# **NOVEL BIO- BASED ADHESIVE FROM CROSS-LINKED RICE STARCH-NATURAL RUBBER LATEX (NRL) FOR** WOOD BASED PANELS BONDING

FACULTY: Faculty of Chemical & Process Engineering Technology

UNIVERSITY: Universiti Malaysia Pahang, 26300 Gambang

**INVENTOR: Prof Arun Gupta** 

EMAIL: arun @ump.edu.my

**CO-INVENTORS:** Triveni Soubam





PI 2016400009

ITREXZOZI

## **PRODUCT BACKGROUND**

- Synthetic adhesive plays an important role in determining the strength of the composite wood panels in the industry.
- International Agency for Cancer Research (IARC) has declared synthetic adhesive as a threat to human health and environment for emitting carcinogenic gas formaldehyde.
- The breakthroughs have encouraged researcher to look for a sustainable solution to formaldehyde threat that are derived from natural resources.
- Bio-adhesive from rice starch and natural rubber latex can open a novel awareness into the design of environment friendly and formaldehyde free composite wood.



Modified rice starch Blend with NRL NATURAL RUBBER LATEX

Sustainable bio-adhesive

#### **NOVELTY**

- Bio-based adhesive from natural substances such as natural Rubber Latex and starch.
- It is free of formaldehyde emissions and eco-٠ friendly.
- It can be obtained at lower cost compared to ٠ industrial grade.

### **BENEFITS**

- Performance benefits and new functionalities.
- Low cost raw material and low toxicity.
- Great potential to enter world market.

# **ENVIRONMENTAL IMPACT**

- Low carbon footprint.
- low human toxicity.
- High biodegradability.



**MOE (MPa** 

| METH | <b>ODO</b> | LOGY |
|------|------------|------|
|      |            |      |

| Formulation<br>of bio-<br>adhesive | Wt. of NR<br>latex (g) | Wt. of cross-linked<br>rice starch (g) | рН | Temperature |
|------------------------------------|------------------------|----------------------------------------|----|-------------|
| Α                                  | 5                      | 15                                     | 11 | 90°C        |
| В                                  | 10                     | 10                                     | 11 | 90°C        |
| С                                  | 15                     | 5                                      | 11 | 90°C        |





Wood veneer

Spreading of glue to veneer





Plyboard

Hot press at 124°C and pressure of 3.5 MPa

#### **RESULTS**



#### **MARKETABILITY & COMMERCIALIZATION**

- Wood based panels and furniture industries.
- Food packaging, paper industry and construction.



#### COST ANALYSIS

|                           | Urea Formaldehyde | Bio-adhesive (Rice starch |  |  |
|---------------------------|-------------------|---------------------------|--|--|
|                           | (UF)              | + Rubber latex)           |  |  |
| Price / kg                | 4.70*             | 4.20**                    |  |  |
| (RM)                      |                   |                           |  |  |
| Price of                  | 37.60             | 33.60                     |  |  |
| Adhesive / m <sup>3</sup> |                   |                           |  |  |
| board                     |                   |                           |  |  |
| Price                     |                   | 10.6% cheaper             |  |  |
| variation                 |                   |                           |  |  |

(\*) Price listed is subject to change upon world market price and excluding transportation or shipping rate.

(\*\*) Price is subject to change upon suppliers' rate.

#### **COLLABORATION**

- MIECO Chipboard Sdn Bhd, Malaysia 📊
- Robin Resources Sdn Bhd, Malaysia 🔃





#### **PUBLICATION**

- Natural Rubber Latex (NRL) and rice starch as an alternative binder in wood composite industry, 10(17):101-106 (2016).
- Synthesis and characterization of medium density fiber board by using mixture of • natural rubber latex and starch as an adhesive (2014). DOI:10.1007/s13196-014-0124-0
- Novel natural rubber latex/lignin-based bio-adhesive: synthesis and its application • on medium density fiber-board, 28: 283–290(2019).

