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Abstract—Software module clustering is an unsupervised learning method used to cluster software entities (e.g., classes, modules, or

files) with similar features. The obtained clusters may be used to study, analyze, and understand the software entities’ structure and

behavior. Implementing software module clustering with optimal results is challenging. Accordingly, researchers have addressed many

aspects of software module clustering in the past decade. Thus, it is essential to present the research evidence that has been published

in this area. In this study, 143 research papers from well-known literature databases that examined software module clustering were

reviewed to extract useful data. The obtained data were then used to answer several research questions regarding state-of-the-art

clustering approaches, applications of clustering in software engineering, clustering processes, clustering algorithms, and evaluation

methods. Several research gaps and challenges in software module clustering are discussed in this paper to provide a useful reference

for researchers in this field.

Index Terms—Systematic literature study, software module clustering, clustering applications, clustering algorithms, clustering evaluation,

clustering challenges
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1 INTRODUCTION

CLUSTERING (also called cluster analysis) is an unsupervised
datamining technique that groups a set of data points into

several clusters [1]. When several points fall inside a cluster,
they are similar in some features. Measurement of the similar-
ity and dissimilarity relies on the extent to which the data
points share the same features. Clustering has been employed
in many important fields of study and applications, including
software engineering, information retrieval, machine learning,
pattern recognition, and statistics [2].

In the context of software engineering, software clustering
is being defined as the process of decomposing large software
systems into smaller, manageable, meaningful (highly
cohesive), independent (loosely coupled), and feature-
oriented (share common features) subsystems [3], [4]. These
subsystems may contain entities/artifacts (e.g., classes, mod-
ules, or files) of similar features. A software module clustering
approach that accomplishes this task can have a substantial
impact and practical benefits, especially for developers

working on legacy systems with documentation that is out-
dated or nonexistent. Clustering in software engineering can
be used in many applications, such as architecture recovery
[5], code clone detection [6], and poor design detection [7].

With several algorithms and studies published in the litera-
ture, software module clustering has become an active
research area. Although many module clustering approaches
have been proposed and applied, they have difficulties meet-
ing the current development and advancement needs in soft-
ware and its various applications. For example, there is a lack
of experimental studies on clustering a system developed
using more than one programming language [8] or a system
that performs some of its tasks by invoking ready-made web
services available on the Internet/network [9], [10].

This paper presents a comprehensive systematic litera-
ture study to structure and categorize the state-of-the-art
research evidence related to software module clustering
during the past decade. The study defines several research
questions (RQs) that cover many aspects of the field and
then identifies relevant papers and their results. It con-
cludes by discussing future research opportunities in the
area. In this process, a systematic method is used to collect
and analyze the related published research.

The remainder of this paper is structured as follows:
Section 2 presents the motivation and an overview of related
work. Section 3 describes in detail the research methodology
used to conduct this study. Section 4 presents the results and
outcomes. Section 5 discusses the issues of validity. Finally,
Section 6 presents the conclusions of the study.

2 MOTIVATION AND RELATED WORK

Software module clustering is an important topic of
research in software engineering. Although it started in the
1990s, software module clustering research has experienced
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more momentum and attention in the past decade. This
momentum and attention are reflected in the dramatic
increase in the number of publication. Among the many fac-
tors leading to this increased attention, there have been two
leading factors in the past decade. First is the dramatic
increase in software application size due to the newly added
functionalities and features they provide. This, in turn, has
led to an increase in the number of modules for these appli-
cations. Here, software module clustering is a good
approach to manage and maintain this kind of application.
Second, the advancement of artificial intelligence (AI) meth-
ods (such as data mining, clustering, optimization, and
machine learning methods) in the past decade has played a
substantial role in increasing the research activity related to
software module clustering.

Although it has been an active research area since the
1990s, a systematic literature study exploring research on
software module clustering in the past decade is lacking. A
few survey/review studies on software module clustering
have been found in the literature. Shtern and Tzerpos [11]
provided an overview of different software clustering meth-
ods and their applications in software engineering. The
study highlighted some approaches for the evaluation of
software clustering results. It also presented some research
challenges to be addressed to improve software clustering
results. In [12], the basic concepts and necessity of software
module clustering were presented briefly. The authors also
described different metaheuristic search techniques that
have been applied to the software module clustering prob-
lem in the maintenance phase of the software development
life cycle. In [13], the authors presented different search-
based approaches to software clustering that have been clas-
sified into several categories (mono-objective, multiobjec-
tive, and many-objective) based on the number of clustering
quality criteria. Furthermore, the advantages and disadvan-
tages of each category are presented briefly. In [14] and its
extended version [15], the authors described search-based
optimization techniques and their applications in different
software engineering domains. They briefly introduced soft-
ware modularization and refactoring as clustering problems
that can be addressed using several search algorithms.
Additionally, they presented some research challenges with
search algorithms, including determining suitable stopping
criteria to terminate the search and issues related to visual-
izing the search results. The authors in [16] also dedicated
parts of their study to performing software modularization
and refactoring using search-based optimization techni-
ques. They briefly introduced a number of algorithms in
this respect, including NSGA-II and PCA-NSGA-II. Addi-
tionally, a number of evaluation metrics, such as coupling,
cohesion, and modularization quality (MQ) have been
mentioned.

The aforementioned studies were not focused on con-
ducting a dedicated literature analysis of software module
clustering: some aspects of software module clustering are
covered as part of other related topics. By contrast, our
paper presents an in-depth and systematic analysis with a
detailed research methodology to examine different soft-
ware module clustering aspects, such as applications, algo-
rithms, tools, target systems, evaluation methods, and
possible research gaps.

3 RESEARCH METHODOLOGY

This study was based on the guidelines of conducting sys-
tematic mapping studies provided by [17], the guidelines
for conducting literature review studies provided by [18],
and other studies. These studies aimed to investigate soft-
ware engineering in a particular context other than software
module clustering (e.g., [19], [20], [21]). Fig. 1 shows the
five-stage systematic process used in this research.

The first stage is defining the research scope and ques-
tions. Themain research problem of the studywas identified,
and several questions were formed to address the problem.
The second stage is conducting the search process in which a
search strategy to select the primarily published papers was
specified. The third stage is screening the published papers
obtained from the previous stage via several filtering meth-
ods. The fourth stage is data extraction, where the selected
papers are carefully analyzed, and useful data are extracted
to answer the questions defined in this study. Finally, the
fifth stage is the results reporting. The following subsections
elaborate on the aforementioned stages in detail.

3.1 Identification of the Research Need and Scope

3.1.1 Research Objectives

This study aims to provide a comprehensive analysis of publi-
cations on software module clustering in the past decade by
identifying, examining, and categorizing state-of-the-art con-
tributions. Only papers from the past decadewere considered
to keep the review focused on recentworks on the topic. Nota-
ble changes in software development have occurred over the
past decade. Software systemsmigrated from simple architec-
tures, such as monolithic and two-tiered architectures to mul-
titier (also called n-tier or multilayered) architectures.
Additionally, development approaches changed from struc-
tured to object-oriented to service-oriented. In other words,
software development continues to change. Software devel-
opers use vast amounts of source code to understand large
and complex systems before making changes, which is not
feasible. Thus, software clustering has been employed to

Fig. 1. Stages of the used literature analysis study.
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provide automated assistance to recover the abstract structure
of systems and understand them.

