MODELING OF CARDIOVASCULAR DISEASES (CVDS) AND DEVELOPMENT OF PREDICTIVE HEART RISK SCORE

MIRZA RIZWAN SAJID

UNIVERSITI MALAYSIA PAHANG

DOCTOR OF PHILOSOPHY

	DECLARATION OF	THESIS AND COPYRIGHT
	Author's Full Name	: MIRZA RIZWAN SAJID
	Date of Birth	: 15 FEBRUARY 1983
	Title	: MODELING OF CARDIOVASCULAR DISEASES (CVDs) AND DEVELOPMENT OF PREDICTIVE HEART RISK SCORE
	Academic Session	: SEMESTER 2 2020/2021
	I declare that this thesis	is classified as:
	CONFIDENTIA	L (Contains confidential information under the Official Secret Act 1997)*
	□ RESTRICTED	(Contains restricted information as specified by the
	☑ OPEN ACCESS	organization where research was done)* I agree that my thesis to be published as online open access (Full Text)
	 The Thesis is the Pro The Library of Univ the purpose of researching 	versiti Malaysia Pahang reserves the following rights: operty of Universiti Malaysia Pahang ersiti Malaysia Pahang has the right to make copies of the thesis for rch only. right to make copies of the thesis for academic exchange.
26	(Student's Signa	ture) (Supervisor's Signature)
UNI	CP5573202 New IC/Passport N Date: 5 JULY 202	

NOTE: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and, in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor's Signature) : DR. NORYANTI MUHAMMAD Full Name : SENIOR LECTURER Position : 5 JULY 2021 Date -(Co-supervisor's Signature) Full Name CR. ROSLINAZAIRIMAH BINTI ZAKARIA : ASSOCIATE PROFESSOR Position .AYSIA PAHANG ΔΙ : 5 JULY 2021 Date

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature)

Full Name: MIRZA RIZWAN SAJIDID Number: PSS17002Date: 5 JULY 2021

MODELING OF CARDIOVASCULAR DISEASES (CVDs) AND DEVELOPMENT OF PREDICTIVE HEART RISK SCORE

Thesis submitted in fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG

Centre for Mathematical Sciences

'AHANG

UNIVERSIT

JULY 2021

ACKNOWLEDGEMENTS

Praise to Allah the Almighty for bestowing us with the best strengths and qualities to be used for the benefit of mankind. As a humble servant of Allah SWT, I am trying to express my gratitude in the form of little knowledge. I am a follower of His last Messenger Muhammad (PBUH), an eternal source of knowledge and guidance towards humanity's truth and is the gold standard for all intelligence.

Firstly, I am immensely grateful to my main supervisor, Dr. Noryanti Muhammad, and co-supervisor Associate Professor Dr. Roslinazairimah Zakaria for their academic guidance and unlimited support throughout my humble struggle to complete this thesis. Dr. Noryanti's patience, advice, thought-provoking ideas, objective-oriented approaches, and unconditional support have been invaluable to me. I am also thankful to Dr. Ahmad Shahbaz from Punjab Institute of Cardiology for his valuable help in data collection, especially for the standardized ethical considerations.

I am highly indebted to my dearest parents, wife, and my children (Muhammad Shahaan Alam and Emaan Fatima) for their moral support and patience throughout this work. It was really tough for them to manage their things alone, which were supposed to be my duties. Special thanks to my sisters, their husbands, and brother, whose prayers have always been sources of strength and inspiration for me.

I also owe my thankfulness to all my teachers, friends and colleagues, especially Dr. Waris Ali Khan, Dr. Nadeem Shafique Butt, Dr. Asif Hanif, Asim Butt, Arshad Ali Khan, Dr. Syed Ahmad Chan Bukhari, Jawad Asif, Dr. Waqas Sami, Dr. Fayyaz Ahmad, Mehfooz Ullah Dar, Muhammad Bilal, Dr. Asad Ullah Khan and Muhammad Ilyas for their encouragement, appreciation and support during my research.

My final thanks to the University of Gujrat (UoG) for providing me the opportunity to pursue my studies at Universiti Malaysia Pahang (UMP). I am also thankful to the Centre for Mathematical Sciences, College of Computing & Applied Sciences for offering me an excellent academic and conducive environment, which had enabled me to study smoothly.

