PERFORMANCE OF AUTOMOTIVE AIR CONDITIONING SYSTEM USING Al₂O₃-SiO₂ NANOLUBRICANTS

NURUL NADIA BINTI MOHD ZAWAWI

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and, in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor’s Signature)

Full Name : DR WAN AZMI BIN WAN HAMZAH
Position : ASSOCIATE PROFESSOR
Date : 12 MARCH 2021
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : NURUL NADIA BINTI MOHD ZAWAWI
ID Number : PMM16013
Date : 12 MARCH 2021
PERFORMANCE OF AUTOMOTIVE AIR CONDITIONING SYSTEM USING
Al_2O_3-SiO_2 NANOLUBRICANTS

NURUL NADIA BINTI MOHD ZAWAWI

Thesis submitted in fulfillment of the requirements
for the award of the degree of
Doctor of Philosophy

College of Engineering
UNIVERSITI MALAYSIA PAHANG

MARCH 2021
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Associate Professor Dr. Wan Azmi bin Wan Hamzah for his ideas, guidance, continuous encouragement, and constant support in making this study possible. I also would like to thank Dr. Mohamad Redhwan bin Abdul Aziz, Dr. Khamisah binti Abdul Hamid and Mr. Sharif bin Mohd Zaki for supplying their knowledge and guidance for this research work.

This research is supported by Universiti Malaysia Pahang under Doctorate Research Scheme (DRS) and PGRS170381. I am also thankful to the research team from Automotive Engineering Centre (AEC) that provided insight and expertise that greatly assisted in the present PhD work.

My sincere thanks go to all my group members of the whole project team (Dwi-degree students’ batch 2016/2017, FYP students’ batch 2016/2017 and batch 2017/2018) who helped me in many ways and made this study pleasant and unforgettable. Special thanks for their excellent co-operation, comments, suggestions, dedication, inspirations and support which were crucial for the successful completion of this study. We have been through thick and thin together in order to complete this study throughout the year.

I acknowledge my sincere indebtedness and gratitude to my parents; Abah (Mohd Zawawi bin Ismail) and Mama (Salina binti Musa), my siblings (Azfar Syafiq, Aliah Afifah, Atikah Husna and Adib Rusydi) and other family members for their love, dreams, hopes and sacrifices throughout my life. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support, and faith in my ability to attain my goals.

Alhamdulillah. Thank you, Allah.
ABSTRACT

Enhancement in the coefficient of performance (COP) of the automotive air conditioning (AAC) system is necessary to reduce fuel consumption. A novel approach for improvement in refrigeration system performance is by dispersing nanoparticles in the conventional lubricant of AAC compressor. However, single-component lubricant applications contribute limitations on stability, compressor work, wear rates and AAC performance. The recent trend in nanoparticle dispersion technology is by utilizing two or more metal or metal oxide nanoparticles in existing lubricant and is known as composite nanolubricants. The composite nanolubricants is expected to improve the properties of single-component nanolubricants in achieving enhancement in thermal properties, rheological properties, stability, and AAC system performance. The aims of the present study are to evaluate the properties of metal oxide composite nanolubricants and to investigate the optimum condition of the AAC system performance using the best combination of composite nanolubricants. Metal oxide nanoparticles were dispersed in the Polyalkylene Glycol (PAG) 46 lubricant with different combinations of two types of nanoparticles using the two-step method of preparation. The composite nanolubricants was prepared up to 0.1% volume concentration with a variation of nanoparticle composition ratios. Thermal physical properties of different metal oxide composite nanolubricants were measured at temperatures of 30 to 80 °C. Then, the thermal physical properties of Al₂O₃-SiO₂/PAG composite nanolubricants were measured with a variation of nanoparticle composition ratios and volume concentrations. Tribological properties of the composite nanolubricants were evaluated for different loads and speeds. The experimental investigation for the AAC performance was carried out using Al₂O₃-SiO₂/PAG composite nanolubricants (best metal oxide combination) by varying the composition ratios and volume concentrations. Compound optimization technique using the Taguchi and Response Surface Methodology (RSM) methods were selected to optimize the AAC system. Stability evaluation showed Al₂O₃-SiO₂/PAG composite nanolubricants having an excellent stability condition with no sedimentation observed within a month. It was proven by the measurement of the zeta potential up to 61.1 mV and maintenance of the concentration ratio of UV-Vis spectrophotometer of more than 90%. Thermal conductivity and dynamic viscosity of the composite nanolubricants increased with volume concentration and decreased with temperature. The tribological properties observation with optimal conditions of coefficient of friction (COF) and wear rates were found at 0.02% volume concentration. The COF and wear rates were reduced to 4.49% and 12.99%, respectively. The composite nanolubricants at 60:40 composition ratio was observed to be the most effective composition ratio and recommended by the properties evaluation of the nanolubricants. The maximum COP enhancement was achieved up to 28.10% with 0.015% volume concentration and 60:40 composition ratio of Al₂O₃-SiO₂/PAG composite nanolubricants. Consequently, the AAC system parameter namely composition ratio, compressor speed, initial refrigerant charge, and volume concentrations of 60:40, 900 rpm, 155 g and 0.019% respectively were optimized using the compound optimization technique. The optimization results yield optimum cooling capacity, compressor work, COP, and power consumption of 0.94 kW, 19.20 kJ/kg, 9.05 and 0.62 kW, respectively, with highest desirability of 81.60%. Finally, it can be concluded that 0.019% is the optimum volume concentration for Al₂O₃-SiO₂/PAG nanolubricant. Therefore, 0.019% Al₂O₃-SiO₂/PAG with composition ratio of 60:40 was highly recommended for the optimum performance in AAC system.
ABSTRAK

