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INTRODUCTION 

Due to its excellent mechanical characteristics such as high compressive strength, durability, hardness, workability, 

and fire resistance, concrete is the most common material used in building construction around the world [1]. Concrete is 

a building material consisting of a hard, chemically inert component called aggregate (often made of various types of 

sand and gravel) bound by cement and water. In recent decades, the environmental impact of the concrete industry has 

attracted much attention as awareness of environmental protection and potential negative consequences have increased at 

every stage of the concrete industry [2]. Today, the average production of concrete worldwide is about 3.8 tonnes per 

person per year [3]. Concrete production and consumption are expected to be four times higher by 2050 than in 1990 [4]. 

The high annual production of concrete means that the consumption of cement and aggregates is also high. In 2019, global 

cement production reached 4 billion tonnes, a 50% increase from 2005. It is expected to reach over 6 billion tonnes by 

2022 [5], with cement production growing by 4% every year, due to the growing population and urbanization [6, 7]. 

Cement production is a three-stage process involving raw material preparation, clinker production, which consumes 

a lot of energy; it represents for 12-15 percent of overall energy use globally [8] . The carbon footprint of concrete and 

cement manufacturing has attracted much attention recently [9, 10]. The production of Cement is accounting for 5-8% of 

worldwide CO2 emissions [11, 12]. In addition, several pollutants including, sulfur dioxide (SO2), nitrogen oxides (NOx), 

and dust /fine particulates matters (PM) are released into the environment during cement production. These emissions 

occur at every stage of the cement manufacturing process, from the mining of the limestone to packaging and shipping 

the finished product [13]. These pollutants have a negative impact on various environmental categories, including climate 

change, depletion of ozone, and acidification of water and soil. 

The concrete production requires the use of a large amount of raw materials; over 27 billion tonnes of raw materials 

are consumed each year [4]. Concrete's mass demand results in annual aggregate consumption of up to 48.3 billion tonnes 

[14]. This high consumption is depleting natural resources. In addition, the mining of natural aggregates can promote soil 

erosion or ecosystem degradation, as the wastewater and sludge released from a concrete plant can affect the aquatic 

environment. Moreover, the mining processing and transportation of such a large amount of aggregates consume a lot of 

energy [15], and generate a lot of pollutants such as (CO2), (NOX), and (SO2), which have a severe impact on the 

environment [16]. In addition, aggregate mining activities can have negative impacts on ecosystems and alter 

hydrogeological and hydrological systems. These negative impacts of stone and sand extraction can lead to depletion of 

groundwater, loss of soil fertility, forest deterioration, loss of diversity, and human health problems [17]. 

Over the past decade, researchers have looked to minimize the adverse effect of the concrete industry on the 

environment, leading to the development of the idea of green concrete. Green concrete is primarily based on the 

replacement of cement with industrial and agricultural wastes in concrete and the use of recyclable materials and waste 

as aggregate [18].  

 

 

 

 

 

ABSTRACT – Concrete is the second most utilized substance around the world behind the water. 
The aim of this paper is to review the environmental effect of concrete industry. It has been found 
that the environmental impact of concrete industry is severe in various environmental categories 
as global warming, depletion of ozone layer, and acidification of soil and water bodies. Moreover, 
concrete industry affects ecosystems and alters hydrogeological and hydrological systems. Green 
concrete has become increasingly popular among researchers and academics in recent years, 
although it is still in its infancy. This article examines the environmental impact of waste materials 
such as fly ash, silica fume, and slag as partial or complete replacements for cement, and of waste 
and recycled material as aggregates. It shows that the negative environmental effect of the 
concrete industry can be minimized by using these waste materials in the concrete production. 
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EMISSION FROM CONCRETE INDUSTRY AND ENVIRONMENT ISSUES 

Cement Production Emission 

Cement production is an energy-intensive process. Carbonate minerals are dried, crushed, and sintered to produce one 

kilogram of "clinker" which is then pulverized into cement powder and blended with additional materials, requiring about 

3-5 MJ of non-renewable energy [19].The concrete industry is held partially responsible for greenhouse gas (GHG) 

emissions. The process of cement manufacturing is accounting for more than 70% of GHG emissions in the concrete 

industry [20]. The primary cause of global warming and climate change is (GHG). Carbon dioxide (CO2), nitrous oxide 