ABSTRAK

Penyakit kardiovaskular (CVDs) adalah penyebab utama kematian dengan 31% kematian global. Tujuan kajian ini adalah untuk membangunkan model lintasan yang sah secara statistik yang mempertimbangkan kemungkinan lintasan bukan linear dan ciri binari endogenos, dan pengantara keduanya bagi status CVDs. Kajian ini menumpukan pembangunan pelbagai bentuk model ramalan risiko tempatan dan penggunaan skor risiko jantung yang ringkas dengan menggunakan ciri bukan makmal dan algoritma pembelajaran mesin (machine learning) (ML). Walau bagaimanapun, penukaran bentuk algoritma ML yang kompleks kepada model statistik yang ringkas menjadi perhatian utama didalam kajian ini. Kajian kawalan kes yang sesuai dengan jantina dilakukan di Institut Kardiologi Punjab, Pakistan, di mana 460 individu sebagai sampel dipilih melalui persampelan bersistematik. Kaedah warp-partial least square digunakan untuk menggangar pelbagai lapisan model lintasan yang dihipotesiskan. Model ini menganggarkan pekali warp menggunakan keseluruhan aliran linear yang terdapat dalam segmen linear daripada hubungan bukan linear. Model yang dibangunkan ini merupakan laluan pintasan yang novel di mana ciri demografi dan sosioekonomi menjadi pemacu utama bagi ciri tingkah laku, yang membawa kepada status CVD secara langsung dan tidak langsung melalui metabolic sindrom. Dalam membangunkan model ramalan risiko, dua algoritma ML, iaitu sokongan linear mesin vektor (linear support vector machine) dan artificial neural network mengatasi model konvensional iaitu analisis regresi logistik (Logistic Regression Analysis) (LRA). Prestasi model yang dibangunkan ini dinilai melalui pelbagai matriks yang ditetapkan dengan menggunakan pengesahan bersilang 10-kali ganda (10fold cross-validation). Kemudian, satu novel metodologi dibangunkan dan digunakan untuk mengira skor risiko jantung yang ringkas berdasarkan ciri bukan makmal yang dipanggil Non-Laboratory based Heart Risk Score (NLHRS). Metodologi ini menyusun dan mengumpul algoritma ML yang terbaik dan digunakan sebagai asas untuk mengira indeks pemberat ciri relatif (relative feature weights). Indeks pemberat ini disebut sebagai NLHRS, yang selanjutnya digunakan sebagai kovariat di model LRA ringkas untuk menganggarkan kemungkinan CVD berlaku. Perubahan yang berlaku iaitu dari model algoritma yang bersifat kotak-hitam komplek kepada model statistik ringkas yang menghasilkan model yang tidak memerlukan sistem berautomatik untuk pelaksanaannya. NLHRS yang berasaskan algoritma ML dan model yang bersangkutan yang dibangunkan ini menunjukkan prestasi yang lebih baik daripada model sediada yang berdasarkan skor risiko semi-kuantitatif dari segi penilaian diskriminasi dan penentukuran. Akhirnya, keupayaan model ramalan NLHRS juga diuji dan disesuaikan mengikut strata penduduk. Kajian ini menyimpulkan beberapa perkara. Pertama, penggunaan pendekatan kaedah yang fleksibel dalam anggaran dapat memodelkan ciri binari bagi status CVD dan lintasan tidak linear didalam lintasan model yang kompleks. Model lintasan CVD yang dianggarkan dapat digunakan sebagai strategi penangguhan penyakit dalam pengaturan klinikal. Kedua, model algoritma ML menawarkan model ramalan risiko yang lebih baik dan konsisten berbanding model yang berasaskan LRA. NLHRS dan model yang berkaitan dengannya yang dibangunkan merupakan hasil metodologi novel yang memberikan bentuk skor risiko yang sah dan ringkas dan dapat digunakan tanpa sistem berautomatik.