3.1.2 Research Questions

To achieve the aim of this study and reflect its objectives, sev-
eral RQs related to the topic were defined. Each defined RQ
addresses a specific aspect of softwaremodule clustering.

� RQ1. What is the number and distribution of publi-
cations on software module clustering over the last
decade?

� RQ2.Which researchers, organizations, and countries
are active in softwaremodule clustering research?

� RQ3. What are software module clustering applica-
tions and how these applications are distributed?

� RQ4. What is the standard process of software mod-
ule clustering?

� RQ5. What are the software systems used as targets
for the experiments of software module clustering?

� RQ6. What are the current factbase sources, their
types, their forms, and extraction tools used in soft-
ware module clustering?

� RQ7. What are the most used similarity measures in
the software module clustering?

� RQ8. What are the most used algorithms, their types,
and standard stop conditions?

� RQ9. What are the most used tools for visualizing
clustering results?

� RQ10. What are the metrics used to evaluate cluster-
ing results and the current approaches to obtaining
the gold/expert decomposition?

� RQ11. What are the potential future research direc-
tions on software module clustering?

3.2 Search Strategy

3.2.1 Literature Sources

In this study, five standard online databases were selected
as sources that index the literature of software engineering

and computer science [17]. These sources are presented in
Table 1.

3.2.2 Search String

The population, intervention, comparison, and outcomes
(PICO) method [18] was employed to identify related stud-
ies. Here, population (P) refers to the applied area of cluster-
ing, intervention (I) refers to the process or procedure used
to solve the clustering problem and outcomes (O) refers to
the outcomes of the work and research of clustering in soft-
ware engineering. Comparison (C) is not considered in the
keywords, as this study is a general analysis of clustering in
software engineering. Table 2 presents the keywords associ-
ated with each part of the method in the final search string.
Notably, the search terms used in the final search string
were linked with one another based on the steps described
in [22]. Here, the “OR” Boolean operator was used to link
synonyms or related search terms to the topic of this study
and the “AND” Boolean operator was employed to link the
main search terms.

Different combinations of search strings tried to con-
struct the final one since the term “clustering” is used in
other research areas such as data mining, image processing,
and statistics. The final search string was the one that meets
the following two criteria.

� The search string that returns the most relevant
studies.

� The search string that returns the maximum number
of the identified pilot set. For this study, a pilot set of
25 papers has been selected based on our experience
and initial research review.

As an example, the search string Try 2 in Table 3 was
excluded because the returned result is incomplete com-
pared to the search string Try 5.

3.3 Paper Selection

3.3.1 Inclusion/Exclusion Criteria

To decide whether a paper is relevant to the scope of this
research, a set of criteria, which are presented below, for
inclusion and exclusion was considered.

� Inclusion criteria are:
– Papers published online from 2008-2019. Papers

related directly to software module clustering.
This is ensured by reading the title of each
obtained paper. However, the abstract or full-
text reading has been also applied when the title

TABLE 1
The Used Database Sources to Explore the Literature

Source URL

IEEE Xplore https://ieeexplore.ieee.org/
Elsevier ScienceDirect https://sciencedirect.com/
ACM Digital Library https://dl.acm.org/
Scopus https://scopus.com/
SpringerLink https://link.springer.com/

TABLE 2
PICO Related Keywords

PICO method Keywords used

Population (P) (software OR project OR system OR application OR program OR module OR component
OR service OR source code OR package OR file OR function OR class)

Intervention (I) (clustering OR cluster analysis OR partitioning OR grouping OR splitting OR structuring OR modularizing
OR constructing OR composing OR categorizing OR classifying)

Comparison (C) No comparisons considered in the keywords

Outcomes (O) (methodology OR algorithm OR technique OR approach OR method OR tool OR improvement
OR evaluation OR similarity measurement OR application OR metric OR problem OR challenge OR limitation)
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reading was not enough. This criterion filtered
most of the papers out.

� Exclusion criteria are:
– Papers not published in English are excluded

since English is the prevalent language used in
the scientific peer-reviewing global community.

– Papers without accessible full text.
– Papers not formally peer-reviewed (gray litera-

ture and books).
– Papers not published electronically.
– The duplicated paperswere excluded from the list.

Authors sometimes publish expanded versions of
their conference papers to journal venues. Such
papers share most of the material and considering
them both would affect the quality of this study.
To overcome this issue, duplicated papers are
identified by comparing paper titles, abstracts,
and contents. When the duplication is confirmed,
the least recent publication is removed.

– Master and Ph.D. dissertations are excluded
because the content of such publications is even-
tually presented in peer-reviewed venues, which
have already been considered in our study.

– Papers that are published as surveys are filtered
out because they do not actually bring new tech-
nical contributions to softwaremodule clustering.

3.3.2 Snowballing

The snowballing [23] search method was applied to the
remaining papers to reduce the possibility of missing criti-
cal related papers. In this method, each research paper’s list
of references is examined in terms of the previously applied
inclusion/exclusion criteria. The process was then recur-
sively applied to newly identified papers.

3.3.3 Quality Evaluation

For quality evaluation, each paper must be evaluated to
determine whether sufficient information can be extracted
from it. Papers that did not provide answers to the follow-
ing two questions were excluded:

� Is the process of software module clustering
described in detail?

� Are there experimental results and evaluation for the
software module clustering process?

The number of included and excluded papers at each
stage of the paper selection process is shown in Fig. 2.
Besides, all the identified papers and their references, full
names, and publication years are listed in Table 12.

3.4 Data Extraction

In this phase, the data of the considered studies were
extracted and analyzed to answer the defined RQs. The data

TABLE 3
Search Strings Piloted on IEEE Xplore

Fig. 2. Results of the paper selection process.
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obtained in this phase were stored in an Excel file with differ-
ent fields created for this purpose. Each data extraction field
has a data item and a value, as presented in Table 4. Notably,
a reliable data extraction method was followed in this stage:
the data were extracted first by the first author and then dou-
ble-checked by the other authors separately.

4 RESULTS

The selected papers were carefully analyzed to answer the
RQs. Here, a short title is used to represent each RQ. The fol-
lowing subsections present and discuss the results based on
each RQ.

4.1 Distribution of Publications (RQ1)

4.1.1 Publication Frequency

As previously mentioned, 143 papers published over the
past decade (2008-2019) were included in this study. The
selected papers were analyzed to determine their frequency
and evolution, as shown in Fig. 3.

The figure also shows that the average number of publica-
tions per year is approximately 12. Additionally, interest in

the topic has increased in the past three years, which indi-
cates the successful application of module clustering to solve
problems in software engineering alongwith the exponential
growth of software applications in number, size, and com-
plexity. One reason for this growth is that software has no
limited lifetime: software code is constantly changed to meet
user needs. Thus, developers are always in need of tools and
approaches to ease the process of software maintenance.
Software module clustering helps considerably in this con-
text. Another valid reason is that software development is
constantly changing with the development of new technolo-
gies. In the past few years, AI and the Internet of Things (IoT)
have become trending technologies [24] impacting software
development. The complexity of software systems based on
such technologies is increasing dramatically as advanced
features are employed. As a result, many legacy systems
have been transformed to cope with this change. Under-
standing those systems before integrating them with new
technologies requires an in-depth analysis, which may be
achieved by employing software clustering.