(N2O), and methane (CH4) are (GHG) associated with climate change. However, CO2 accounts for 99% of the global 

warming impact, while other relevant gases are produced in smaller amounts during cement production [21].  During the 

life cycle of cement production, about 5-8% of worldwide CO2 emissions are emitted [22]. In 2017, 4.1 Gt of CO2 was 

produced during global cement production. This huge amount of CO2 may lead to the inevitability of man-made climate 

change [23]. The fossil fuel used in the kiln process accounts for about 40% of CO2 emissions, while 50% are due to 

decarburization of the limestone and 10% by transport and handling [24]. In addition to CO2 emissions, the cement 

industry also releases Sulfur Dioxide (SO2). The decomposition/oxidation of sulfides is the primary source of SO2 

emissions in cement production [25]. The cement sector is the third-largest source of SO2 emissions in China. Therefore, 

China experiences significant air pollution such as smog and acid rain, with acid rain having harmful effects on 

agricultural production and plant growth [25]. 
Moreover, cement production emits  Nitrogen Oxide (NOx).it is produced by thermal oxidation in a rotary kiln [26]. 

Most (NOx) is released in the form of (NO) (about  90%) and the rest in the form of  (NO2) [27]. When nitric oxide (NO) 

comes into contact with oxygen (O2), it oxidizes to nitrogen dioxide (NO2), causing NOx compounds to rise in water and 

lead to serious environmental problems such as acid rain [28]. In addition, according to Kim and Chae [29], nitric oxide 

is an important substance that influences the phenomenon of eutrophication. The cement sector in China accounts for 

12% of the country's NOx emissions [30]. In addition, the cement industry releases (PM) such as (PM10) and (PM2.5), with 

(PM) generated during clinker production accounting for the largest share of total emissions (approximately 37%), 

followed by fugitive emissions from cement grinding (32%). The amount of (PM) released during clinker production 

ranges from 0.68-1 kg/t [31]. Particulate matter has a negative impact on air quality, leading to many human health 

problems[32]. In addition, particulate matter is particularly harmful to health because it can interact with hazardous 

substances such as Cd, As, Cr, Mn, Pb, Ni, Cu, and Zn, which are associated with human-induced activities [33]. It is 

worth noting that the cement sector in China is a major source of  (PM) pollution, representing 30% of total industrial 

particulate matter emissions [34]. In addition, PM10 and PM2.5 levels were found to be much higher than permissible 

around cement plants in a local government district in Nigeria[35]. In 2017, it was also reported that the number of infant 

deaths due to PM2.5 in the Nigerian atmosphere was 49,100, with children under 5 years of age being the most 

vulnerable[36]. Volatile Organic Compounds (VOCs) are also released into the environment by the cement industry [37]. 

Incomplete combustion of various fuels contributes significantly to VOCs emissions into the environment [38]. VOCs 

are caused by ozone formation and can pollute soil and groundwater. Moreover, VOCs have a negative effect on plant 

growth [39]. In addition, the European cement industry emits 334 - 4670 tonnes of NOx, up to 11125 tonnes of SO2, 2.17 

- 267 tonnes of VOCs and 460 - 11500 tonnes of CO annually [12]. Table 1 summarizes the impact of the production of 

one tonne of OPC in different environmental categories. 

Table 1.  Impact of cement industry in different environmental categories 

Impact categories Unit 
Authors 

[39] [40] [30] 

Global warming kg CO2 eq 964 2160 734.12 

Ozone layer depletion kg CFC-11 eq 5.4*10-5 2.54*10-4 1.28*10-6 

Aquatic acidification kg SO2 eq - - 0.89 

Terrestrial acid kg SO2 eq - 7.86 5.58 

Aquatic eutrophication kg PO4 P-lim - - 0.0102 

Freshwater eutrophication kg P eq 0.32 0.138 - 

Formation of tropospheric 

ozone 
kg C2H4 eq 0.51 - - 

Respiratory inorganics kg PM2.5 eq - - 0.23 

Respiratory organics kg C2H4 eq - - 3.30 * 10-2 

Particulate matter formation 
kg PM10 eq 

 
- 3.32 - 

 

 

 

 

 



Omar and Muthusamy │ Construction  │ Vol. 2, Issue12 (2021) 

3   journal.ump.edu.my/construction ◄ 

Furthermore, noise emissions are released during cement production. Noise pollution is caused by the processing of 

raw materials, burning of the clinker, storage of the material, and heavy machinery used in this process [41]. Noise 

pollution in cement plants is divided into gas-dynamic noise, mechanical noise, and electromagnetic noise [42]. Noise 

pollution has an adverse effect on human health. For example, long-term exposure to high noise can lead to hearing loss 

[24]. Moreover, in the cement industry, various operations like handling of raw material, crushing of limestone, 

processing in kilns, manufacturing, and storage of clinker, grinding of finished cement and power supply generate a lot 

of dust which affects the health of people living near the cement factory [43].  