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of death, with 31% of global mortality. The purpose of this study is two folds such as the development of a statistically valid path model which considered the possible non-linear paths, mediators, and binary endogenous feature of CVDs status. Further, it focuses on the development of various forms of local risk prediction models and simple heart risk scores using non-laboratory features and machine learning (ML) algorithms. However, the conversion of a complex form of ML algorithms into a simple statistical model is the prime concern. A gendermatched case-control study was conducted in Punjab Institute of Cardiology, Pakistan, in which a sample of 460 individuals was selected through systematic sampling. The warppartial least square method was utilized to estimate the multi-layer hypothesized path model. This model estimated warped coefficients using the overall linear trend found in linear segments of non-linear relationships. This model found novel pathways in which demographic and socioeconomic features are the main drivers of behavioral features, leading to CVDs status directly and indirectly through metabolic syndrome. In developing risk prediction models, two ML algorithms, linear support vector machine and artificial neural network outperformed the existing conventional logistic regression analysis (LRA) model. The performance of the models was assessed through various established matrices using 10-fold cross-validation. A novel methodology was used to compute simple heart risk scores called non-laboratory based heart risk score (NLHRS). The methodology is proposed as stacking ensemble ML and the best ML algorithms are used as a base learner to compute relative feature weights. The index of these weights is referred to as NLHRS, which was further used as a covariate in the simple LRA model to estimate the likelihood of CVDs. This conversion from a complex black-box nature of ML algorithms into simple statistical models yielded such models, which do not require automated systems for their implementation. ML-based NLHRS and their associated models outperformed the existing semi-quantitative risk score-based model in terms of discrimination and calibration assessments. Finally, the predictive capability of valid NLHRS models has also been tested and adjusted for different strata of the population. Firstly, the study concludes that the adoptions of the flexible approach in estimation can model the binary feature of CVDs and non-linear paths in the complex path models. The estimated CVDs path model can be implemented as a disease delay strategy in clinical settings. Secondly, the *ML* models offer better and consistent risk prediction models as compared to LRA-based model. The NLHRS and their associated models which are the outputs of novel methodology provide valid and simple forms of risk scores and can be used without automated systems.

TABLE OF CONTENTS

DECLARATION	
TITLE PAGE	
ACKNOWLEDGEMENTS	ii
ABSTRAK	iii
ABSTRACT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvii
LIST OF APPENDICES	XX
CHAPTER 1 INTRODUCTION	1
1.1 Overview	1
1.2 Problem Statement	4
1.3 Research Questions	6
0 1.4 Objectives of the Study	6
1.5 Research Scope	7
UN 1.6 Research Activities VALAYSIA PAFA	NG
1.7 Overall Framework of Thesis	11
CHAPTER 2 LITERATURE REVIEW	12
2.1 Introduction	12
2.2 Section A: Basic Terminology and Epidemiology of CVDs	12
2.2.1 Types of Cardiovascular Disease	13
2.2.2 Risk Factors and its Types	13

	2.2.3	Metabolic Syndrome and its Components	15
	2.2.4	Epidemiology of Disease	15
2.3	Sectio	on B: Underpinning Theories and Theoretical Framework of Study	18
	2.3.1	Relationship of Demographic Factors, Family History with Behav-	
		ioral Risk factors	21
	2.3.2	Relationship of Demographic Factors, Family History with CVDs	24
	2.3.3	Relationship of Socio-economic Factors with Behavioral Risk Factor	s 26
	2.3.4	Relationship of Behavioral Risk Factors and CVDs	29
	2.3.5	Relationship of Behavioral Risk Factors and MS	31
	2.3.6	Relationship of MS and CVDs	32
	2.3.7	MSA as Mediator in CVDs Model	33
	2.3.8	Hypothesized Path Model	35
	2.3.9	Main Statistical Techniques Used in Causal Relationships	37
	2.3.10	Gap Analysis for Theory-driven Path Models	39
2.4	Sectio	on C: Risk Prediction Models and Heart Risk Scores	40
	2.4.1	Issues in Existing Risk Prediction Models	44
	2.4.2	Traditional Algorithms to Machine Learning (ML)	47
	2.4.3	Brief Introduction of Machine Learning ML Algorithms	49
*	2.4.4	Black-box Nature of <i>ML</i> Algorithms	52
284	2.4.5	Risk Stratification of Risk Prediction Models	54
	2.4.6	Gap Analysis of Risk Prediction Models	55
UNI ^{2.5} 2.6	Summ Concl	uding Remarks	56 57 G
СНА	PTER 3	3 METHODOLOGY FOR DEVELOPMENT OF PATH MODEL	58