4.1.2 Publication Venue

Fig. 4 shows that the considered papers, namely, 92 are con-
ference papers, 43 are journal papers, 4 are symposium
papers, and 4 are workshop papers were published in

TABLE 4
Data Extraction Form

Data Item Value Relevant RQ

ID Integer paper ID number None
Title Paper title None
Year Paper publication year RQ1
Type Paper publication type RQ1
Venue Publication venue name RQ1
Author Name Name of the author(s) RQ2
Author Organization Name of the organization for each participated author/co-author RQ2
Author Country Name of the country for each participated author/co-author RQ2
Clustering Applications Applications of software module clustering RQ3
Clustering Process The standard steps of software module clustering RQ4
Target Systems The software systems used in the experimental testing RQ5
Factbase Extraction The sources, fact types, and tools used for factbase extraction RQ6
Similarity Measures The similarity measures used in the clustering process RQ7
Clustering Algorithms The algorithms used in clustering and their types RQ8
Visualization Tools The tools used for visualizing clustering results RQ9
Evaluation Metrics The metrics used for clustering results evaluation RQ10
Future Research The possible future research directions RQ11

Fig. 3. Publication per year. Fig. 4. Publication ratio per each venue.
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various venues. This result also shows that only 30 percent
of the considered papers have reached the maturity of a
journal publication, indicating that software module cluster-
ing is a very young or even immature research area [25],
[26]. Moreover, few conference papers were published as
book chapters. For these papers, consideration was given to
their original venues, that is conferences. Fig. 5 shows the
publication number per year by venue type.

The most active and top journals, conferences, sympo-
siums, and workshop venues that publish papers on soft-
ware module clustering can be determined by analyzing the
publications. Abbreviations are used in this paper instead
of full names. Fig. 6 shows the active journals in which the
considered studies were published. The full names of the
journals are presented in Table 13. The figure also shows
that the most active and top journals are “Inf. Softw. Tech-
nol.”, “J. Syst. Softw.”, “IEEE Trans. Softw. Eng.”, “Procedia
Comput. Sci.”, “Soft Comput.”, and “IET Softw.”. Notably,
44 percent of the journal papers were published in the top
six journals, whereas the other 56 percent were published in
individual journals.

Fig. 7 shows the active conferences that published papers
in software module clustering. The full names of the

conferences can be found in Table 14. The most active and
top conferences are the International Conference on Pro-
gram Comprehension (ICPC), Conference on Software
Maintenance and Reengineering (CSMR), and Working
Conference on Reverse Engineering (WCRE). Notably,
approximately 15 percent of the conference papers were
published at these top three conferences. If other conferen-
ces that publish two or three papers are considered, then
approximately 37 percent of the conference papers were
published by annual conferences. The largest number,
approximately 63 percent, of the published conference
papers were at individual conferences, represented as
“Others” in Fig. 7.

4.2 Active Researchers, Organizations, and
Countries (RQ2)

Many researchers are interested and involved in software
module clustering research. However, the most active
researchers are those who have more than two published
papers either as a main author or coauthor. The ranking of
active researchers is shown in Fig. 8. The ranking shows
that “Jitender Kumar Chhabra” and “Giuseppe Scanniello”
are the top two researchers in this field, with nine and eight
published papers, respectively. These authors participated
in approximately 12 percent (17/143) of all publications.

Fig. 5. Publication number per each venue.

Fig. 6. Number of published papers versus journal name.

Fig. 7. Number of published papers versus conference name.

Fig. 8. Active researchers based on the published papers.
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Table 5 shows the ranking of the active countries and
organizations, including the name of country, organization,
participating researchers, reference to the published papers,
and the total number of papers.

The active countries in the published papers can also be
extracted from the information presented in Table 5. Such
data can be obtained based on the organizational affiliation
of the authors/coauthors. Fig. 9 shows the countries that
are most active in publishing papers on software module
clustering and the share of papers published by each coun-
try with respect to the total number of publications.

The most active countries were those that published
more than one research paper. Such countries produced
approximately 41 percent (58/143) of the total publications.
India and Italy were the two most active countries, with 10
and 9 published papers, respectively. Those papers pub-
lished from India were from a collaboration between the
authors “Jitender Kumar Chhabra,” “AmarjeetPrajapati,”
and “Amit Rathee.”

4.3 Applications of Software Module
Clustering (RQ3)

An in-depth analysis of the selected papers revealed that
software module clustering applications can be classified
into 14 areas (A1-A14). This result is presented in Table 6
which shows the papers in each application area. From the
identified application areas, it is clear that “information
recovery (A1)” and “restructuring (A2)” are the top two
applications of software module clustering with 59 and 44
published papers, respectively.

4.4 Software Module Clustering Process (RQ4)

Answering RQ4 helps to determine the detailed steps of the
software module clustering process. Moreover, it helps to
identify the algorithms, techniques, and tools used in each

TABLE 5
Countries, Organizations, and Researchers Active in Researching Software Module Clustering

Fig. 9. Active countries.
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TABLE 6
Application Areas of Software Module Clustering
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step of the process. The ideal software module clustering
process includes five main steps, as shown in Fig. 10. Here,
the process ends when reaching a stopping criterion such as
a maximum number of iterations or a desired number of
clusters. The following subsections describe the steps of the
process.

4.4.1 Factbase Extraction

The input that a software clustering algorithm expects is
often called a factbase as it contains facts (e.g., relationships
between software entities) extracted from the target soft-
ware system [163]. In this step, the extracted factbase should
consist of sufficient information about the target software
system to ensure meaningful clustering [70]. Factbase
extraction includes target software system selection, fact-
base source selection, filtering and preprocessing, entity
selection, and feature selection.

A. Target Software System Selection (RQ5)
Before starting the software clustering process, target

software systems must be specified. The analysis of the
selected studies reveals that open-source software systems
written in Java and C/C++ have been the focus in the litera-
ture. Fig. 11 shows the most commonly used target software
systems.

The figure clearly shows that “Junit,” “jEdit,” and
“JHotDraw” are the most commonly used systems in the
experimental tests, accounting for approximately 16 percent
(23/143), 13 percent (18/143), and 11 percent (16/143) of the
published papers, respectively. In addition, the top three sys-
tems are written in Java. The reason for this fact could be that
Java is still the most widely used programming language
according to the TIOBE Index [164]. For the experimental
clustering tests, we recommend selecting the target systems
that arewell-known to the developer and researcher commu-
nities. They are free and open-source, written in widely used
programming languages, and updated frequently.

B. Factbase Source Selection (RQ6)
Any software clustering process starts with the construc-

tion of a factbase. As mentioned, the factbase contains infor-
mation on the target software system, such as software
entities (e.g., classes and variables) and their relationships
(e.g., inheritance and method calls). Such information can
be extracted from various sources. Table 7 presents in detail
the different types of factbase sources. After constructing
the factbase, a software clustering algorithm can be applied
to group entities from the factbase into useful subsystems.
Many clustering methods combine facts extracted from dif-
ferent sources to obtain reasonable results at the cost of
more complex data processing [82].

Fig. 12 shows that “source code”, “documentation”,
“dynamic information”, and “bytecode” are the most com-
monly used sources for factbase extraction, constituting
approximately 82 percent (117/143), 3 percent (4/143), 2
percent (3/143), and 3 percent (2/143) of the total published

Fig. 10. Software module clustering process.

Fig. 11. Number of published papers versus the targeted software
systems.