Granite Aggregates Production Emission 

Aggregates are among the most commonly used building materials around the world. It is estimated that up to 50 giga 

tonnes of aggregates are mined annually from quarries, mines, rivers, beaches, and the marine environment. This is 

forecast to rise to 60 giga tonnes by 2030 [44]. Due to their widespread use, the mining and transportation of large 

quantities of aggregates have serious environmental impacts. One of the serious environmental impacts of aggregate 

mining is that almost all-natural vegetation, topsoil, and subsoil must be removed to access the rock beneath the quarries. 

This leads not only to the extinction of existing species but also to a significant loss of biodiversity as vegetation and 

aquatic ecosystems are destroyed [45]. In addition, the extraction of natural aggregates produces a large amount of dust 

that endangers human health and affects the productivity of agriculture [46]. Drilling, blasting, hydraulic hammering, 

crushing, and screening are the main sources of dust in aggregate production [47]. Furthermore, mining causes noise 

pollution, which leads to serious health problems such as hearing loss, cardiovascular disease and anxiety [46]. The use 

of heavy quarry equipment can cause soil erosion, resulting in the accumulation of silt and sediment in downstream 

streams and rivers [48]. Moreover, the production of aggregates releases pollutants into the air. CO2 is released throughout 

the production of aggregates. The key source of CO2 emissions is the fossil fuels used in the extraction, crushing and 

screening, handling, and transportation of aggregates. Aggregate mining, handling, and transportation are representing 

about 13-20% of total CO2 released in the construction sector [49]. Moreover, each tonne of aggregates emits about 32 

kg of CO2 equivalent of GHG during its life cycle [50]. In the case of granite aggregate, each tonne of aggregate emits 

about 45.9 kg CO2 equivalent of GHG [51]. Consequently, the production of natural aggregates has an impact on global 

warming. Besides CO2, the production of aggregates also releases SO2 which has an impact on soil and water acidification. 

According to Hossain, et al. [50], the production of natural aggregates releases about 1.27 kg of SO2 per tonne. In addition, 

fine particulate matter (PM2.5) is released during the production of natural aggregates. Natural aggregates emit about 

0.0023 kg (PM2.5)/tonne, with off-site transportation (43%) and fossil fuel combustion (38%) being the main contributors 

[52]. Aggregate production releases other pollutants into the air such as C2H4, PO4, and Chloro-fluoro-carbon (CFC) 

which have various environmental impacts, such as organic respiratory, eutrophication, and ozone layer depletion. 

Furthermore, the extraction of aggregates releases noise, dust, and contaminated water, which affects ecosystems [53]. It 

is worth noting that the demand for natural aggregates is increasing. As a result of this demand, the environmental impact 

of aggregate production is raised up. Figure 1 shows the annual production of crushed stone in the United States in 

millions of tonnes [54]. It can be observed that a significant increase in production of crushed stone in 2019 compared to 

2015 will contribute to an increased environmental impact as well as depletion of natural aggregate resources. The 

estimated carbon dioxide emissions for annual crushed stone production in the United States are calculated in millions of 

tonnes as shown in Figure 1. Clearly, higher aggregate production leads to higher CO2 emissions, which in turn increases 

the impact of aggregate production on global warming.  

 

 
Figure 1.  The estimated value of CO2 emissions (in millions of tonnes) in the United States due to crushed stone on the 

basis that each tonne of crushed stone emits 32 kg of CO2 [50, 54] 
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Fine Aggregate Production Emission 

According to Hossain, et al. [50], the production of one tonne of fine aggregate river sand, 341 MJ of non-renewable 

energy is consumed, resulting in the emission of 23 kg CO2 equivalent of GHGs, while crushed stone requires 518 MJ of 

energy and emits 33 kg CO2 equivalent of GHGs. In addition, the production of one tonne of fine aggregate emits about 

0.03 kg PM2.5 equivalent and 0.98 kg to 1.29 SO 2 equivalent of terrestrial acid. Furthermore, the production of fine 

aggregates releases other pollutants that affect the eutrophication of water bodies. The production of one tonne of fine 

aggregate from river sand releases about 0.0006 kg PO4 P-lim [50]. Moreover, sand mining leads to the degradation of 

air quality. Sand mining releases a significant amount of dust that can endanger human health. In addition, sand extraction 

causes noise pollution and vibrations due to the heavy equipment and blasting used, which affect the quality of life of 

local residents, and the vibrations can be harmful to surrounding buildings [55]. Furthermore, the quality of surface runoff 

