 

For both algorithms, the output from scope is contrasted either with the controller 

or without the controller. The block diagram comprises four separate subsystems. 

Without the controller, the controller and even the mechanism which has been optimized 

by the PSO and MABSA algorithm reflect the DC motor mechanism.  

And the fuzzy logic controller built for each circuit would also be different 

because the designed FLC is modified when the algorithm turned it on. The performance 

will be stored to MATLAB’s workspace for automatically generating the value for that 

rise time, settling time, and percentage of overshoot. 

3.6.2 Robustness Test in Input Signal 

Robust control is a branch of control theory which addresses uncertainty precisely 

in its solution with controller design. It also involves the processing of unknown plants 

subject to unknown disturbances with unknown dynamics. Disturbance signals describe 



 

 50 

undesired inputs that affect the output of the control system and cause system error to 

significantly rise. This is the control-system engineer’s task to correctly construct the 

control device to partly remove the consequences of performance and device error 

disturbances. There are three disturbance groups which penetrate outside control loops: 

set point changes, load variations, and noise. Flow loops will mainly react to adjustments 

to the set point (input signal), load disturbances become especially normal when several 

users draw from a specific pump or compressor. For this research, set point changes is 

used to test the performance of the controller. There will be 2 sources that will be added 

which are sine-wave and pulse generator. Sine wave is usually used in order to get reliable 

results within the regions of the resonance frequencies. Figure 3.16 shows the block 

diagram of the overall system with sine-wave input signal. 

 

Figure 3.16 The block diagram for adding sine-waveas input signal 

Either an electrical circuit or a piece of electrical research equipment used to 

generate rectangular pulses is a pulse generator. Pulse generators are mostly used to deal 

for digital circuits, the associated feature generators are predominantly used for analog 

circuits. Figure 3.17 shows the block diagram of the overall system with pulse generator 

input signal. 
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Figure 3.17 The block diagram for adding pulse generator as input signal 

 

3.7 Summary 

This chapter elaborated concisely on the procedure of designing FLC optimized 

by MABSA for DC motor position control. This chapter began with the DC servo motor 

modelling where the transfer function will be developed and inserted into the block 

diagram in Simulink model. Then, the chapter followed with designed fuzzy logic 

controller and continued by optimizing the proposed FLC design with MABSA. After 

that, the simulation and also the experimental of the proposed FLC optimized by MABSA 

are carried out. 

In the next chapter, the verification of the results for simulation will be done. The 

results will then be compared to PSO algorithm to analyse the performance.
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

Following the complete design of the fuzzy logic controller (FLC), and Surface 

Viewer acquired from the outcome, the MATLAB Simulink model is produced for the 

FLC to simulate and test the system performance. The rules that are placed in the FLC 

function like a "brain" – controller throughout the entire process. System efficiency is 

simulated in Simulink's output Scope model. MATLAB Simulink Library has sets of FLC 

that can be used directly. DC servo motor has the main actuator used in the Simulink 

device. Inside the Simulink model, the transfer feature of the DC servo motor is used to 

represent the output actuators. The scope of the outcome will be measured dependent on 

DC servo transfer function that used only the FLC, FLC that has been optimized by the 

modified adaptive bats sonar algorithm (MABSA) and also system without using 

controller for reference point. 

Comparison between MABSA-FLC and PSO-FLC is done for the verification of 

the simulation performance. After the computer simulation is fully done, the result will 

be compared based on the transfer function of DC servo motor that used only the FLC, 

FLC that has been optimized by MABSA and also system without using controller for 

reference point. The comparative result for the computer simulation will also be going 

through robustness test for testing the controller’s performance.  

4.2 Overall Result 

The result is divided into three categories which are the simulation result, the 

comparative result between PSO and MABSA and also the robustness test. For the 

simulation result, a Simulink model that reflects the system behaviour which includes the 
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transfer function of DC motor is built to test the proposed FLC that has been optimized 

by MABSA. In order to validate above optimization method, comparison between 

algorithms of controller is introduced for controlling the direction of the motor and also 

robustness test for validating the FLC performance. 