3.1	Introduction	58
3.2	Pre-test	58
3.3	Pilot Study	59
3.4	Main Study	59
	3.4.1 Research Design	60

		3.4.2 Inclusion and Exclusion Criteria of Cases and Controls	60
		3.4.3 Confounding	61
		3.4.4 Target Population	62
		3.4.5 Sampled Population and Selection of Hospital	63
		3.4.6 Sample Size Estimation	64
		3.4.7 Sampling Technique	67
		3.4.8 Data Collection Methods and Tools	68
		3.4.9 Research Ethics	69
		3.4.10 Data Management	69
		3.4.11 Flow of Data Analysis	70
	3.5	Description of Statistical Techniques	70
		3.5.1 Reliability Analysis	70
		3.5.2 Exploratory Factor Analysis	71
	3.6	Structural Equation Modeling	71
		3.6.1 Path Analysis and WarpPLS	72
	3.7	Summary of the Chapter UMP	74
	3.8	Concluding Remarks	75
	СНА	PTER 4 METHODOLOGY FOR DEVELOPMENT OF RISK PREDIC-	
	CIIA	TION MODELS	76
2	4.1	Introduction	76
	4.2	Baseline Study	76
IINI	4.3	Methodology for Development of Quantitative and <i>NLHRS</i> -based Risk Pre-	NC
UN		diction Models	78
		4.3.1 Development of Quantitative Risk Prediction Models	80
		4.3.2 Development of <i>NLHRS</i> and their Risk Prediction Models	84
	4.4	Description of Statistical Techniques	88
	r. - 7	4.4.1 Confirmatory Factor Analysis (CFA)	88
		4.4.2 Multiple Linear Regression Analysis	90
		4.4.2 Multiple Linear Regression Analysis4.4.3 Moderation Analysis	90 91
			/1

vii

2	4.5	Classification and Prediction Techniques		
		4.5.1 Bivariate Odds Ratio Analysis	93	
		4.5.2 Logistic Regression Analysis (LRA)	93	
		4.5.3 Decision Tree Learning	95	
		4.5.4 Artificial Neural Networks	98	
		4.5.5 Support Vector Machine	100	
		4.5.6 Cross-validation of Risk Prediction Models and Heart Risk Scores	102	
		4.5.7 Comparative Performance Analysis of Classifiers	103	
2	4.6	Features Importance Approaches	104	
2	4.7	Validation of NLHRS-based Risk Prediction Models	108	
		4.7.1 Brier Score (BS)	108	
		4.7.2 Spiegelhalter's Z-statistic	109	
		4.7.3 Discrimination	109	
		4.7.4 Calibration	110	
Z	4.8	Identification of Thresholds of NLHRS through QUEST Algorithm	110	
2	4.9	Findings from the Baseline Study	111	
		4.9.1 Assessment of Relationship Between CE and CVM	112	
		4.9.2 Moderation Analysis through Urbanization for Relationship Between		
-		CE and CVM	113	
22	9	4.9.3 Interaction Graphs	116	
Co		4.9.4 Discussion	118	
TINII	\ / E	4.9.5 Role of Baseline Study in the Main Study	121	
UNI	4.10	Summary of the Chapter	121	
2	4.11	Concluding Remarks	122	
(СНАР	PTER 5 MODELING OF CARDIOVASCULAR DISEASES	124	
4	5.1	Introduction	124	
5	5.2	Section-I: Findings from Pre-test and Pilot Study	124	
		5.2.1 Results of Pre-test	125	
		5.2.2 Results of Pilot Study	125	