and groundwater can be affected by sand mining due to dissolved and suspended pollutants. Sediment, also known as 

suspended solids, is one of the most common contaminants in surface waters. Sediment can choke stream beds, harming 

fish and benthic organisms [56]. Moreover, sand mining leads to destroys plant and aquatic habitats, leading to loss of 

biodiversity. e.g., exploitation of sand in rivers leads to deepening of rivers and estuaries and widening of estuaries and 

coastal bays. This leads to saltwater intrusion [57]. It is worth noting that Sand consumption is increasing at an alarming 

rate due to ongoing construction projects and other infrastructure improvements, with excessive sand mining causing 

severe environmental impacts. Figure 2 shows the annual production of sand and gravel in the United States in millions 

of tonnes. The estimated SO2 equivalent of terrestrial acid emissions for annual sand stone production in the United States 

is calculated in millions of tonnes as shown in Figure 2. Clearly, increased aggregate production leads to higher SO2 

emissions, which increases the impact of aggregate production on soil acidification.  

 

 
Figure 2. The estimated amount of SO2 emissions (in millions of tonnes) from sand  in the United States, based on the 

assumption that one tonne of sand emits 1.29 kg of SO2.[50, 54]  

GREEN CONCRETE AS A SOLUTION 

Green concrete is a relatively new concept in the history of the concrete industry, as the concept of green concrete 

was introduced in 1998 [58]. Green concrete is defined as concrete that is produced using at least one waste ingredient, 

is produced in an environmentally friendly manner, and has good life cycle performance and sustainability [59]. Green 

concrete has attracted much attention in the concrete industry because it has less impact on the environment, improves 

concrete properties, and reduces the need for natural resources compared to conventional concrete [60]. Green concrete 

has several types such as geopolymer concrete, high-volume fly ash concrete [61]. 

In green concrete, there are several substitutes for ordinary Portland cement, such as supplementary cementitious 

materials (SCM) and alkali-activated binders (AABs) [62]. All these alternatives depend mainly on agricultural and 

industrial wastes, including rice husk ash (RHA), fly ash (FA), silica fume (SF), and slag (GBBS) [63, 64]. SCM is used 

as a partial replacement for OPC up to 50% or more based on the desired characteristics of the concrete [65]. The use of 

SCM reduces CO2 emissions throughout the life cycle of concrete production. This is mainly due to the fact that less 

cement is used in concrete production, which in turn reduces CO2 emissions from cement production. Furthermore, the 

use of SCM in concrete not only minimizes the influence on the environment but also improves the concrete properties. 

For example,  FA improves the workability of concrete and extends the setting time without affecting the final 

compressive strength [66]. RHA improves the concrete durability and increases its resistance to sulfate attack as well as 

reduces water absorption [67], while slag reduces the heat of hydration of concrete [68]. On the other hand, the alkali-

activated binders completely eliminate the use of OPC in concrete, leading to a significant decrease in the environmental 

influence of the concrete industry. For instance, when AABs are used instead of OPC, CO2 emissions be reduced by up 

to 80% [69]. Another method of making green concrete is to use calcium aluminate (CA) and calcium-sulfo-aluminate 
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(CSA) cements. Using these cement instead of OPC produces green concrete by minimizing CO2 emissions into the 

environment. [70]. 

Natural aggregates are partially or completely replaced by waste and recyclable materials in the production of green 

concrete. Using these solid wastes as aggregates in concrete eliminates the need for natural aggregates to be mined and 

processed, helping to conserve natural aggregate sources, manage waste, and decrease total energy and carbon emissions 

from concrete production [70]. Some of these waste materials are; plastic [71], tire rubber [72], glass [73], coconut shell 

[74], construction and demolition wastes [75], E-Plastic Waste[76], ceramics[77]. On the other hand, sand is also replaced 

in whole or in part by waste and recycled materials in the green concrete. The use of waste or recycled material eliminates 

the negative environmental impact of sand mining and production. Several research have revealed that various waste 

materials may be employed as a substitute for natural sand in green concrete [78-81]. Therefore, green concrete can take 

a variety of forms, such as concrete in which OPC is partially or completely replaced, or concrete using waste or recycled 

materials to replace natural aggregates. 

In some studies, Fernando, et al. [82] used life cycle assessment to evaluate the environmental effect of geopolymer 

concrete made from FA. In this study, the emission of 0.011 kg CO2- equivalent /kg due to the manufacturing process of 

FA is considered. Compared to traditional concrete, the results showed 12% less greenhouse gas (GHG) emissions. 