4.2.1 Result for Computer Simulation 

The findings from the performance of the Simulink model which used a standard 

form of DC motor are shown in Figure 4.1. The red straight line from the graph reflects 

the input signal that is used as an indicator for benchmarking to validate other subsystem 

performances. The black straight line represents the fuzzy logic controller optimized by 

MABSA. The line describing the system that utilized the controller is quicker in 

stationary condition relative to the smoother and thinner dotted line reflecting the system 

without the controller being employed. The system that uses the controller has an 

overshoot, therefore the rise time of the response is quicker than without the controller as 

opposed to the system. 
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Figure 4.1 The simulation result for system without the fuzzy controller, with the fuzzy controller and with the fuzzy controller optimized by 

MABSA 
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The outcome which used the controller's MABSA provides greater outcome as 

opposed to the transfer function which used software only and without the controller. It 

is presented in the simulation findings as seen in Table 4.1. The important parameters’ 

values such as rise time, settling time and also percentage overshoot are tabulated. 

Table 4.1 The simulation result for step response graph 

Characteristics 

Values 

NO FLC FLC 

With MABSA-

FLC optimized 

controller 

Rise Time (s) 0.29 0.26 0.25 

Settling Time (s) 0.40 0.38 0.35 

Overshoot (%) 10.0 13.3 13.3 

Steady state error 0 0 0 

Based on the simulation results, MABSA-FLC shows that the subsystems have 

faster response in terms of rise time and settling time compared to the system without a 

FLC controller and system with FLC controller only. The reason for this behaviour is 

because the function of controller is adding an overshoot thus increasing the response 

time. Therefore, it is expected that system with FLC controller will give faster increment 

in the rise time. The rise time for MABSA-FLC is 0.01seconds faster compared to system 

with FLC only and 0.04seconds faster compared to the system without FLC. For the 

optimized algorithm, MABSA performs by 3.8% improvement in terms of rising time 

and also 7.5% better in settling time. In terms of settling time, MABSA-FLC takes only 

0.35seconds to return to the final values. When without FLC controller is used as the 

reference point, the settling time for MABSA-FLC yields improvement of 12.5% in 

contrast to the FLC controller only which is 7.5%. The system without a controller, 

though, provides better performance than the system with a controller in the aspects of 

producing a lower overshoot. Observational studies, the system that has controller 

managed to shorten the rise time, raised the overshoot and reduced the settling time by a 

slight amount. The same goes to the system which is optimized by MABSA algorithm. 

The fuzzy logic controller optimized by MABSA provides greater contrast of 

performance than using the regular fuzzy controller without an optimization. 
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4.2.2 Result for Comparison of MABSA-FLC and PSO-FLC 

The outcomes from the Simulink model's step response which was using a 

standard DC motor type are shown in Figure 4.2. Each subsystem is represented by 4 

cases. The first one is the subsystem which did not use a fuzzy logic controller. The 

second one is the subsystem that used the fuzzy logic controller only without the 

optimization of algorithm. And then the last two are the system optimized by MABSA 

and PSO algorithm in the fuzzy logic controller.  

A 0.05s delay is inserted because there must be some delay in turning on the DC 

motor, before it gets started. Form the graph, clearly MABSA-FLC becomes the fastest 

to reach the final value compared to other cases. Just like the result in simulation above, 

system without controller has provided slower step response in rise time and also settling 

time.  

And the optimization by algorithm for controller gives better output performance 

compared to system that used controller only. Comparing between MABSA-FLC and 

PSO-FLC, MABSA-FLC is faster in stationary state compared to the PSO-FLC. The 

detail outcome is tabulated in the table. 
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Figure 4.2 The comparison result from the MABSA-FLC and PSO-FLC 
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The comparison results are displayed as shown in Table 4.2. The values of the 

response parameters similar to the simulation result are also being analysed. 

Table 4.2 The comparison result between MABSA and PSO for step response 

graph 

Characteristics 
 Values 

NO FLC FLC PSO-FLC MABSA-FLC 

Rise Time (s) 0.08 0.07 0.06 0.05 

Settling Time (s) 0.20 0.18 0.15 0.13 

Overshoot (%) 0.30 0.90 1.00 1.20 

Steady State Error 0 0 0.6 0 

As displayed in the Table above, almost 12.5% of the rise time by the system that 

used FLC optimized by MABSA compared with using PSO-FLC for the simulation result 

when without controller is used as an indicator. When FLC is used only as an indicator, 

MABSA-FLC still shows the best in rise time by the difference of 14.3%. The most 

difference in percentage is the parameter settling time. The difference is 0.02 when 

comparing the system with PSO-FLC. And of course the pattern is still the same where 

system that has been employed by FLC optimized by MABSA gives better result 

compared to system with FLC only. Although MABSA-FLC gives higher overshoot 

percentage which is 1.2% compared to other cases, the overshoot percentage requirement 

is still under limit. And the most important specification is that the steady state error is 

zero for the MABSA-FLC. 