Fig. 12. Number of published papers versus the factbase source.
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TABLE 7
Factbase Sources
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papers, respectively. In addition, many papers combined
two sources for factbase extraction. In this respect, “source
code and evolutionary information” is the most commonly
used combination, accounting for approximately 6 percent
(8/143) of the total publications.

The factbases are extracted from the sources in different
forms. Analysis of the selected papers reveals that the
“dependency graph,” “vector-space model,” “software met-
rics,” and “extended dependency graph” are the most com-
monly used forms of the factbase. Fig. 13 shows the analysis
results of the published papers. The figure also shows that
approximately 57 percent (81/143), 32 percent (46/143), 8
percent (12/143), and 3 percent (4/143) of the total pub-
lished papers considered “dependency graph”, “vector-
space model”, “software metrics”, and “extended depen-
dency graph”, respectively. The following points describe
these factbase forms in detail:

� Dependency graph: It is a graph representation of the
target software system. The nodes in the dependency
graph represent software entities, whereas the edges
represent the logical/static relationships between
entities. In some cases, edges are weighted to denote
the degree of dependency. Once the dependency
graph is extracted, many characteristics of the target
software system can be discovered, such as the

independence degree of the software entities based
on their relationships.

� Vector-space model: It is used to capture the relative
importance of terms (e.g., class name, function
name, object name, and variable name) in a docu-
ment, e.g., class file, and program file. In the vector-
space model, a document is represented by a vector
of terms extracted from the document with associ-
ated weights (which can often be computed using
the term frequency-inverse document frequency
(TF-IDF) method [40]) representing the importance
of the terms in the document and within the whole
document collection (the target software system).

� Software metrics: They are quantitative measures that
enable software engineers and managers to under-
stand the target software system. The number of
code lines per class, number of methods per class,
and depth of inheritance level are possible metrics.

� Extended dependency graph: It is a graph that combines
logical/static relationships and evolutionary rela-
tionships among software entities. The evolutionary
relationships of the targeted software system repre-
sent the changes applied to its source files over time.
Currently, many version control systems, such as the
concurrent versions system (CVS) and Git, store
these changes.

Notably, researchers typically use tools, which are
mostly open-source Java programs, to perform factbase
extraction. Table 8 presents all the tools that have been used
in the selected studies, along with their links.

C. Filtering and Preprocessing
Filtering is a useful preprocessing phase in any clustering

process to identify and remove unnecessary textual and non-
textual information that has been extracted from comments
and source codes. Textual information can be meaningless
words, such as words with less than three characters, lan-
guage keywords, or commonEnglishwords that are not usu-
ally useful for a search [39]. Textual information can also be
library classes or header files used in multiple modules and

Fig. 13. Number of published papers versus the factbase extracted.

TABLE 8
Factbase Extraction Tools

Tool URL

Dependency Finder http://depfind.sourceforge.net/
Class Dependency Analyzer (CDA) http://www.dependency-analyzer.org/
ASM http://asm.ow2.org
CScout https://www.spinellis.gr/cscout/
Bunch https://wiki.eecs.yorku.ca/project/cluster/tools
Sotograph https://www.hello2morrow.com/products/sotograph
Structure101 https://structure101.com/
Understand 2.0 https://scitools.com/
JRipples https://marketplace.eclipse.org/content/jripples
E-Quality http://smart.cs.itu.edu.tr/tools/equality/
Javassist http://www.javassist.org/
Visual Paradigm https://www.visual-paradigm.com/
Doxygen http://www.doxygen.nl/
Jdeps https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdeps.html
Roslyn https://github.com/dotnet/roslyn
Stan4J http://www.stan4j.com/
PomWalker https://github.com/raux/PomWalker
SrcML.NET https://github.com/abb-iss/SrcML.NET
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made available across the implementations of a program-
ming language. These classes have to be eliminated; other-
wise, they tend to group many classes in a single large
cluster around them [38]. Nontextual information can be
operators, symbols, special characters, and punctuations.
Preprocessing can be implemented in the form of a normali-
zation procedure. The attributes of the software entities can
be a mixture of numerical and categorical data. Here, with
the help of normalization, all the attributes are treated
equally [100]. Preprocessing can also be conducted in the
form of dimensional reduction, which is used to reduce the
size of the input vectors [148]. Filtering is an essential phase
to facilitate further processing and avoid the risk of decreas-
ing the clustering quality [82].

D. Entity Selection
Software entities are the input to any software clustering

technique. Therefore, entities to be clustered must be identi-
fied beforehand. The selection of entities depends mainly
on the aim of the clustering technique [66]. Table 9 presents
two examples in this respect.

Low-level entities represent the functionality of the target
software system much more clearly than high-level entities.
However, some software systems are large and contain
enormous numbers of functions that make the use of func-
tions in the clustering process inappropriate. In such cases,
the clustering of high-level entities is preferable.

E. Feature Selection
Each software entity has a set of features. The features of

a class entity, for example, can be broadly divided into two
types [4], [93]:

� Nonformal features: These include file naming con-
vention, class creation date, number of functions,
number of variables, number of lines of codes, and
comments. Nonformal features do not directly affect
system behaviors. Also, they can be easily extracted,
interpreted, and understood by humans.

� Formal features: These include class invocations,
method invocations, and entity relationships. Rela-
tionships can be categorized into two types [66]:
– Direct relationships: Represent an immediate

connection between two entities e.g., if function
f1 calls another function f2, then f1 and f2 are
directly related.

– Indirect relationships: Represent the proportion
of common features that two entities share e.g., if
functions f1 and f2 both call function f3, then f1
and f2 are indirectly related to each other.

The formal features have a direct impact on system
behaviors. For example, if a class changes its invocation
from one class to another, then changes in the system’s
behavior should be expected. Extracting formal features,

however, can be more complicated, as parsing rules need to
be applied. This process becomes even more complicated
when only partial information is available.

Feature selection aims to prepare the features of all soft-
ware entities for the next step as a feature matrix (also called
the entity-feature matrix) [83]. A feature matrix is a two-
dimensional matrix where the rows represent software enti-
ties and the columns represent their features. The value of
each cell in the matrix is either 0, which indicates the
absence of a feature, or 1, which indicates the presence of a
feature [137]. Table 10 presents a feature matrix of software
containing 5 entities and 4 features. Feature F1 is present in
all the entities, while feature F3 is absent in all the entities.
Features F2 and F4 are present or absent in the entities.

Some clustering approaches apply weighting schemes
(e.g., binary weighting, absolute weighting, and relative
weighting) to the features to represent the significance of
each one. Thus, the connection strength between a pair of
entities can be calculated [4].

4.4.2 Similarity Calculation (RQ7)

Similarity measures are used with software module cluster-
ing to determine the most similar or dissimilar entities
based on their features. Generally, entities are considered
more similar if they share more common features [38]. After
the computation of the similarity among all pairs of soft-
ware entities, a similarity matrix can be generated for the
next step. The most commonly used measures in the consid-
ered papers are shown in Fig. 14. Clearly, “Jaccard dis-
tance,” “Cosine distance,” and “euclidean distance” are the
most common, accounting for approximately 12 percent
(17/143), 8 percent (12/143), and 6 percent (8/143) of the
total publications, respectively.

4.4.3 Cluster Creation (RQ8)

Here, a clustering algorithm must be applied to similar
group entities of the target system based on specific fea-
tures. The selection of a suitable algorithm to apply to a task
is difficult. However, the authors in [163] introduced a
method to help in this respect.

