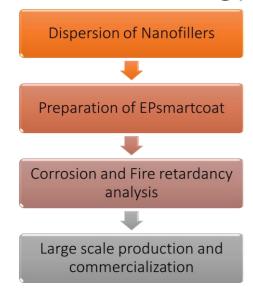
Malaysia **EPsmartcoat:** Epoxy Coating based Green Nanofillers PAHÁNG

INVENTOR FACULTY : UNIVERSITY : **EMAIL** : CO-INVENTORS : DR. SITI MAZNAH BINTI KABEB FACULTY OF INDUSTRIAL SCEINCES AND TECHNOLOGY UNIVERSITI MALAYSIA PAHANG smaz@ump.edu.my

PROF. DR. AZMAN BIN HASSAN, ASSOC. PROF. DR. ZURINA BINTI MOHAMAD, DR. ZALILAH BINTI SHAHER, MRS. MUNIRAH BINTI MOKHTAR, PROF. DR. FAIZ BIN AHMAD

Universiti


hat is EPsmartcoat?

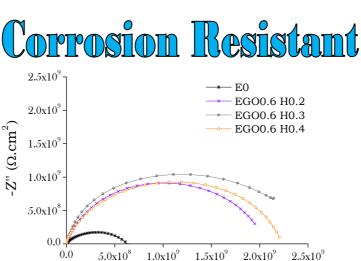
Bio-based epoxy coating which suitable for wide ranges applications

CX 2021

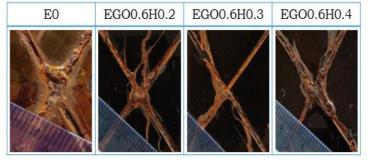
- Affordable and excellent aesthetic value of green coating materials
- **EPsmartcoat:** Benefits of flame retardancy and corrosion-free life (virtual freedom from maintenance and repair)

Methodology

Limiting Oxygen Index (LOI) value of hybrid nanocomposite coatings


Sample	LOI
EO	21.0
EGO0.6H0.2	24.0
EGO0.6H0.3	24.0
EGO0.6H0.4	25.0

Thermal degradation temperatures of hybrid nanocomposite coatings


Psimartcoat?

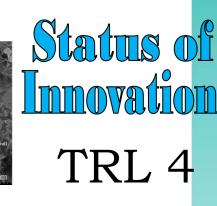
- Durable longest goods sustainable polymer coatings
- Fire proof polymer coatings
- Eco-friendly- green living coating
- Affordable price

 $Z'(\Omega.cm^2)$ Electrochemical Impedance Spectroscopy (EIS) of hybrid nanocomposite coatings after 50 days immersion in 5.0 wt. % NaCl solution

Salt Spray Test (SST) of hybrid nanocomposite coatings after 500 hours exposure to 5.0 wt. % NaCl solution

Impedance |Z| value hybrid nanocomposite coatings after 50 days immersion in 5.0 wt. % NaCl solution

Sample	Impedance $ Z \times 10^9$ (Ω .cm)	
EO	0.642	
EGO0.6H0.2	2.048	
EGO0.6H0.3	2.490	
EGO0.6H0.4	2.227	


comparable Production of potential green coating material by utilizing HYBRID BIO-BASED NANOFILLERS for fire protection and corrosion prevention.

Adhesion strength of hybrid nanocomposite coatings before and after 200 hours exposure to 5.0 wt. % NaCl solution

Sample	Adhesion strength		
	Before	After	
EO	5B	0B	
EGO0.6H0.2	5B	5B	
EGO0.6H0.3	5B	5B	
EGO0.6H0.4	5B	5B	

TEM micrographs of EGO0.6H0.3 coatings

Sample	T ₁₀ (°C) ^a	T _{max} (°C) ^b	Residue at 850 °C (%)
EO	280.8	386.1	4.4
EGO0.6H0.2	287.6	386.5	14.8
EGO0.6H0.4	294.2	391.0	16.3

Publications

- Kabeb S.M., Hassan A., Mohamad Z., Sharer Z., Mokhtar M., Ahmad F., 2020, Synergistic Effect of Graphene Oxide/Halloysite in Anticorrosion Performance and Flame Retardancy Properties of Epoxy Nanocomposite Coating, Chemical Engineering Transactions, 78, 529-534.
- Kabeb S.M., Hassan A., Mohamad Z., Sharer Z., Mokhtar M., Ahmad F., 2019, Effect of graphene nanoplatelets on flame retardancy and corrosion resistance of epoxy nanocomposite coating, Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 4 (2019) 543-547

www.ump.edu.my