According to Zhang, et al. [83], (SF) and FA are able to reduce CO2 emissions in concrete production. The results revealed 

that using 5% SF as a partial substitution for OPC reduced CO2 emissions by 3.98%. On the other hand, the use of 15% 

FA and 5% SF as a partial replacement for cement resulted in an a15.64% reduction in CO2 emissions compared to OPC 

concrete. Dandautiya and Singh [84] evaluated the environmental impact of concrete made from (FA) and copper waste 

(CT) as a partial substitute for OPC. The results showed that a significant reduction in the environmental influence of 

concrete on climate change and depletion of the ozone. The environmental effect of concrete is reduced when the cement 

replacement ratio is increased with FA and CT, with lower environmental impacts observed when cement was replaced 

by 30% of FA and 10% of CT. Moreover, Ersan, et al. [85] investigated the environmental influence of green lightweight 

concrete. In this study, the aggregate was partially replaced by plastic waste 30%, and the cement was replaced by 20% 

FA. The results showed that the climate change potential decreased by 13% compared to traditional lightweight concrete. 

The effects on ozone layer depletion and acidification also decreased compared to traditional lightweight concrete, while 

the effects on eutrophication increased. 

Gursel, et al. [86] studied the environmental effects of various concrete mixes made with a combination of FA and 

RHA as a partial OPC substitute. The results showed that the use of 40% FA and 15% RHA reduced CO2 emissions from 

544 kg CO2- equivalent /m3 to 284 kg CO2-eq/m3. In addition, NOX, PM, and SO2 were reduced. However, CO emission 

increases with the increasing use of RHA in concrete. Singh, et al. [87] evaluated the environmental influence of using 

marble powder as a partial substitute for sand and cement in concrete. The findings showed that using marble powder as 

a partial substitute for OPC reduces the effect of concrete production on global warming and the depletion of ozone. The 

CO2 emission for concrete with 15% marble as a partial substitute for OPC is 350 kg/m3 compared to 410 kg/m3 for 

traditional concrete. Nikbin, et al. [88] studied the environmental impact of substituting bauxite residues for cement. The 

results of the study show that CO2 emissions from concrete production decrease significantly. CO2 emissions decrease 

from 556.8 kg m-3 to 409.9 kg m-3 when bauxite residues replace cement by up to 25%. It can be argued that cement 

production alone is the main source of CO2 emissions. Based on the study result, the use of bauxite residues is sustainable 

even if the transportation distances are much longer than those of the conventionally used cement. In addition, according 

to Hedayatinia, et al. [89], most of the global warming potential generated in concrete production is due to the cement 

manufacturing process, which accounts for 92% of the total GWP generated in concrete production.Table 2 summarizes 

the effects of different admixture in concrete production on the global warming potential due to concrete.  

Table 2. The impact of different admixture in concrete production on the global warming potential due to concrete 

Source Concrete Types Admixture 
Replacement 

Percentage (%) 

Global Warming Potential 

Reduction Percentage (%) 

[88] Lightweight concrete Bauxite Residue (BR) 25 26.3 

[84] Normal concrete 
Fly ash (FA) and 

copper tailings (CT) 
FA 30, and 10 CT 37 

[86] 
Normal concrete RHA and Fly ash  FA 40, and RHA 15 51 

Normal concrete Fly ash (FA)  40, 50, 60, and 70 37, 46, 55, and 64 

[91] 
Normal concrete Fly ash (FA) 35 30 

Normal concrete GGBFS 70  60 

[92] Normal concrete Fly ash (FA) 25 30 

[93] 

Normal concrete Fly ash (FA) 100 75.25 

Normal concrete 
Fly Ash (FA), Silica 

fume (SF)  
80 FA, 20 SF 77.71 

[94] Normal concrete Fly ash (FA) 30, and 60 25, and 52 

[95] Normal concrete Sewage sludge ash 10 9 
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CONCLUSION 

The environmental effect of the concrete industry has been highlighted in this study. Starting with the raw material 

extraction to the final product, the environmental impacts of the various concrete production processes are examined. 

Many environmental problems are affected by the concrete industry, including climate change, depletion of the ozone 

layer, and acidification of soil and water bodies. In addition, the concrete industry has adverse effects on ecosystems, 

including loss of biodiversity and alteration of hydrogeological and hydrological systems. Green concrete has recently 

been presented as a way to minimize the environmental effect of concrete production. Several researchers have 

investigated the impact of natural wastes, industrial or agricultural by-products, and recycled wastes as aggregates in 

concrete production as cement alternatives. The use of these wastes in concrete production can reduce the various 

environmental effect of the concrete industry while enhancing the properties of concrete. 
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