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ABSTRAK

Penyakit kardiovaskular (CVDs) adalah penyebab utama kematian dengan 31% kema-
tian global. Tujuan kajian ini adalah untuk membangunkan model lintasan yang sah se-
cara statistik yang mempertimbangkan kemungkinan lintasan bukan linear dan ciri binari
endogenos, dan pengantara keduanya bagi status CVDs. Kajian ini menumpukan pem-
bangunan pelbagai bentuk model ramalan risiko tempatan dan penggunaan skor risiko
jantung yang ringkas dengan menggunakan ciri bukan makmal dan algoritma pembe-
lajaran mesin (machine learning) (ML). Walau bagaimanapun, penukaran bentuk algo-
ritma ML yang kompleks kepada model statistik yang ringkas menjadi perhatian utama
didalam kajian ini. Kajian kawalan kes yang sesuai dengan jantina dilakukan di Institut
Kardiologi Punjab, Pakistan, di mana 460 individu sebagai sampel dipilih melalui per-
sampelan bersistematik. Kaedah warp-partial least square digunakan untuk menggangar
pelbagai lapisan model lintasan yang dihipotesiskan. Model ini menganggarkan pekali
warp menggunakan keseluruhan aliran linear yang terdapat dalam segmen linear dari-
pada hubungan bukan linear. Model yang dibangunkan ini merupakan laluan pintasan
yang novel di mana ciri demografi dan sosioekonomi menjadi pemacu utama bagi ciri
tingkah laku, yang membawa kepada status CVD secara langsung dan tidak langsung
melalui metabolic sindrom. Dalam membangunkan model ramalan risiko, dua algoritma
ML, iaitu sokongan linear mesin vektor (linear support vector machine) dan artificial
neural network mengatasi model konvensional iaitu analisis regresi logistik (Logistic Re-
gression Analysis) (LRA). Prestasi model yang dibangunkan ini dinilai melalui pelbagai
matriks yang ditetapkan dengan menggunakan pengesahan bersilang 10-kali ganda (10-
fold cross-validation). Kemudian, satu novel metodologi dibangunkan dan digunakan
untuk mengira skor risiko jantung yang ringkas berdasarkan ciri bukan makmal yang di-
panggil Non-Laboratory based Heart Risk Score (NLHRS). Metodologi ini menyusun
dan mengumpul algoritma ML yang terbaik dan digunakan sebagai asas untuk men-
gira indeks pemberat ciri relatif (relative feature weights). Indeks pemberat ini disebut
sebagai NLHRS, yang selanjutnya digunakan sebagai kovariat di model LRA ringkas
untuk menganggarkan kemungkinan CVD berlaku. Perubahan yang berlaku iaitu dari
model algoritma yang bersifat kotak-hitam komplek kepada model statistik ringkas yang
menghasilkan model yang tidak memerlukan sistem berautomatik untuk pelaksanaannya.
NLHRS yang berasaskan algoritma ML dan model yang bersangkutan yang dibangunkan
ini menunjukkan prestasi yang lebih baik daripada model sediada yang berdasarkan skor
risiko semi-kuantitatif dari segi penilaian diskriminasi dan penentukuran. Akhirnya, ke-
upayaan model ramalan NLHRS juga diuji dan disesuaikan mengikut strata penduduk.
Kajian ini menyimpulkan beberapa perkara. Pertama, penggunaan pendekatan kaedah
yang fleksibel dalam anggaran dapat memodelkan ciri binari bagi status CVD dan lin-
tasan tidak linear didalam lintasan model yang kompleks. Model lintasan CVD yang
dianggarkan dapat digunakan sebagai strategi penangguhan penyakit dalam pengaturan
klinikal. Kedua, model algoritma ML menawarkan model ramalan risiko yang lebih baik
dan konsisten berbanding model yang berasaskan LRA. NLHRS dan model yang berkai-
tan dengannya yang dibangunkan merupakan hasil metodologi novel yang memberikan
bentuk skor risiko yang sah dan ringkas dan dapat digunakan tanpa sistem berautomatik.
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ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of death, with 31% of global mor-
tality. The purpose of this study is two folds such as the development of a statistically
valid path model which considered the possible non-linear paths, mediators, and binary
endogenous feature of CVDs status. Further, it focuses on the development of various
forms of local risk prediction models and simple heart risk scores using non-laboratory
features and machine learning (ML) algorithms. However, the conversion of a complex
form of ML algorithms into a simple statistical model is the prime concern. A gender-
matched case-control study was conducted in Punjab Institute of Cardiology, Pakistan, in
which a sample of 460 individuals was selected through systematic sampling. The warp-
partial least square method was utilized to estimate the multi-layer hypothesized path
model. This model estimated warped coefficients using the overall linear trend found in
linear segments of non-linear relationships. This model found novel pathways in which
demographic and socioeconomic features are the main drivers of behavioral features, lead-
ing to CVDs status directly and indirectly through metabolic syndrome. In developing
risk prediction models, two ML algorithms, linear support vector machine and artificial
neural network outperformed the existing conventional logistic regression analysis (LRA)
model. The performance of the models was assessed through various established matrices
using 10-fold cross-validation. A novel methodology was used to compute simple heart
risk scores called non-laboratory based heart risk score (NLHRS). The methodology is
proposed as stacking ensemble ML and the best ML algorithms are used as a base learner
to compute relative feature weights. The index of these weights is referred to as NLHRS,
which was further used as a covariate in the simple LRA model to estimate the likelihood
of CVDs. This conversion from a complex black-box nature of ML algorithms into sim-
ple statistical models yielded such models, which do not require automated systems for
their implementation. ML-based NLHRS and their associated models outperformed the
existing semi-quantitative risk score-based model in terms of discrimination and calibra-
tion assessments. Finally, the predictive capability of valid NLHRS models has also been
tested and adjusted for different strata of the population. Firstly, the study concludes that
the adoptions of the flexible approach in estimation can model the binary feature of CVDs
and non-linear paths in the complex path models. The estimated CVDs path model can
be implemented as a disease delay strategy in clinical settings. Secondly, the ML models
offer better and consistent risk prediction models as compared to LRA-based model. The
NLHRS and their associated models which are the outputs of novel methodology provide
valid and simple forms of risk scores and can be used without automated systems.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Cardiovascular diseases (CVDs) are a group of diseases, usually referred to as con-