Peningkatan pekali prestasi (COP) sistem penyaman udara automotif (AAC) adalah perlu untuk mengurangkan penggunaan bahan api. Pendekatan baru untuk peningkatan prestasi sistem penyaman adalah dengan menyesuaikan nanopartikel dalam pelincir konvensional pemampat AAC. Walau bagaimanapun, aplikasi pelincir komponen tunggal menyumbang kepada ketidakstabilan, peningkatan kerja pemampat dan kadar haus serta pengurangan prestasi AAC. Trend terkini dalam teknologi penyebaran nanopartikel adalah dengan menggunakan dua atau lebih nanopartikel logam atau logam oksida di dalam pelincir sedia ada dan dikenali sebagai nanopelincir komposit. Nanopelincir komposit dijangka akan meningkatkan sifat-sifat nanopelincir komponen tunggal dalam mencapai peningkatan dalam sifat terma, sifat rheologi, kestabilan, dan prestasi sistem AAC. Tujuan kajian ini adalah untuk mengkaji sifat-sifat logam oksida nanopelincir komposit dan untuk mengkaji keadaan optimum prestasi sistem AAC menggunakan gabungan terbaik nanopelincir komposit. Nanopartikel logam oksida disebarkan ke dalam pelincir Polyalkylene Glycol (PAG) 46 dengan gabungan dua jenis nanopartikel yang berbeza menggunakan kaedah penyediaan dua langkah. Nanopelincir komposit telah disediakan sehingga kepekatan isipadu sebanyak 0.1% dengan variasi nisbah komposisi nanopartikel. Sifat termal fizikal nanopelincir PAG logam oksida yang berbeza diukur pada suhu 30 hingga 80 °C. Kemudian, sifat-sifat termal fizikal nanopelincir Al2O3-SiO2/PAG diukur pada variasi nisbah komposisi nanopartikel dan kepekatan isipadu yang berbeza. Sifat-sifat tribologi nanopelincir komposit dinilai pada beban dan kelajuan yang berlainan. Ujikaji prestasi AAC dijalankan menggunakan Al2O3-SiO2/PAG nanopelincir komposit (kombinasi logam oksida terbaik) dengan mengubah nisbah komposisi dan kepekatan. Teknik pengoptimuman berganda menggunakan kaedah Taguchi dan Response Surface Methodology (RSM) dipilih bagi mengoptimumkan parameter sistem AAC. Ujikaji kestabilan menunjukkan nanopelincir komposit Al2O3-SiO2/PAG mempunyai keadaan kestabilan yang sangat baik tanpa pemendapan sehingga sebulan. Ia terbukti dengan nilai potensi zeta sehingga 61.1 mV dan mengekalkan nisbah kepekatan daripada spektrofotometer UV-Vis lebih daripada 90%. Kekonduksian haba dan kelikatan dinamik nanopelincir komposit meningkat dengan kepekatan dan menurun dengan suhu. Pemerhatian sifat tribologi dengan keadaan optimum pekali geseran (COF) dan kadar haus didapati pada kepekatan isipadu 0.02%. Kadar COF dan kehausan dikurangkan sehingga 4.49% dan 12.99%. Nanopelincir komposit dengan nisbah komposisi 60:40 diperhatikan sebagai nisbah komposisi yang paling berkesan berdasarkan penilaian sifat-sifat nanopelincir. COP mencapai maksimum pada 28.10% dengan kepekatan isipadu pada 0.015% dan nisbah komposisi 60:40 untuk Al2O3-SiO2/PAG nanopelincir komposit. Seterusnya, parameter sistem AAC iaitu nisbah komposisi, kelajuan pemampat, jisim penyejuk awal dan jumlah kepekatan masing-masing pada 60:40, 900 rpm, 155 g dan 0.019% dioptimumkan menggunakan teknik pengoptimuman berganda. Ujikaji pengoptimuman menghasilkan kapasiti penyejukan, kerja pemampat, COP dan penggunaan kuasa masing-masing optimum pada 0.94 kW, 19.20 kJ/kg, 9.05 dan 0.62 kW dengan nilai keinginan tertinggi sehingga 81.60%. Akhirnya, dapat disimpulkan bahawa nanopelincir Al2O3-SiO2/PAG dengan kepekatan isipadu 0.019% adalah kepekatan isipadu optimum. Oleh itu, 0.019% nanopelincir komposit Al2O3-SiO2/PAG dengan nisbah komposisi 60:40 sangat disyorkan untuk prestasi optimum kepada sistem AAC.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABSTRAK iv