TABLE 9
Entities Selection

Clustering aim Input entities Entities abstraction level

Software comprehension Functions and their call statements Low-level (also called detailed level)
Architecture recovery Software classes, packages, modules, and files High-level (also called architectural level)

TABLE 10
A Simple Feature Matrix

F1 F2 F3 F4

E1 1 0 0 1
E2 1 0 0 0
E3 1 1 0 1
E4 1 1 0 0
E5 1 1 0 1
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The analysis of the considered published papers in the
study reveals the following general categories of clustering
algorithms used in the literature:

� Hard clustering: In this type, a software entity can be
in only one cluster and can be divided into two
types:
– Hierarchical clustering [3]: For a given set of n

entities, hierarchical clustering algorithms are
divided into two types:
* Agglomerative (bottom-up) algorithms:

The algorithms begin with n singletons
(each of one entity) and merge them until a
single cluster is obtained. The two most
similar clusters are merged in each step of
the process. Agglomerative algorithms
provide different perspectives of software
clustering: the earlier clustering iterations
present a detailed view of the software
architecture and the later ones present a
high-level view [4].

* Divisive (top-down) algorithms: These
algorithms start with one cluster (contain-
ing all n entities) and split it until n clusters
are obtained.

– Partitional clustering: For a given set of n entities,
this approach simply divides the set of entities
into nonoverlapping clusters such that each
entity is in exactly one cluster.

Notably, some studies have combined more than one
clustering algorithm. For example, hierarchical and parti-
tional clustering can be combined to achieve a common
goal. This type of clustering is called cooperative clustering
[84].

� Soft clustering (also called fuzzy clustering): This
approach is based on fuzzy logic, where a software
entity can be in one or more clusters. Thus, a proba-
bility or a membership degree of that entity in those
clusters is assigned [39].

A deep analysis of the selected papers reveals that twenty-
two clustering algorithms are the most commonly used, as
shown in Fig. 15. Notably, “agglomerative hierarchical
clustering” and “k-means” are the most commonly used

clustering algorithms in the context of software module clus-
tering, with percentages of approximately 28 percent (40/
143) and 11 percent (16/143) of the total publications, respec-
tively. Fig. 15 clearly shows this result.

Fig. 16 shows that “Partitional Clustering” is the most
commonly used type of clustering, accounting for approxi-
mately 50 percent (71/143) followed by “Hierarchical
Clustering”, with approximately 31 percent (44/143), and
“Fuzzy Clustering”, with approximately 1 percent (2/143)
of the total publications.

In hierarchical clustering, several methods can be used to
compute the distance between clusters. An examination of the
selected studies reveals the sevenmost commonly usedmeth-
ods. Fig. 17 shows this result. Clearly, the top three methods

Fig. 14. Number of published papers versus similarity/dissimilarity
measure. Fig. 15. Number of published papers versus clustering algorithm.

Fig. 16. Number of published papers versus clustering type.

Fig. 17. Number of published papers versus distance computation meth-
ods in hierarchical clustering.
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are “complete linkage”, with approximately 9 percent (13/
143), “single linkage”, with approximately 7 percent (10/143),
and “average linkage”, with approximately 6 percent (9/143)
of the total publications.

The analysis of the selected studies indicated the use of
several different termination conditions. The clustering pro-
cess can be terminated based on one of the following cutoff
conditions [4], [116]:

� A good solution has been reached (e.g., when satisfy-
ing results are obtained by applying one or more
clustering evaluation metrics).

� Amaximum number of iterations has been reached.
� Improvement has not been found for a long time.
� All software entities are combined into a single

cluster.
� A pre-specified termination condition has been met

(e.g., a specific number of clusters has been formed).

4.4.4 Results Visualization of the Clustering (RQ9)

Visualization is used after the software module clustering
process to view the clustering results as graphs, dendro-
grams, or distribution maps. Visualization of the results is
also used to enable software engineers to efficiently and
conveniently examine the clustering results. To achieve this
goal, the visualization tools used in the literature ease and
automate the visualization process. For example, graph
visualization tools compile a graph description language
and generate an image file outlining the subsystems as the
output of software clustering [77]. Analysis of the selected
studies reveals that researchers have not focused on the
visualization of the clustering results. A potential reason for
this situation is related to the software module clustering
systems’ end-users, which are the developers themselves or
domain experts. However, Table 11 shows the visualization
tools used in three of the studies.

4.4.5 Results Evaluation Metrics of the Clustering

(RQ10)

The software clustering results should be evaluated in
accordance with specific criteria to assess their quality [77].
Several methods in the literature can be used to assess the
quality of software clustering algorithms. Although crucial,
validation of the results produced by these algorithms is dif-
ficult. Fig. 18 shows the most commonly used evaluation
methods in the considered papers. The following points
summarize these evaluation methods:

� Results Compared with Other Results: The results
obtained from the applied clustering algorithm are
compared to those of previously published studies.

� Modularization Quality: MQ measures the cohesion
and coupling of modules and is used to ensure that
the clusters of a system are the cohesive modules in
the clusters and the loose connections between
clusters.

� MoJo Similarity Metrics: They measure the similarity
between the partition produced by the software clus-
tering process and the partition created by an expert
(also called the expert decomposition, authoritative
decomposition, benchmark decomposition, reference
decomposition, gold decomposition, ground truth
decomposition, or baseline decomposition) usingMoJo
metric and its family based on the number of Move
and Join operations required to transform one decom-
position into the other [77]. The similarity between the
two partitions should be as high as possible.

� Execution Time: The clustering process should not
require a very long time [77].

� Extremity: Also called Nonextremity cluster distri-
bution (NED), it measures whether the clusters of
the partition produced by the software clustering
process have extreme values or not. A good cluster-
ing process should not produce a partition that
includes (a) Enormous clusters – clusters with too
many software entities would reduce the cohesion.
(b) Singleton clusters (also called isolated clusters) or
small clusters – clusters with one or too few software
entities would increase the coupling of software
[128].

TABLE 11
Results Visualization Tools

Tool URL Supported Languages

Prefuse http://vis.stanford.edu/papers/prefuse Java
Sotograph http://www.hello2morrow.com/products/sotograph C/C++, C#, Java, PHP, and Typescript
Graphviz http://www.graphviz.org C/C++, Java, PHP, Python, Ruby, Perl, Guile, and TCL

Fig. 18. Number of published papers versus clustering evaluation metric.
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� Cohesion (intraconnectivity): It measures the density
of connections among the software entities in a sin-
gle cluster. High cohesion indicates good clustering,
as highly dependent modules are grouped into the
same cluster [140].

� Precision/Recall: Precision measures the percentage
of entity pairs (in the same cluster) produced by the
clustering algorithm that are also in different clusters
in the expert decomposition. High precision indicates
good clustering. Recall measures the percentage of
entity pairs (in different clusters) in the expert decom-
position that were also found by the clustering algo-
rithm. High recall indicates good clustering [116].

� Stability: It measures whether the clustering process
produces similar partitions in the case of small
changes between successive versions of an evolving
software system [81].

� Coupling (interconnectivity): It measures the density
of connections among software entities in different
clusters. Low coupling indicates good clustering, as
the clusters are highly independent of each other
[140].

� Human Experts: One or more domain experts manu-
ally evaluate the results obtained from the applied
clustering algorithm.

� F-Measure: It measures the goodness or accuracy of
the clustering methods by calculating the weighted
average of recall and precision [145].