ditions that involve narrowed or blocked blood vessels leading to heart attack and other

related problems. Recent estimates of the World Health Organization (WHO) showed

that 31% of cause-specific mortality occurs due to this disease group (Organization et

al., 2018a). Global cardiovascular mortality (CVM) has established an exponential trend

where 40.8% increase was observed from 1990 to 2013 (Roth et al., 2015). This rise has

made it the most important and the largest cause of noncommunicable diseases (NCDs) at

over 50% (McAloon et al., 2016). However, the nature of disease burden is diverse in dif-

ferent regions of the world. It usually occurs in low-middle-income countries (LMICs),

contributing to 80% of the annual deaths (Organization et al., 2019). These statistics

of CVDs related deaths reflect the enormity of disease, which is continuously growing.

Therefore, it has become a public health challenge, especially for LMICs and needs to be

duly addressed.

Global burden of disease (GBD) reported that age-standardized CVDs mortality

in high-income countries (HICs) is decreased by 21% in the last two decades (Lozano

et al., 2012). The adoption of population and individual-based preventive strategies rec-

ommended by WHO is the main reason for this substantial decline in HICs (Bonita et

al., 2013). In population-based strategies, the focus is on developing such public health

policies, which transform the distribution of primary risk factors of CVDs in the pop-

ulation. However, individual-based strategies tend to focus on the early assessment of

the likelihood of CVDs events, identifying high-risk individuals and their management

through modifiable risk factors. Besides, it is more suitable in clinical settings as they
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