TABLE OF CONTENT v

LIST OF TABLES x

LIST OF FIGURES xiii

LIST OF SYMBOLS xvii

LIST OF ABBREVIATIONS xviii

LIST OF APPENDICES xx

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 5

1.3 Significance of Study 7

1.4 Objectives of Study 8

1.5 Scopes of Study 8

1.6 Thesis Overview 9

CHAPTER 2 LITERATURE REVIEW 10

2.1 Introduction 10

2.2 Efficiency of Air Conditioning System 10

2.3 Nanoparticle Dispersion Technology 12

2.3.1 Types of Nanoparticles 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2 Advantages of Nanoparticles</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Development of Nanolubricants</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1 Preparation of Nanolubricants</td>
<td>16</td>
</tr>
<tr>
<td>2.4.2 Nanolubricant Dispersion and Stability Evaluation Methods</td>
<td>18</td>
</tr>
<tr>
<td>2.4.3 Thermal Physical Properties of Single-component Nanolubricants</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Studies Related to Composite Nanolubricants</td>
<td>26</td>
</tr>
<tr>
<td>2.5.1 Metal Oxide Composite Nanolubricants with Composition Ratios</td>
<td>26</td>
</tr>
<tr>
<td>2.5.2 Thermal Physical Properties of Composite Nanolubricants</td>
<td>28</td>
</tr>
<tr>
<td>2.6 Tribological Evaluation</td>
<td>32</td>
</tr>
<tr>
<td>2.7 Refrigeration System Working Fluids and Classifications</td>
<td>36</td>
</tr>
<tr>
<td>2.8 Automotive Air Conditioning System</td>
<td>38</td>
</tr>
<tr>
<td>2.9 Automotive Air Conditioning System Components</td>
<td>40</td>
</tr>
<tr>
<td>2.9.1 Compressor</td>
<td>40</td>
</tr>
<tr>
<td>2.9.2 Condenser</td>
<td>42</td>
</tr>
<tr>
<td>2.9.3 Thermal Expansion Valve and Receiver Drier</td>
<td>43</td>
</tr>
<tr>
<td>2.9.4 Evaporator</td>
<td>45</td>
</tr>
<tr>
<td>2.10 Performance and Challenges of Nanolubricants in Automotive Air Conditioning Systems</td>
<td>45</td>
</tr>
<tr>
<td>2.11 Compound Optimization Technique</td>
<td>50</td>
</tr>
<tr>
<td>2.11.1 Taguchi Method</td>
<td>51</td>
</tr>
<tr>
<td>2.11.2 Response Surface Method</td>
<td>53</td>
</tr>
<tr>
<td>2.11.3 Optimization of AAC System using Compound Optimization Technique</td>
<td>55</td>
</tr>
<tr>
<td>2.12 Summary</td>
<td>56</td>
</tr>
</tbody>
</table>
CHAPTER 3 METHODOLOGY

