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ABSTRAK 

Kualiti air adalah sangat penting untuk dijaga kerana air adalah sumber utama dalam 

kehidupan seharian kita. Di dalam ekosistem akuatik, kualiti air yang baik membolehkan 

hidupan akuatik menjalani kehidupan seharian yang baik dan dapat meningkatkan 

pertumbuhan mereka seterusnya memberi banyak manfaat kepada persekitaran. 

Walaubagaimanapun, kaedah untuk mengumpul data kualiti air masih lagi dengan cara 

yang manual. Sampel data akan diambil dan dianalisis di makmal. Ini menyebabkan 

keputusan sampel air yang diperolehi akan mengambil masa yang lama dan tidak boleh 

didapati secara berterusan. Justeru itu, satu sistem diperlukan untuk memantau kualiti air 

dan dapat memperoleh keputusan dengan lebih cepat dan berterusan. Dalam kajian ini, 

Wireless Passive Water Quality Catchment Monitoring (WWM) System atau WWM 

Sistem diperkenalkan untuk mengumpul kualiti air. Lima parameter yang terdapat dalam 

system ini ialah keasidan air, suhu air, tahap keamatan cahaya dalam air, kelajuan ombak 

dan lokasi data yang diambil. Tasik UMP dipilih untuk dijadikan tapak eksperimen. 

Walaupun begitu, kawasan tasik ini amat luas dan memerlukan banyak WWM Sistem 

untuk mengambil data. Kaedah ini sangat mahal dalam perbelanjaan untuk 

membangunkan system ini. Oleh itu, kaedah untuk meramal kualiti diperkenalkan untuk 

mengurangkan bilangan WWM Sistem yang akan digunakan. Dalam kajian ini, Artificial 

Neural Network (ANN) adalah salah satu cara yang biasa digunakan untuk meramal 

kualiti air. Struktur dan fungsi ANN adalah berdasarkan rangkain saraf biologi. Proses 

ANN mengandungi tiga lapisan iaitu lapisan masuk, lapisan tersembunyi dan lapisan 

keluar dan pemberat dalam rangkaian biasanya diubahsuai oleh teknik back-propagation 

(BP). Teknik ini mempunyai beberapa kelebihan iaitu pantas, mudah dan senang untuk 

diprogramkan. Walaubagaimanapun, ada beberapa kelemahan dikenalpasti dalam teknik 

BP ini. Antaranya ialah selalu terperangkap dalam lokal minima, sensitif kepada data 

bising dan prestasi BP dalam sesuatu masalah bergantung kepada data masuk. Dalam 

kajian ini, Multi-Layer Neural Network optimasi oleh Genetic Algorithm (MLNN-GA) 

diperkenalkan untuk meramal kualiti air. Model ini akan meramal nilai pH yang diperoleh 

dari WWM Sistem berdasarkan nilai pH sekeliling dalam perimeter 100m2. MLNN-GA 

mempunyai tiga lapisan tersembunyi dan Genetic Algorithm (GA) akan mengoptimasi 

pemberat dalam rangkaian saraf ketika proses latihan. GA mempunyai beberapa 

kelebihan iaitu kurang terperangkap dalam lokal minima dan boleh beroperasi dalam 

proses yang komplek seperti rangkaian saraf yang dipanjangkan. Dalam proses latihan 

MLNN-GA, bilangan neuron dalam lapisan akan tersembunyi akan diuji untuk 

memperoleh kejituan yang tinggi. Parameter pH dipilih untuk meramal kualiti air kerana 

pH adalah satu parameter yang penting dapat mempengaruhi keadaan air. MLNN-GA 

adalah cara baharu dicadangkan dalam kajian ini untuk meramal kualiti air dari segi nilai 

pH. Keputusan ramalan akan dibandingkan dengan teknik BP dan purata nilai pH dalam 

perimeter 100m2. Keputusan ramalan diperoleh dari model MLNN-GA dengan kejituan 

99.64% mempunyai potensi yang cerah untuk digunakan pada masa hadapan dan WWM 

Sistem juga berpeluang untuk digunakan untuk memantau kualiti air 
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ABSTRACT 

Water quality is crucial to maintain as water is a necessity in our daily life. In aquatic 

ecosystem, good water quality allows aquatic life to have good health and improving their 

productivity leads to significant benefits to the environment. However, the method of 

collecting data is still in manual way. Data samples need to be collected and evaluated in 

the laboratory. It leads the results of water quality took a long time to retrieve and cannot 

be obtained continuously. Hence, a system is required to monitor the water quality that 

capable to obtain the results fast and continuously. In this research studies, Wireless 

Passive Water Quality Catchment Monitoring System or WMM System is introduced to 

collect the water quality parameters. Five parameters are measured in the system, which 

are potential hydrogen (pH), temperature, light intensity of water, coordinate of collecting 

data, and wave velocity. Primary lake at University Malaysia Pahang is selected as the 

experimental area for the WWM System. However, coverage area of the lake is large and 

require many WWM Systems to be developed. This method is expensive in terms of 

budget expenditure. Thus, prediction of water quality is applied to solve this problem 

with a number of WWM Systems used for collecting data will be reduced. Artificial 

Neural Network or ANN is one of the methods that commonly used to predict the quality 

of water. The structure and function of ANN is based on biological neural network. ANN 

process consists of three layer which are input layer, hidden layer, and output layer and 

weight of the network usually adjusted by using back-propagation (BP) technique. This 

technique has several advantages which are fast, simple, and easy to program. However, 

there are some weaknesses identified in BP such as being often trapped in local minima, 

sensitive to noisy data, and the performance of BP on certain problems is dependent on 

the input data. In this research study, Multi-Layer Neural Network optimized by Genetic 

Algorithm (MLNN-GA) is introduced to predict the water quality. This model will 

predict the pH value obtained by WWM System based on the value of pH surrounding 

within 100m2 area. MLNN-GA contain three hidden layers and Genetic Algorithm (GA) 

will optimize the weight of neural network during the training process. GA has several 

advantages, which are less often trapped in local minima and can operate in a complex 

process such as extended neural network. In training process of MLNN-GA, number of 

neurons in a hidden layer will be tested to obtain the best accuracy. The parameter of pH 

is chosen for predicting water quality as pH is one important parameter that can influence 

the condition of water. MLNN-GA is a new method proposed in this research study for 

predicting the water quality in terms of pH value. The results of prediction will be 

compared with BP technique and the average value of pH within the 100m2 area. The 

results of prediction obtained by MLNN-GA model with 99.64% accuracy has a 

significant potential to be used in the future and WWM System has a great potential to 

be used in monitoring water quality. 
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