� Accuracy: The percentage of software entities that
are correctly classified.

� Sum of Squared Error (SSE): The sum of the squared
differences between entities in each cluster generated
by a clustering algorithm and the entities of each clus-
ter in the expert decomposition. Thus, SSE can be
used as a measure of variation between clusters. For
example, if the SSE between entities of two clusters is
equal to 0, then they are matched perfectly and have
no error. Smaller SSE is better, and obtaining clusters
that minimize the SSE is always desirable [139].

� Arbitrary Decisions: An arbitrary decision is required
when two or more entities hold the same similarity.
Thus, the percentage of arbitrary decisions is employed
to evaluate the clustering [83].

� Inverted Generational Distance (IGD): It is calculated
as the average euclidean distance from each refer-
ence point (true Pareto front) to the nearest solution
(Pareto front obtained by the algorithm) in the solu-
tion set. Here, the set of Pareto optimal solutions pro-
duced by all algorithms overall runs is used as the
true Pareto front [30].

� Meaningfulness: Generated clusters should resemble
the subsystems of the original system [77].

� Chi-Square Test: It determines if the entities of two dif-
ferent clusters are related in terms of some features.

� Number of Clusters: It measures the compactness of
the clusters created during the software clustering
process. A high number of clusters indicates that they
are highly compact (cohesive), while a low number of
clusters indicates that they are noncohesive [55].

Fig. 18 shows that “Results Compared with Others
Results” is the most commonly used clustering evaluation

method, accounting for approximately 53 percent (76/143) of
all publications, followed by “Modularization Quality”, 30
percent (43/143), and “MoJo Similarity Metrics”, 16 percent
(23/143). Many studies use more than one clustering evalua-
tionmethod; thus, the results overlap.

Some clustering evaluation methods (e.g., MoJo Similar-
ity Metrics and precision/recall) work only when expert
decomposition is available as a comparison standard.
Examination of the total publications reveals that a number
of approaches have been presented for obtaining expert
decomposition. A summary of these approaches is pre-
sented as follows:

� Domain Expert-Based Decomposition: The decom-
position is performed by software domain experts.
Domain experts are personnel with experience in
software design and development [55]. The experts
either evaluate the results produced by a clustering
algorithm (e.g., if the results have a positive impact
on the system’s understandability) or they provide a
clustering benchmark that can be compared with the
results produced by a clustering algorithm [38].
Well-known drawbacks of this approach are as fol-
lows: (a) Experts may provide many valid ways to
decompose a software system into meaningful sub-
systems [84]. (b) They might lead to poor decomposi-
tion if they did not fully understand the purpose of
the clustering approach. (c) They may lead to poor
decomposition if their experience and knowledge
are not sufficient [114]. In addition, finding domain
experts with suitable experience, especially on open-
source software systems [37] and legacy systems
[92], is difficult. (d) Software systems are constantly
evolving and maintaining an up-to-date expert
decomposition can be a tedious, error-prone, and
time-consuming task [93].

� Factual Information-Based Decomposition: The
decomposition is obtained using the current factual
information of the targeted software system, e.g., the
folder structure, the package structure, or the file
structure.

The advantage of using this approach is that its
decompositions have good quality because they
have been created by the original developers and
domain experts [81].

� Original Developer-Based Decomposition: The decom-
position is obtained by approaching the original devel-
opers of the target software system. The drawback of
this approach is that the original developers are typi-
cally not available.

� Documentation-Based Decomposition: The decom-
position is obtained using the key functional con-
cepts extracted from the software architecture
documentation.

� Maintenance Log-Based Decomposition: The decom-
position is obtained by extracting information
embedded in maintenance logs, which can be uti-
lized to produce multiple decomposition stages of
the target system.

Many clustering approaches use expert decomposition to
evaluate the clustering results. Fig. 19 shows the distribution
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of the expert decomposition, where 24 approaches are based
on domain experts, 15 are based on factual information, 14
are based on the original developers, two are based on the
documentation, and one is based onmaintenance logs.

Many factors affect the quality and efficacy of a cluster-
ing process. The following points summarize those factors
[65]:

� The domain, type, size, and architecture of the tar-
geted software system. For example, a clustering
algorithm that is successful for a procedural pro-
gram or a small software system might be unsuccess-
ful for a large system developed in an object-oriented
paradigm [87].

� The choice of factbase sources, preprocessing of data
extracted from them and finding an appropriate
representation of them [100].

� The entities, features, and relationships between
them in terms of how well they have been selected.

� The type of similarity measures and algorithms used
for the clustering process [100].

� Arbitrary decisions during the clustering process influ-
ence the quality and performance of clustering [82].

4.5 Potential Future Directions of Research (RQ11)

Answering RQ11 will help to identify possible research
areas that may require further investigation. Based on the
analysis of the considered papers, several potential direc-
tions of research were identified. The following points sum-
marize and categorize these future research directions:

� Scalability: The clustering approach should handle a
growing quantity of input without decreasing the
clustering results’ quality. This process can be
achieved by performing clustering in parallel using
multithreading programming techniques and hard-
ware systems that have multicore processors. The
consistency of clustering must be ensured, i.e., per-
forming the clustering multiple times on the same
dataset should produce the same results.

� Visualization: The display of the clustering results
should be improved in cases where large outputs are
presented on the screen simultaneously. This
improvement can be achieved by applying filters to
separate the results into different abstraction layers.

As a result, clusters within a specific layer only can
be viewed instead of going through all the displayed
results. Thus, the user can better understand the
results. The visualization tools should also automati-
cally associate labels with the generated clusters.

� CASE tool: It is essential to consider making the
whole clustering process a working tool (e.g., third-
party libraries, plugins, and standalone applications)
available for researchers, software engineers, and
practitioners to perform further experimentation
and collect feedback for future improvements.

� Targeted systems: The targeted or subject software
systems used in the experiments are mostly Java-
based open-source systems. It would be interesting
to examine the use of non-open-source systems and
systems written in other popular programming lan-
guages. Furthermore, considering different software
application domains to keep the results generic and
widely applicable requires further study. When the
targeted systems are selected from various applica-
tion domains, a specific clustering algorithm may
exhibit various performance characteristics. There-
fore, the various performance features of a particular
clustering algorithm, when applied to multiple tar-
get systems, should be investigated.

� Entity features: Some software entities such as files
and classes have a large number of different types of
features (e.g., lines of code, executable statements,
number of functions, and number of variables or
objects) to be extracted. From a practical perspective,
addressing this large number of various features is
not preferable. Therefore, experimental studies to
determine the number and type of features needed
for better clustering results should be conducted.
Further experiments may reveal a clustering
approach that is more suitable for target systems
that present specific characteristics (e.g., size or
implemented functionality).

� Factbase sources: There are different sources for fact-
base extraction. Each has its own set of features and
drawbacks. Thus, experimental studies that can
determine the type of factbase sources that provide
better clustering results should be performed. The
impact of integrating different factbase sources on
the overall clustering accuracy should be studied.

� Cooperative clustering: Only a few studies have
combined more than one clustering algorithm to
achieve a common goal. Currently, clusters that are
produced by the first clustering algorithm are subdi-
vided and reclustered by the second clustering algo-
rithm, a situation that is often undesirable. Thus,
more experiments should be performed, and tools to
address the situation by not reclustering all the clus-
ters that are part of the initial solution set should be
developed.