3.1 Introduction 58

3.2 Workflow Chart 59

3.3 Preparation of Metal Oxide Composite Nanolubricants 62
 3.3.1 Materials and Base Lubricants 62
 3.3.2 Equipment for Nanolubricants Preparation 64
 3.3.3 Preparation Procedures 66

3.4 Nanoparticle Dispersion and Stability of Nanolubricants 68
 3.4.1 Ultraviolet-Visible Spectrophotometer 69
 3.4.2 Sedimentation Photographing Method 71
 3.4.3 FESEM and TEM 72
 3.4.4 Zeta Potential 72

3.5 Thermal Physical Properties Measurement 73
 3.5.1 Thermal Conductivity Measurement 73
 3.5.2 Dynamic Viscosity Measurement 74

3.6 Tribological Properties Measurement 76
 3.6.1 Materials of Sample Plate 76
 3.6.2 Coefficient of Friction and Wear Rate Investigation 77

3.7 Automotive Air Conditioning System Bench 80
 3.7.1 Instrumentation and Sensor Calibration 84
 3.7.2 Experimental Procedure for AAC System 85
 3.7.3 AAC System Performance Analysis 87

3.8 Uncertainty and Consistency Analysis 88

3.9 Compound Optimization Technique 90
 3.9.1 Optimization using the Taguchi method 90
 3.9.2 Optimization using Response Surface Methodology (RSM) 93
3.10 Conclusions

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Dispersion and Stability Evaluations

4.2.1 Stability using UV-Vis Spectrophotometer

4.2.2 Dispersion Observation using Sedimentation Photographing Method

4.2.3 Micrograph Morphology Evaluation Methods

4.2.4 Stability using Zeta Potential Analysis

4.3 Thermal Conductivity of Composite Nanolubricants

4.3.1 Metal Oxide Combinations

4.3.2 Al₂O₃-SiO₂/PAG Composite Nanolubricant Properties

4.4 Dynamic Viscosity of Composite Nanolubricants

4.4.1 Metal Oxide Combination

4.4.2 Al₂O₃-SiO₂/PAG Composite Nanolubricant Properties

4.5 Property Enhancement Ratio

4.6 Tribological Behaviour of Composite Nanolubricants

4.6.1 Coefficient of Friction Analysis

4.6.2 Wear Performance Analysis

4.6.3 Composition and Morphology Evaluation

4.7 Selecting Composite Nanolubricants for the AAC System

4.8 AAC Performance using PAG Lubricants

4.9 AAC Performance using Al₂O₃-SiO₂/PAG Nanolubricants

4.9.1 Nanolubricants with Composition Ratios

4.9.2 Nanolubricants with Compressor Speeds
4.9.3 Nanolubricants of 60:40 Composition Ratio with Volume Concentrations 163
4.9.4 Nanolubricants of 0.015% Concentration with Initial Refrigerant Charges 167
4.9.5 Summary on AAC Performance using Al$_2$O$_3$-SiO$_2$ Nanolubricants 171
4.10 Optimization Analysis on AAC System Parameters 173
 4.10.1 Taguchi Method Analysis 173
 4.10.2 Response Surface Methodology Analysis 181

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 199
5.1 Introduction 199
5.2 Conclusions 199
5.3 Recommendations for Future Research 201