	5.3	Section-II: Path Modeling of Cardiovascular Diseases	129
		5.3.1 Response Rate	130
		5.3.2 Basic Characteristics of Study Individuals	130
		5.3.3 Path Analyses	131
		5.3.4 Assessment of Linear and Nonlinear Relationships	133
		5.3.5 Assessment of Mediation through Indirect Effects	135
	5.4	Discussions	135
	5.5	Concluding Remarks	142
	CHAI	PTER 6 DEVELOPMENT OF RISK PREDICTION MODELS AND	
		PREDICTIVE HEART RISK SCORE	145
	6.1	Introduction	145
	6.2	Section-I: Development of Quantitative Risk Prediction Models	146
		6.2.1 Development of Quantitative Risk Prediction Models through LRA	
		and <i>ML</i> Algorithms	147
	6.3	Section-II: Development of NLHRS and Their Risk Prediction Models	155
		6.3.1 Implementation of Approach-I for Computation of <i>NLHRS</i>	156
	*0	6.3.2 Implementation of Approach-II for Computation of <i>NLHRS</i>	157
		6.3.3 NLHRS-based Risk Prediction Models	163
20		6.3.4 Validation Process of <i>NLHRS</i> -based Risk Prediction Models	166
6		6.3.5 Identification of Risk Thresholds for Valid Heart Risk Scores	170
	6.4	Section-III: Risk Stratification of Valid NLHRS-based Risk Prediction Models	178
UNI	IVE	6.4.1 Moderated Logistic Regression for ANN-RS and CVDs Status	180 G
		6.4.2 Moderated Logistic Regression for SVM-RS and CVDs Status	182
		6.4.3 Finalized Pooled and Stratified Risk Prediction Models	184
		6.4.4 Discussions	186
	6.5	Concluding Remarks	196
	CHAI	PTER 7 CONCLUSION	198
	7.1	Introduction	198

7.2	Research Questions and Objectives Revisited	198
	7.2.1 Research Question 1	198
	7.2.2 Research Question 2	199
	7.2.3 Research Question 3	200
	7.2.4 Research Question 4	202
	7.2.5 Research Question 5	203
7.3	Contributions of the Study	204
7.4	Significance of Research	205
7.5	Limitations of the Study	206
7.6	Future Works	207
REF	ERENCES	209

اونيۈرسيتي مليسيا ڤهڠ UNIVERSITI MALAYSIA PAHANG

UMP

LIST OF TABLES

Table 2	.1 Differe	ent Criteria for Measuring Metabolic Syndrome	16
Table 2.	.2 Trade-	off Between Accuracy and Interpretability of Models	53
Table 3	.1 Sample	e Size Requirements in Different Statistical Techniques	65
Table 3	.2 Main C	Contents of Questionnaire	69
Table 3	.3 Model	Fitness Indicators	74
Table 4	.1 Perform	nance Matrices for Classifiers	104
Table 4	.2 Input-h	idden-output Connection Weights Methodology	107
Table 4	.3 Interpr	etation of C-Statistic for Different Thresholds	110
Table 4	.4 Levels	of Urbanization	114
Table 4	.5 Descrij	ptive Statistics of CE,CVM and Confounder in the Overall	
	1	e and Different Forms of Urbanization	115
Table 4	.6 Regres	sion and Moderation Analysis	116
Table 5	.1 EFA fo	or Dietary Habits in Cases and Controls	128
Table 5	.2 Basic C	Characteristics of Study Individuals	131
Table 5	.3 Direct	Path Coefficients of the Path Model	133
Table 5	.4 Assess	ment of the Mediation Impact in the Path Model	135
Table 5	.5 Overal	l Hypothesis Testing	144
UNIV Table 6	.1 Input F	Features MALAYSIA PAHA	147 G
Table 6	.2 Point a	nd Interval Estimates of Bivariate Odds Ratio	149
Table 6	.3 Feature	e Importance using Forward Stepwise Logistic Regression	
	Analys	is	150
Table 6	.4 Perform	nance Assessment of Baseline LRA Model through 10-fold	
	Cross-	validation	151
Table 6	.5 Perform	nance Assessment of ML-based Risk Prediction Models	154