� Selection of clustering algorithms: The selection of
appropriate software clustering algorithms plays a
significant role in producing meaningful clustering
results. The authors in [163] proposed guidelines for
selecting or rejecting a clustering algorithm for a
given software system. However, there are no

Fig. 19. Publication ratio by source of expert decomposition.
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TABLE 12
List of All Papers Included in the Study

ID# Ref. Paper Title Year

1 [153] A Double K-Clustering Approach for restructuring Distributed Object-Oriented software 2008
2 [114] An algorithm of system decomposition based on laplace spectral graph partitioning technology 2008
3 [162] Assessing software archives with evolutionary clusters 2008
4 [115] Cluster analysis of Java dependency graphs 2008
5 [56] Clustering based automatic refactorings identification 2008
6 [70] Employing Clustering for Assisting Source Code Maintainability Evaluation according to ISO / IEC- 9126 2008
7 [116] Evolution Strategy Based Automated Software Clustering Approach 2008
8 [3] Object-Oriented Software Systems Restructuring through Clustering 2008
9 [110] Refactoring module structure 2008
10 [117] Using Cluster Analysis to Improve the Design of Component Interfaces 2008
11 [111] An Approach for Software Architecture Refactoring Based on Clustering of Extended Component Dependency Graph 2009
12 [2] Clustering for Monitoring Software Systems Maintainability Evolution 2009
13 [79] Clustering of Software Systems Using New Hybrid Algorithms 2009
14 [5] Comparison of Graph Clustering Algorithms for Recovering Software Architecture Module Views 2009
15 [112] Decomposing object-oriented class modules using an agglomerative clustering technique 2009
16 [80] Design pattern directed clustering for understanding open source code 2009
17 [154] Restructuring Distributed Object-Oriented Software Using Hierarchical Clustering 2009
18 [137] Software Clustering Using Dynamic Analysis and Static Dependencies 2009
19 [113] Splitting a large software repository for easing future software evolution-an industrial experience report 2009
20 [118] Towards automating class-splitting using betweenness clustering 2009
21 [146] A Density Based Clustering approach for early detection of fault prone modules 2010
22 [37] A Probabilistic Based Approach towards Software System Clustering 2010
23 [65] Architecture Recovery Using Latent Semantic Indexing and K-Means: An Empirical Evaluation 2010
24 [81] Evaluating the Impact of Software Evolution on Software Clustering 2010
25 [57] Hierarchical clustering for adaptive refactorings identification 2010
26 [82] Improved Hierarchical Clustering Algorithm for Software Architecture Recovery 2010
27 [83] Object-oriented software architecture recovery using a new hybrid clustering algorithm 2010
28 [84] On the Comparability of Software Clustering Algorithms 2010
29 [85] Software architecture reconstruction: An approach based on combining graph clustering and partitioning 2010
30 [66] Software refactoring at the function level using new Adaptive K-Nearest Neighbor algorithm 2010
31 [38] Using the Kleinberg Algorithm and Vector Space Model for Software System Clustering 2010
32 [4] Applying agglomerative hierarchical clustering algorithms to component identification for legacy systems 2011
33 [147] Assessing Software Quality by Program Clustering and Defect Prediction 2011
34 [39] Clustering and lexical information support for the recovery of design pattern in source code 2011
35 [27] Clustering Dynamic Class Coupling Data to Measure Class Reusability Pattern 2011
36 [77] Clustering software systems to identify subsystem structures using knowledgebase 2011
37 [40] Clustering Support for Static Concept Location in Source Code 2011
38 [86] Deriving High-level Abstractions from Legacy Software Using Example-driven Clustering 2011
39 [41] Investigating the Use of Lexical Information for Software System Clustering 2011
40 [119] JDeodorant: Identification and Application of Extract Class Refactorings 2011
41 [87] Object oriented software clustering based on community structure 2011
42 [88] Software Module Clustering as a Multi-Objective Search Problem 2011
43 [67] Software refactoring at the package level using clustering techniques 2011
44 [89] Solving software module clustering problem by evolutionary algorithms 2011
45 [68] An analysis of the effects of composite objectives in multiobjective software module clustering 2012
46 [149] Clustering Source Code Files to Predict Change Propagation during Software Maintenance 2012
47 [134] Comparing and Combining Genetic and Clustering Algorithms for Software Component Identification from Object-

Oriented Code
2012

48 [54] Evaluating relationship categories for clustering object-oriented software systems 2012
49 [90] Feature-gathering dependency-based software clustering using Dedication and Modularity 2012
50 [151] Maintenance activities in object oriented software systems using K-means clustering technique: A review 2012
51 [7] Program restructuring using agglomerative clustering technique based on binary features 2012
52 [92] Reconstructing Architectural Views from Legacy Systems 2012
53 [91] Software Clustering: Unifying Syntactic and Semantic Features 2012
54 [120] Towards module-based automatic partitioning of Java applications 2012
55 [42] Using fold-in and fold-out in the architecture recovery of software systems 2012
56 [121] A new hierarchical clustering technique for restructuring software at the function level 2013
57 [43] Class level fault prediction using software clustering 2013
58 [135] Clustering Software Components for Component Reuse and Program Restructuring 2013
59 [50] Cooperative clustering for software modularization 2013
60 [136] Document Clustering Using Hybrid XOR Similarity Function for Efficient Software Component Reuse 2013
61 [75] Efficient software clustering technique using an adaptive and preventive dendrogram cutting approach 2013
62 [93] Evaluating software clustering algorithms in the context of program comprehension 2013
63 [94] Mixed-Integer Linear Programming Formulations for the Software Clustering Problem 2013
64 [59] Software architecture decomposition using adaptive K-nearest neighbor algorithm 2013
65 [60] Software Architecture Decomposition Using Clustering Techniques 2013
66 [53] Software Clustering Using Automated Feature Subset Selection 2013
67 [95] Software module clustering using a hyper-heuristic based multi-objective genetic algorithm 2013
68 [96] Using spectral clustering to automate identification and optimization of component structures 2013
69 [46] A clustering-based model for class responsibility assignment problem in object-oriented analysis 2014
70 [144] A Package Based Clustering for enhancing software defect prediction accuracy 2014
71 [28] An empirical study of the sensitivity of quality indicator for software module clustering 2014
72 [124] Assessing modularity using co-change clusters 2014
73 [72] Combining Clustering and Classification for Software Quality Evaluation 2014
74 [97] Cooperative based software clustering on dependency graphs 2014
75 [125] High dimensional search-based software engineering: Finding Tradeoffs Among 15 Objectives for Automating Software

Refactoring Using NSGA-III
2014
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TABLE 12
(Continued )

ID# Ref. Paper Title Year

76 [122] Remodularization analysis using semantic clustering 2014
77 [123] Software modularization using the modified firefly algorithm 2014
78 [138] A clustering technique based on the specifications of software components 2015
79 [98] A search-based approach to multi-view clustering of software systems 2015
80 [61] Adaptive Clustering Techniques for Software Components and Architecture 2015
81 [139] CCIC: Clustering analysis classes to identify software components 2015
82 [99] Clustering Source Code Elements by Semantic Similarity Using Wikipedia 2015
83 [76] Constrained agglomerative hierarchical software clustering with hard and soft constraints 2015
84 [126] Multi-objective Module Clustering for Kate 2015
85 [145] Object oriented based technique for software quality prediction through clustering and chi-square test 2015
86 [78] Software Architecture Recovery using Genetic Black Hole Algorithm 2015
87 [6] Software Clone Detection Using Clustering Approach 2015
88 [127] Source Code Driven Enterprise Application Decomposition: Preliminary Evaluation 2015
89 [51] A New Binary Similarity Measure Based on Integration of the Strengths of Existing Measures: Application to Software