REFERENCES 203

APPENDICES 227
LIST OF TABLES

Table 2.1	Studies related to nanoparticles for different base fluids	14
Table 2.2	Zeta potential and associate suspension stability	22
Table 2.3	Summary of thermal physical properties of single-component nanolubricants	25
Table 2.4	Related studies on metal oxide composite nanolubricants at different composition ratios	27
Table 2.5	Studies related to thermal physical properties of composite nanolubricants	30
Table 2.6	Summary of research interests and gaps in the existing literature	32
Table 2.7	Previous studies on tribological properties evaluation	35
Table 2.8	Previous studies on performance of refrigeration system	48
Table 2.9	Previous studies for different optimization methods	51
Table 2.10	Summary on previous studies with significant findings and gaps	57
Table 3.1	Properties of nanoparticles	63
Table 3.2	Properties of PAG 46 lubricants at atmospheric pressure	64
Table 3.3	Designated nanoparticle composition ratios	68
Table 3.4	Compressor cylinder wall properties	77
Table 3.5	Factors and their levels in experiments	79
Table 3.6	Summary of materials and equipment required for the AAC system bench	83
Table 3.7	Uncertainty analysis for properties measurements	88
Table 3.8	Uncertainties of AAC system sensors and measurement devices	89
Table 3.9	Consistency analysis for experimental data	89
Table 3.10	Levels and operating parameters	91
Table 3.11	Full factorial design with orthogonal array of Taguchi L25 (5^6)	91
Table 3.12	AAC system design parameter	93
Table 3.13	The DOE design and result matrix from experiments	94
Table 3.14	Matrix testing for dispersion, stability evaluation and thermal physical properties measurement	97
Table 3.15	Matrix testing for tribological properties measurement, AAC performance and optimization	98
Table 4.1	Observation on composite nanolubricants samples	106
Table 4.2	Thermal conductivity enhancement for metal oxide nanolubricants	114
Table 4.3	Thermal conductivity correlation models	114
Table 4.4	Average thermal conductivity enhancement with concentrations	119
Table 4.5	Average thermal conductivity enhancement of Al$_2$O$_3$-SiO$_2$/PAG composite nanolubricants	121
Table 4.6	Thermal conductivity of Al$_2$O$_3$-SiO$_2$ composite nanolubricants compared to single-component nanolubricants at 30 °C	124
Table 4.7	Dynamic viscosity behaviours of various metal oxide composite nanolubricants	129
Table 4.8	Dynamic viscosity correlation models	130
Table 4.9	Dynamic viscosity increment of Al$_2$O$_3$-SiO$_2$/PAG composite nanolubricants	137
Table 4.10	Dynamic viscosity of Al$_2$O$_3$-SiO$_2$/PAG composite nanolubricants compared to single-component nanolubricants	140
Table 4.11	COF reduction using Al$_2$O$_3$-SiO$_2$/PAG composite nanolubricants	143
Table 4.12	Wear rate reduction using Al$_2$O$_3$-SiO$_2$/PAG composite nanolubricants	145
Table 4.13	Average enhancement for AAC system performance with a variation of Al$_2$O$_3$-SiO$_2$ composition ratios	172
Table 4.14	Average enhancement for AAC system performance with a variation of volume concentrations	173
Table 4.15	Full factorial design with results from experiment	175
Table 4.16	S/N response table for COP and W_{in}	178
Table 4.17	ANOVA for COP and compressor work	179
Table 4.18	Model summary for AAC systems	180
Table 4.19	x and y value for regression model	180
Table 4.20	Validation experiment results based on Taguchi optimal parameter	181
Table 4.21	The DOE design and results from experiments.	182
Table 4.22	P-value and model summary statistic for cooling capacity	187
Table 4.23	ANOVA response for cooling capacity	188
Table 4.24	P-value and model summary statistic for compressor work	189
Table 4.25	ANOVA response for compressor work	189
Table 4.26	P-value and model summary statistic for COP	190
Table 4.27	ANOVA response for COP	190
Table 4.28	P-value and model summary statistic for power consumption	191
Table 4.29	ANOVA response for power consumption	192
Table 4.30	Model summary	193
Table 4.31 Optimum operating settings 198
Table 4.32 Validation experiment results based on RSM optimal parameter 198
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Vapor compression refrigeration system</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Thermal expansion valve automotive air conditioning system</td>
<td>40</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Compressor types</td>
<td>42</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Fixed displacement compressor</td>
<td>42</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Condenser</td>
<td>43</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Thermal expansion valve</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Receiver drier</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Evaporator of AAC system</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Flow chart of present study</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>PAG 46 lubricant packaging provided by DENSO</td>
<td>63</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Magnetic stirrer with hotplate</td>
<td>65</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Ultrasonic bath homogenizer</td>
<td>66</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Illustrations of the two-step method preparation</td>
<td>68</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Ultraviolet-Visible spectrophotometer</td>
<td>70</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Schematic diagram of Ultraviolet-Visible spectrophotometer</td>
<td>70</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Illustration of sedimentation photographing method</td>
<td>71</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>KD2 Pro thermal property analyser</td>
<td>74</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Schematic diagram of KD2 Pro thermal property analyser</td>
<td>74</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>LVDV-III ultra programmable rheometer</td>
<td>75</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Schematic diagram of LVDV-III ultra programmable rheometer</td>
<td>75</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Sample plate dimensions</td>
<td>77</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Tribological test rig bench</td>
<td>78</td>
</tr>
<tr>
<td>Figure 3.15</td>
<td>Schematic diagram of tribological test rig bench</td>
<td>78</td>
</tr>
<tr>
<td>Figure 3.16</td>
<td>AAC system experimental test bench</td>
<td>81</td>
</tr>
<tr>
<td>Figure 3.17</td>
<td>Schematic diagram of AAC system</td>
<td>82</td>
</tr>
<tr>
<td>Figure 3.18</td>
<td>Compressor operation</td>
<td>82</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Absorbance of Al₂O₃-SiO₂/PAG for 0.1% concentration</td>
<td>101</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Absorbance versus volume concentration</td>
<td>101</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Absorbance ratio for different sonication time and sedimentation time in hours</td>
<td>102</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Absorbance ratios for different composite nanolubricant volume concentration versus sedimentation time in 30 days</td>
<td>103</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Composite nanolubricants for up to 30 days after preparation</td>
<td>105</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>FESEM images of the metal oxide nanoparticles</td>
<td>107</td>
</tr>
</tbody>
</table>
Figure 4.7 TEM images of metal oxide composite nanolubricants