	Table 6.6	Percentage Change in Performance Matrices of <i>ML</i> -based Models	
		from Baseline LRA Model	154
	Table 6.7	Overall Performance Comparison of Quantitative Risk Prediction	
		Models	155
	Table 6.8	Performance Assessment of ML Models for the Development of	
		NLHRS	157
	Table 6.9	Percentage Change in Performance Matrices of ML-based Models	
		from LRA Model	158
	Table 6.10	Overall Comparison of <i>ML</i> Models with LRA Model for Develop-	
		ing NLHRS	158
	Table 6.11	Input-hidden-output Nodes Connection Weights	160
	Table 6.12	Absolute Product of Input-hidden and Hidden-output Connections	160
	Table 6.13	Relative Contribution of Each Feature to the Output Node through	
		Each Hidden Node	161
	Table 6.14	Relative Importance of Each Feature in the Overall Artificial Neu-	
		ral Network	161
	Table 6.15	Linear Support Vector Machines-based Feature Importance	163
	Table 6.16	Performance Assessment of NLHRS-based Risk Prediction Models	166
	Table 6.17	Percentage Change in Performance Matrices of ML-based NLHRS	- 1
26		Models from RFS Model	166
	Table 6.18	Summary of Validity Assessment of NLHRS-based Risk Prediction	
		Models Categories of Risk based on Valid NLHRS PAHA	168
	Table 6.19	Categories of Risk based on Valid NLHRS	175
	Table 6.20	Gender-wise Identification of Risk Thresholds for ANN-RS	176
	Table 6.21	Gender-wise Identification of Risk Thresholds for SVM-RS	176
1	Table 6.22	Risk Stratification: Discrimination and Calibration of NLHRS-based	
		Risk Prediction Models by Area of Living	179
	Table 6.23	Moderation Analysis for ANN-RS by Area	181
	Table 6.24	Moderation Analysis for SVM-RS	183

LIST OF FIGURES

	Figure 1.1	Research Activities	10
	Figure 1.2	Overall Framework of Thesis	11
	Figure 2.1	Causes of Deaths in the World	18
	Figure 2.2	Wider Determinants of Health Model	20
	Figure 2.3	Kastorini Model	36
	Figure 2.4	Hypothesized Model of Study	37
	Figure 2.5	Types of Risk Prediction Models	42
	Figure 2.6	Example of Artificial Neural Network (ANN)	51
	Figure 2.7	Example of Support Vector Machine (SVM)	52
	Figure 2.8	Black box Nature of ML Algorithms	53
	Figure 3.1	Political Map of Pakistan	63
	Figure 4.1	Development of Baseline Quantitative Risk Prediction Model	82
	Figure 4.2	Development of Machine Learning based Quantitative Risk Pre-	
	24 4	diction Models	84
20	Figure 4.3	Development of Risk Factor Score (RFS) or Semi-quantitative	
0	**	Risk Score	86
	Figure 4.4	Transformation of ML Model into Simple Statistical Model	88
JNN	Figure 4.5	Development and Validation of NLHRS-based Risk Prediction Mode	el 89 C
	Figure 4.6	Features Importance Approaches	106
	Figure 4.7	Validation Process	108
	Figure 4.8	PPLUA as Moderator for CE and CVM	117
	Figure 4.9	Urbanization Status as Moderator for CE and CVM	117
	Figure 4.10	Level of Urbanization as Moderator for CE and CVM	118
	Figure 5.1	Finalized Path Model	134

	Figure 6.1	Computation of Product of Input-hidden Connections and Hidden-		
		output Connections for Age Groups	162	
	Figure 6.2	RFS and Estimated Risk of CVDs	165	
	Figure 6.3	ANN-RS and Estimated Risk of CVDs	165	
	Figure 6.4	SVM-RS and Estimated Risk of CVDs	165	
	Figure 6.5	AUC for RFS based NLHRS Model	168	
	Figure 6.6	AUC for ANN-RS based NLHRS Model	168	
	Figure 6.7	AUC for SVM-RS based NLHRS Model	168	
	Figure 6.8	Calibration Plot for Different Types of NLHRS Based Risk Pre-		
		diction Models	170	
	Figure 6.9	Distributional Behavior of ANN-RS in Cases and Controls	171	
	Figure 6.10	Distributional Behavior of SVM-RS in Cases and Controls	172	
	Figure 6.11	Decision Tree for Identification of Thresholds of ANN-RS in Over-		
		all Sample	173	
	Figure 6.12	Decision Tree for Identification of Thresholds of SVM-RS in Over-		
		all Sample	174	
	Figure 6.13	Thresholds of ANN-RS and SVM-RS and their Associated Risk	175	
	Figure 6.14	Gender-wise Decision Tree for Thresholds of ANN-RS	177	
	Figure 6.15	Gender-wise Decision Tree for Thresholds of SVM-RS	178	
22	Figure 6.16	Area as Moderator for ANN-RS and Predicted Logit of CVDs	182	
CU	Figure 6.17	Area as Moderator for SVM-RS and Predicted Logit of CVDs	184	