It was expected that from the simulation results, the subsystems that used fuzzy 

logic controller optimized by MABSA has a faster response time compared to the system 

without FLC, system with FLC only and system with FLC optimized by PSO algorithm. 

It is also clearly shown that for the optimization by algorithm, MABSA yields more 

improvement in terms of rising time and also settling time compared to the PSO 

algorithm. In summary, system with FLC optimized by MABSA has the best step 

response performance for all cases.  
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4.2.3 Robustness Test with Input Signal Comparative Results 

There are two types of different sources used for analysing the performance such 

as sine-wave and pulse generator. Although the most sources used to evaluate the 

performance of step response is step, other sources will be added so that the performance 

of design MABSA-FLC can be discussed further. Figure 4.3 shows the output from sine-

wave signal. The extended graph is shown in Figure 4.4. As can be seen by both figures, 

MABSA-FLC provides better direction with the sine wave input signal compared to other 

cases. The line MABSA-FLC is almost the same with the input reference which means 

that MABSA-FLC can proceed with input to output without much delay. The comparison 

results are displayed as shown in Table 4.3. The values of the response parameters similar 

to the simulation result are also being analysed. 

Table 4.3 The comparison result between MABSA and PSO for sine wave graph 

Characteristics 
 Values 

NO FLC FLC PSO-FLC MABSA-FLC 

Rise Time (s) 0.9 0.8 0.7 0.6 

Settling Time (s) 9.8 9.7 9.4 9.1 

Overshoot (%) 0 0 0 0 

Steady State Error 0 0 0 0 

Overall, the rise time for MABSA-FLC is 0.1 seconds and 0.3 seconds higher 

than PSO-FLC and NO-FLC respectively. When FLC is used only as an indicator, 

MABSA-FLC still shows the best in rise time by the difference of 12.5% when comparing 

to PSO-FLC. The most difference in percentage is the parameter settling time. The 

difference is 0.3 when comparing the system with PSO-FLC. And of course the pattern 

is still the same where system that has been employed by FLC optimized by MABSA 

gives better result compared to system with FLC only. For all cases, there is no overshoot 

and steady state error.   
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Figure 4.3   Sine wave graph for DC servo motor position control 
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Figure 4.4   Extended sine wave graph for DC servo motor position control 
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Pulse generator has also been added to see the performance of MABSA-FLC. 

Figure 4.5 shows the output from pulse generator signal. The extended graph is shown in 

Figure 4.6 and Figure 4.7. As can be seen in Figure 4.5, all cases have no steady state 

error and returned back normally when disturbance is applied to it. However, MABSA-

FLC gives better performance in rise time and settling time for both during increment 

and decrement of the input reference compared to other cases. Compared to PSO-FLC, 

MABSA-FLC is way faster in response. 

The details comparison results are displayed as shown in Table 4.4. The values of 

the response parameters similar to the simulation result are also being analysed. 

Table 4.4 The comparison result between MABSA and PSO for pulse generator 

graph 

Characteristics 
 Values 

NO FLC FLC PSO-FLC MABSA-FLC 

Rise Time (s) 0.09 0.07 0.06 0.05 

Settling Time (s) 0.21 0.19 0.18 0.16 

Overshoot (%) 5 10 12 14 

Steady State Error 0 0 0 0 

From the Table 4.4 above, almost 17% of the rise time by the system that used 

FLC optimized by MABSA compared with using PSO-FLC for the simulation result 

when without controller is used as an indicator. For the settling time, MABSA-FLC give 

the best time by only 0.16 seconds compared to 3 other cases. Although like the result 

from the other cases, MABSA-FLC shows the highest percentage in overshoot but as the 

specification that has been set, the percentage still under limit. 
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Figure 4.5   Pulse generator graph for DC servo motor position control 
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Figure 4.6   Extended pulse generator graph for DC servo motor position control during increment 
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Figure 4.7   Extended pulse generator graph for DC servo motor position control during decrement
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4.3 Summary 

This chapter has presented the overall results for the simulation. The chapter 

continued with the comparative results that were divided into 2 cases which were without 

FLC being used as a reference point and with only FLC being used as a reference point. 