Figure 4.8 Zeta potential of Al₂O₃-SiO₂/PAG nanolubricants

Figure 4.9 Thermal conductivity of metal oxide composite nanolubricant combinations

Figure 4.10 Comparison of experimental thermal conductivity with estimated values from Equation 4.1

Figure 4.11 Metal oxide composite nanolubricants in comparison with the data from literature

Figure 4.12 Thermal conductivity of Al₂O₃-SiO₂/PAG composite nanolubricants at various temperatures

Figure 4.13 Thermal conductivity variations for different nanoparticle mixture ratios

Figure 4.14 Comparison of experimental thermal conductivity with values from Equation 4.2

Figure 4.15 Thermal conductivity comparison of composite nanolubricants with single-component and composite nanolubricants

Figure 4.16 Dynamic viscosity against different shear rates and temperatures at 0.02% volume concentration

Figure 4.17 Dynamic viscosity of different metal oxide composite nanolubricants

Figure 4.18 Comparison of experimental dynamic viscosity with estimated values from Equation 4.3

Figure 4.19 Metal oxide composite nanolubricants in comparison with the data from literature

Figure 4.20 Variation of dynamic viscosity at different temperatures and shear rates

Figure 4.21 Dynamic viscosity of Al₂O₃-SiO₂/PAG composite nanolubricants

Figure 4.22 Dynamic viscosity variation for different composition ratios and shear rates

Figure 4.23 Dynamic viscosity variation at different composition ratios and temperatures

Figure 4.24 Comparison of experimental viscosity with estimation from Equation 4.4

Figure 4.25 Dynamic viscosity comparison of composite nanolubricants against single-component and composite nanolubricants

Figure 4.26 Property enhancement ratios of Al₂O₃-SiO₂/PAG composite nanolubricants