LIST OF SYMBOLS

	A	Attributes for classification
	В	Matrix of regression coefficients of y_i variables on y_i vari-
		ables where $i \neq i$
	C	Set of classes in the data set
	С	Correlation Matrix
	С	Class
	C_t	Cost function in kernels
	f	Map from n-dimensional to m-dimensional
	F	Weight vector
	Н	Hosmer and Lemeshow Test
	H_0	Null Hypothesis
	H_1	Alternative Hypothesis
	H(S)	Entropy of data set S
	H(t)	Entropy of subset t
	Ι	Identity matrix
20	k_r	Kernel
6	k-1	A method of cross-validation
	log_2	The logarithm of base 2
	MERSIT	Margin ALAYSIA PAHANG
	N	Size of population
	N_i	Number of items
	n	Sample size
	Р	Probability for favorable events
	p	Proportion
	Q	Bias
	R^2	Coefficient of determination

S	Data set
S^2	Sample Variance
SE	Standard error
s_p	Split point in decision tree
T	Subsets creating from splitting set S
t	Target class
v_i	Training example
W_O	Moderator
x	First input feature
x'	Second input feature
x_j	Independent variable
y_i	Dependent variable
Z	Z-statistic
z_i	Logit function or logit index
σ	Free parameter in kernel function
Γ	Matrix of regression coefficients of y_i on x_i
ϕ_{ij}	Covariance between exogenous variables
ϵ	Error term in regression analysis
ζ_i	Error vector
β_0	Intercept in regression analysis
φ_l	Regression coefficient of interaction term
UNIVERSIT	Level of significance SIA PAHANG
$lpha_j$	Regression coefficient of mediator
ρ	Reliability coefficient
$ ho_O$	Regression coefficient of moderator
γ_{11}	Regression coefficients of x_j on y_i
β_j	Regression coefficient
eta_{ii}	Regression coefficient of y_i with another y_i where $i \neq i$
λ	Eigen value

LIST OF ABBREVIATIONS

	AFVIF	Average Full Collinearity Variance Inflation Factor
	AMI	Acute Myocardial Infarction
	AMOS	Analysis of Moments Structures
	ANN	Artificial Neural Network
	ANN-RS	Artificial Neural Network based Risk Score
	ANOVA	Analysis of Variance
	AO	Abdominal Obesity
	APC	Average Path Coefficient
	ARS	Average R-Square
	AUC	Area under the Curve
	BMI	Body Mass Index
	BS	Brier Score
	CB-SEM	Covariance based Structure Equation Modeling
	CE	Combined Exposure
ي الم	CART	Classification Analysis and Regression Trees
	CI-TC	Corrected Item Total Correlation
	CFA	Confirmatory Factor Analysis
	CFI	Comparative Fit Index
UNIV	CHDRSI	Coronary Heart Disease SIA PAHANG
	CI	Confidence Interval
	CVDs	Cardiovascular Diseases
	CVM	Cardiovascular Mortality
	DM	Diabetes Mellitus
	DT	Decision Trees
	DV	Dependent Variable
	FFQ	Food Frequency Questionnaire