The performance criteria being compared were the rise time, settling time and percentage 

of overshoot. The proposed FLC optimized by MABSA clearly produced better response 

for both simulation and experiment validation. 

The next chapter is the thesis summarization. The chapter concludes the research 

that has been conducted and presents the future works.  
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

5.1 Introduction 

This chapter presents the overall research summarization, conclusion and 

recommendations for future works. 

5.2 Research Summary and Conclusions 

A study of the improvement DC servo motor position control using fuzzy logic 

controller (FLC) optimized by a modified adaptive bats sonar algorithm (MABSA) has 

been presented. The work is focused on the designing of FLC and the modification of 

FLC by inserting the optimal parameters using MABSA.  

The main reason for this research to be carried out is because the fuzzy inference 

system still lacking in terms of the accuracy and time performances. Therefore, the 

purposes of this research are to improve the fuzzy inference system performance by 

utilizing the DC servo motor. The research proposed a system model using a Simulink 

block diagram consisted of FLC block and DC servo motor transfer function block. For 

a newly proposed FLC with MABSA, optimization process has first taken place by 

adding the optimal value of parameters in the defuzzification process. The research has 

also developed a system model to simulate and experiment the actual system behaviours. 

In relation to the objectives of the research: The research had successfully 

developed FLC optimized by MABSA that can operate efficiently and delivered the result 

depend on the requirement of a user (fuzzy rules). Objective 1 had successfully achieved 

by developing the FLC optimized by MABSA that can operate efficiently and delivered 

the result depend on the requirement of a user (fuzzy rules) and the MABSA had 

successfully obtained the optimum value for the use in designing the FLC. 
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Objective 2 had successfully achieved since the simulation results verified that 

proposed FLC optimized by MABSA improved 14.3% of rise time for simulation 

compared to the system that used FLC only without the optimization. For the pulse 

generator result, almost 17% of the rise time by the system that used FLC optimized by 

MABSA compared with using PSO-FLC for the simulation result when without 

controller is used as an indicator. 

Objective 3 also successfully done by the simulation results that verified the 

proposed FLC optimized by MABSA improved the system performance compared to 

PSO-FLC in robustness test.  The simulation results verified that the proposed FLC 

optimized by MABSA improved the system performance compared to PSO-FLC. 

5.3 Future Direction of Research 

The new design of FLC optimized by MABSA can be extended for future work 

by including the following which is the proposed FLC optimized by MABSA can be 

tested in different types of application that requires positional accuracy and time 

minimization such as cutting machines. 

Secondly, the optimization by MABSA can be verified with other swarm 

intelligence algorithms to determine whether the value of parameters produced is at 

optimum level. 

And lastly, the design of FLC can be compared with other available existing 

controllers such as PID controller or Neutral network controller. This comparison can 

show whether FLC can give better or poor performance in the position control system 

application. 

5.4 Research Contribution and Publications 

The scientific contributions to knowledge of this research include the following: 

1. Fuzzy logic controller (FLC) optimized by MABSA for solving accuracy and time 

response problem.  
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2. Fuzzy logic controller (FLC) optimized by MABSA that can be used for DC servo 

motor position control application.  

3. Fuzzy logic controller (FLC) optimized by MABSA that can solve fuzzy 

inference system problem with 2 input parameters. 

Several publications have been produced through the research course that include 

the following: 

1. Elias, N., Yahya, N. M., and Sing, E. H. (2018). Numerical Analysis of Fuzzy 

Logic Temperature and Humidity Control System in Pharmaceutical Warehouse 

Using MATLAB Fuzzy Toolbox. In Intelligent Manufacturing & Mechatronics 

(pp. 623-629). 

2. Elias, N., and Yahya, N. M. (2018). Simulation Study for Controlling Direct 

Current Motor Position Utilising Fuzzy Logic Controller. International Journal of 

Automotive and Mechanical Engineering, 15(4), (pp. 5989-6000). 

3. Elias, N., and Yahya, N. M. (2019). Comparison of DC Motor Position Control 

Simulation using MABSA-FLC and PSO-FLC. In 2019 IEEE 15th International 

Colloquium on Signal Processing & Its Applications (CSPA) (pp. 39-42).  

4. Elias, N., and Yahya, N.M. Fast Response Fuzzy Logic Controller Optimized by 

Bats Sonar Algorithm. In SN Applied Sciences (submitted on 3th December 2019, 

under review). 
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