Figure 4.27 Coefficient of friction variation with different volume concentrations and speeds
Figure 4.28 Wear rate variation with different volume concentrations and speeds 145
Figure 4.29 FESEM images of the friction surface of aluminium plate specimen 146
Figure 4.30 EDX images and elemental content of the friction surface of specimens 148
Figure 4.31 Selection criteria 151
Figure 4.32 Cooling capacity of PAG lubricants at various refrigerant charges and compressor speeds 153
Figure 4.33 Heat absorb of PAG lubricants at various refrigerant charges and compressor speeds 153
Figure 4.34 Compressor work of PAG at various refrigerant charges and compressor speeds 154
Figure 4.35 Coefficient of performance of PAG based lubricants at various refrigerant charges and compressor speeds 155
Figure 4.36 Cooling capacity as a function of initial refrigerant charge 157
Figure 4.37 Compressor work as a function of initial refrigerant charge 158
Figure 4.38 Coefficient of performance as a function of initial refrigerant charge 159
Figure 4.39 Cooling capacity as a function of initial refrigerant charge at ratio 60:40 161
Figure 4.40 Compressor work as a function of initial refrigerant charge at 60:40 162
Figure 4.41 Coefficient of performance as a function of initial refrigerant charge 163
Figure 4.42 Cooling capacity with a variation of Al$_2$O$_3$-SiO$_2$ nanolubricant concentrations 164
Figure 4.43 Compressor work with variation of nanolubricant concentrations 165
Figure 4.44 Coefficient of performance with a variation of nanolubricant concentrations 166
Figure 4.45 Power consumption with a variation of nanolubricant concentrations 167
Figure 4.46 Cooling capacity with optimum parameters of Al$_2$O$_3$-SiO$_2$ composite nanolubricants 168
Figure 4.47 Compressor work with optimum parameters of Al$_2$O$_3$-SiO$_2$ composite nanolubricants 169
Figure 4.48 Coefficient of performance with optimum parameters of Al$_2$O$_3$-SiO$_2$ composite nanolubricants 170
Figure 4.49 Power consumption with optimum parameters of Al$_2$O$_3$-SiO$_2$ composite nanolubricants 171
<table>
<thead>
<tr>
<th>Figure 4.50</th>
<th>Mean S/N ratio analysis for COP</th>
<th>176</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.51</td>
<td>Mean S/N ratio analysis for compressor work, W_{in}</td>
<td>177</td>
</tr>
<tr>
<td>Figure 4.52</td>
<td>Normal plot of residuals</td>
<td>183</td>
</tr>
<tr>
<td>Figure 4.53</td>
<td>Comparison of numerical and predicted values of RSM model</td>
<td>185</td>
</tr>
<tr>
<td>Figure 4.54</td>
<td>Effects of volume concentration and speed on cooling capacity</td>
<td>194</td>
</tr>
<tr>
<td>Figure 4.55</td>
<td>Effects of speed and refrigerant charge on compressor work</td>
<td>195</td>
</tr>
<tr>
<td>Figure 4.56</td>
<td>Effects of volume concentration and speed on COP</td>
<td>196</td>
</tr>
<tr>
<td>Figure 4.57</td>
<td>Effects of speed and refrigerant charge on power consumption</td>
<td>197</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi)</td>
<td>Volume concentration, %</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Density, kg/m(^3)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Dynamic viscosity, mPa.s</td>
</tr>
<tr>
<td>(\mu_k)</td>
<td>Coefficient of kinetic friction</td>
</tr>
<tr>
<td>(k)</td>
<td>Thermal conductivity, W/mK</td>
</tr>
<tr>
<td>(F_k)</td>
<td>Applied forces</td>
</tr>
<tr>
<td>(N)</td>
<td>Normal load</td>
</tr>
<tr>
<td>(\Delta V)</td>
<td>Volume loss</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Specific wear rate</td>
</tr>
<tr>
<td>(s)</td>
<td>Sliding distance, km</td>
</tr>
<tr>
<td>(Q_L)</td>
<td>Heat absorb, kJ/kg</td>
</tr>
<tr>
<td>(\dot{Q}_L)</td>
<td>Cooling capacity, kW</td>
</tr>
<tr>
<td>(W_{in})</td>
<td>Compressor work, kJ/kg</td>
</tr>
<tr>
<td>(W)</td>
<td>Power consumption, kW</td>
</tr>
<tr>
<td>(T)</td>
<td>Temperature, °C</td>
</tr>
<tr>
<td>(\overline{X})</td>
<td>Mean of samples</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>(m_{RC})</td>
<td>Mass refrigerant charge, g</td>
</tr>
<tr>
<td>(\overline{A})</td>
<td>Absorbance</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Wavelength, nm</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Sheer rate, rpm</td>
</tr>
</tbody>
</table>