	FN	False Negative
	FH	Family History
	FP	False Positive
	GFI's	Goodness of Fit Indices
	GI	Gini Index
	GoF	Goodness of Fit
	HDL	High-density Lipoprotein
	HICs	High-income Countries
	HTN	Hypertension
	ICT	Islamabad Capital Territory (Capital city of Pakistan)
	ICR	Internal Consistency Reliability
	IDF	International Diabetes Federation
	ID3	Iterative Dichotomoizer
	IV	Independent Variable
	КМО	Kaiser-meyer-olkin Test
	KS	Kolmogorove Smirnove
	LMICs	Low-middle-income countries
	LL	Log liklihood
že	LRA	Logistic Regression Analysis
	ML	Machine Learning
	MLE	Maximum Likelihood Estimation
	MLP	Multilayer Perceptron SIA PAHANG
	MS	Metabolic Syndrome
	MSA	Metabolic Syndrome Abnormalities
	NDH	Negative Dietary Habits
	NCDs	Non-communicable Diseases
	NLHRS	Non-laboratory based Heart Risk Score
	OLS	Ordinary Least Square
	OR	Odds Ratio

	PA	Physical Activity
	PI	Prognostic Index
	PI_A	Prognostic Index based on ANN-RS
	PI_S	Prognostic Index based on SVM-RS
	PI_R	Prognostic Index based on RFS
	PLS	Partial Least Square
	PLS-SEM	Partial Least Square based Structure Equation Modeling
	PPLUA	Percentage Population Living in Urban Areas
	RBF	Radial Basis Function
	RFS	Risk Factors based Risk Score
	RMSE	Root Mean Square Error
	RMSEA	Root Mean Square Error Approximation
	ROC	Receiver Operating Characteristics
	RR	Risk Ratio
	RT	Regression Trees
	SDH	Social Determinants of Health
	SEM	Structure Equation Modeling
	SE	Socio-economic
	SFW	Subjective financial Well-being
26	ST	Sleep Satisfaction
	SPSS	Statistical Packages for Social Sciences
UNI	ST RSIT	Self-reported Subjective Stress A PAHANG Support Vector Machine
	SVM-RS	Support Vector Machine based Risk Score
	TN	True Negative
	ТР	True Positive
	WC	Waist Circumference
	WHO	World Health Organization
	WHR	Waist to Hip Ratio

LIST OF APPENDICES

	APPENDIX A	Disease Terminology	240
	APPENDIX B	List of Experts	242
	APPENDIX C	Definition and Coding Scheme of Variables Used in Study	243
	APPENDIX D	Informed Consent	247
	APPENDIX E	Questionnaire	248
	APPENDIX F	Ethical Review Committee Approval	254
	APPENDIX G	Algorithms Scheme or Configuration for ML Models	256
	APPENDIX H	WarpPLS Model Output and Examples of Linear and Nonlin- ear Relationships	258
	APPENDIX I	Weka Output	260
	APPENDIX J	Normality Assessment for ANN-RS and SVM-RS	263
8	APPENDIX K	List of Publications and Certification	265

UNIVERSITI MALAYSIA PAHANG

シスト

CHAPTER 1

INTRODUCTION

1.1 Overview

Cardiovascular diseases (CVDs) are a group of diseases, usually referred to as conditions that involve narrowed or blocked blood vessels leading to heart attack and other related problems. Recent estimates of the World Health Organization (WHO) showed that 31% of cause-specific mortality occurs due to this disease group (Organization et al., 2018a). Global cardiovascular mortality (CVM) has established an exponential trend where 40.8% increase was observed from 1990 to 2013 (Roth et al., 2015). This rise has made it the most important and the largest cause of noncommunicable diseases (NCDs) at over 50% (McAloon et al., 2016). However, the nature of disease burden is diverse in different regions of the world. It usually occurs in low-middle-income countries (LMICs), contributing to 80% of the annual deaths (Organization et al., 2019). These statistics of CVDs related deaths reflect the enormity of disease, which is continuously growing. Therefore, it has become a public health challenge, especially for LMICs and needs to be duly addressed.

Global burden of disease (GBD) reported that age-standardized CVDs mortality in high-income countries (HICs) is decreased by 21% in the last two decades (Lozano et al., 2012). The adoption of population and individual-based preventive strategies recommended by WHO is the main reason for this substantial decline in HICs (Bonita et al., 2013). In population-based strategies, the focus is on developing such public health policies, which transform the distribution of primary risk factors of CVDs in the population. However, individual-based strategies tend to focus on the early assessment of the likelihood of CVDs events, identifying high-risk individuals and their management through modifiable risk factors. Besides, it is more suitable in clinical settings as they