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>Automotive air conditioning</td>
</tr>
<tr>
<td>AD</td>
<td>Average deviation</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial neural network</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>CFC</td>
<td>Chlorofluorocarbon</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>cnl</td>
<td>Composite nanolubricants</td>
</tr>
<tr>
<td>COF</td>
<td>Coefficient of friction</td>
</tr>
<tr>
<td>COP</td>
<td>Coefficient of performance</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of experiment</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-Ray Analysis</td>
</tr>
<tr>
<td>FCD</td>
<td>Face-centred design</td>
</tr>
<tr>
<td>FDC</td>
<td>Fixed-displacement compressor</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscope</td>
</tr>
<tr>
<td>HEG</td>
<td>Hydrogen exfoliated graphene</td>
</tr>
<tr>
<td>l</td>
<td>Lubricant</td>
</tr>
<tr>
<td>LVDV</td>
<td>Low viscosity digital viscometer</td>
</tr>
<tr>
<td>MO</td>
<td>Mineral oil</td>
</tr>
<tr>
<td>MOPSO</td>
<td>Multiple Objective Particle Swarm Optimization</td>
</tr>
<tr>
<td>OR</td>
<td>Orthogonal arrays</td>
</tr>
<tr>
<td>ORC</td>
<td>Organic Rankine Cycle</td>
</tr>
<tr>
<td>PAG</td>
<td>Polyalkylene Glycol</td>
</tr>
<tr>
<td>PER</td>
<td>Properties Enhancement Ratio</td>
</tr>
<tr>
<td>PMI</td>
<td>Positive Material Identification</td>
</tr>
<tr>
<td>POE</td>
<td>Polyester</td>
</tr>
<tr>
<td>r</td>
<td>Ratio</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>RSE</td>
<td>Relative standard error</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>S/N</td>
<td>Signal/Noise</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet-Visible spectrophotometer</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray powder diffraction</td>
</tr>
<tr>
<td>SBPWM</td>
<td>Simple Boost Pulse Width Modulation</td>
</tr>
<tr>
<td>ZSI</td>
<td>Z source inverter</td>
</tr>
<tr>
<td>VCRS</td>
<td>Vapour compression system</td>
</tr>
<tr>
<td>LPM</td>
<td>Litre per minute</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Calibration data for thermocouple points and location</td>
<td>228</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Pressure sensor calibration analysis</td>
<td>229</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Flow rate sensor & calibration analysis</td>
<td>230</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Steady state condition for AAC system experimental analysis</td>
<td>231</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Nanoparticles morphology by EDX analysis</td>
<td>232</td>
</tr>
<tr>
<td>Appendix F</td>
<td>List of publication</td>
<td>235</td>
</tr>
</tbody>
</table>
REFERENCES

Redhwan, A., Azmi, W., & Sharif, M. (2017a). Thermal conductivity enhancement of Al\textsubscript{2}O\textsubscript{3} and SiO\textsubscript{2} nanolubricants for application in automotive air conditioning (AAC) system. Paper presented at the MATEC Web of Conferences.

Redhwan, A. A. M. (2018). *Performance Analysis of Aluminium Oxide/Polyalkylene Glycol Nanolubricant in Automotive Air Conditioning System.* (Doctor of Philosophy), Universiti Malaysia Pahang.

Rudyak, V. Y. (2013). Viscosity of nanofluids. Why it is not described by the classical theories. *Advances in Nanoparticles, 2*(03), 266.