Clustering
2016

90 [62] A similarity-based modularization quality measure for software module clustering problems 2016
91 [100] A software component selection technique based on fuzzy clustering 2016
92 [73] A tool to support software clustering using the software evolution information 2016
93 [157] Automatic clustering of code changes 2016
94 [155] Clones clustering using K-means 2016
95 [71] Clustering Software Metric Values Extracted from C# Code for Maintainability Assessment 2016
96 [140] Hyper-heuristic Approach for Multi-Objective Software Module Clustering 2016
97 [158] Implementation and evaluation of optimized algorithm for software architectures analysis through unsupervised learning

(clustering)
2016

98 [128] Modularizing Software Systems using PSO optimized hierarchical clustering 2016
99 [74] Software Evolution Information Driven Service-Oriented Software Clustering 2016
100 [44] Weighing lexical information for software clustering in the context of architecture recovery 2016
101 [58] A hierarchical clustering-based approach for software restructuring at the package level 2017
102 [63] A multi-agent evolutionary algorithm for software module clustering problems 2017
103 [29] A Particle Swarm Optimization-Based Heuristic for Software Module Clustering Problem 2017
104 [129] Class Modularization Using Indirect Relationships 2017
105 [30] FP-ABC: Fuzzy-Pareto dominance driven artificial bee colony algorithm for many-objective software module clustering 2017
106 [102] Framework Information Based Java Software Architecture Recovery 2017
107 [55] Improved binary similarity measures for software modularization 2017
108 [33] Improving package structure of object-oriented software using multi-objective optimization and weighted class

connections
2017

109 [69] Large Neighborhood Search applied to the Software Module Clustering problem 2017
110 [101] On the significance of relationship directions in clustering algorithms for reverse engineering 2017
111 [103] Reconstructing and evolving software architectures using a coordinated clustering framework 2017
112 [31] Semantic-based software clustering using hill climbing 2017
113 [32] Software Remodularization by Estimating Structural and Conceptual Relations Among Classes and Using Hierarchical

Clustering
2017

114 [159] Using hierarchical agglomerative clustering to locate potential aspect interference 2017
115 [150] A design structure matrix approach for measuring co-change-modularity of software products 2018
116 [64] Analyzing the structure of Java software systems by weighted K-core decomposition 2018
117 [130] Automatic Software Refactoring via Weighted Clustering in Method-Level Networks 2018
118 [141] BCD: Decomposing Binary Code Into Components Using Graph-Based Clustering 2018
119 [160] Discovering Program Topoi via Hierarchical Agglomerative Clustering 2018
120 [104] Effectively incorporating expert knowledge in automated software remodularisation 2018
121 [161] Functionality-Oriented Microservice Extraction Based on Execution Trace Clustering 2018
122 [34] Improving Cohesion of a Software System by Performing Usage Pattern Based Clustering 2018
123 [148] Improving Problem Identification via Automated Log Clustering using Dimensionality Reduction 2018
124 [142] Improving reusability of software libraries through usage pattern mining 2018
125 [152] In Object-Oriented Software Framework Improving Maintenance Exercises Through K-Means Clustering Approach 2018
126 [35] Many-objective artificial bee colony algorithm for large-scale software module clustering problem 2018
127 [105] Software Module Clustering Algorithm Using Probability Selection 2018
128 [106] Software Module Clustering Based on the Fuzzy Adaptive Teaching Learning Based Optimization Algorithm 2018
129 [143] A Mechanism for Automatically Summarizing Software Functionality from Source Code 2019
130 [36] A multi-objective search based approach to identify reusable software components 2019
131 [45] A new algorithm for software clustering considering the knowledge of dependency between artifacts in the source code 2019
132 [131] A novel approach for automatic remodularization of software systems using extended ant colony optimization algorithm 2019
133 [132] An efficient and stable method to cluster software modules using ant colony optimization algorithm 2019
134 [156] Code similarity detection through control statement and program features 2019
135 [52] euclidean space based hierarchical clusterers combinations: an application to software clustering 2019
136 [109] Evaluating the effectiveness of multi-level greedy modularity clustering for software architecture recovery 2019
137 [133] GUI-based software modularization through module clustering in edge computing based IoT environments 2019
138 [47] Hybrid of genetic algorithm and krill herd for software clustering problem 2019
139 [8] Multi-programming language software systems modularization 2019
140 [107] Software Architecture Module-View Recovery Using Cluster Ensembles 2019
141 [108] Software clusterings with vector semantics and the call graph 2019
142 [48] Software Modularization by Combining Genetic and Hierarchical Algorithms 2019
143 [49] Tarimliq: A new internal metric for software clustering analysis 2019
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comprehensive methods for clustering algorithm
selection. Thus, further research and experiments
can be conducted to provide formal selection meth-
ods based on empirical evidence.

� Clustering with aesthetic aspects of the software
design: The computational determination of the opti-
mized cluster is often mechanistic, ignoring the fact
that software is a creative artifact. Typically, cluster
arrangement is determined via the grouping of
nodes from dependency graphs. Having an opti-
mized clustering of modules versus a meaningful set
of clusters are two sides of the same coin with com-
peting objectives. On the one hand, it is desirable to
maximize cohesion and minimize coupling at any
cost. On the other hand, one may also need to cap-
ture semantic as well as the essence and aesthetic
aspects of the software design. Integrating natural
language processing with deep learning and consid-
ering on other criteria (apart from simply grouping
nodes from dependency graphs), such as utilizing
the defined naming of modules and internal varia-
bles or other factbase sources as part of clustering
arrangement criteria, would be a useful endeavor.

� Beyond clustering: The ultimate aim of software
module clustering is to help software engineers
apply the recommended clustering results to their
software projects. However, do software engineers
really adhere to the recommended clustering results?
If yes, what will be the impact, cost, or effort of

realizing the suggested results? No research has
comprehensively addressed these issues. Thus, a
thorough investigation in this respect may be a good
step for further study.

5 THREATS TO VALIDITY

Every literature mapping study has a number of threats that
might affect its validity. In this study, several threats were
eliminated by considering well-known recommendations
and guidelines on conducting literature mapping studies as
follows:

� Coverage of research questions: The threat here is
that the research questions of this study may not
cover all the aspects of the state-of-the-art research
in software module clustering. To address this
threat, all the authors of this study used brainstorm-
ing to define the desired set of research questions
that cover the existing research in the area.

� Coverage of relevant studies: It cannot be guaran-
teed that all the relevant studies in software module
clustering have been identified. Accordingly, differ-
ent literature databases have been used, and a PICO
method-based search string with various term syno-
nyms (each author of the paper suggested different
terms that lead to desired clustering concepts) has
been applied to obtain the relevant research publica-
tions. However, some unidentified papers may

TABLE 13
List of Active Journals With Abbreviations

Acronym Journal Full Name

Inf. Softw. Technol. Information and Software Technology
J. Syst. Softw. Journal of Systems and Software
IEEE Trans. Softw. Eng. IEEE Transactions on Software Engineering
Procedia Comput. Sci. Procedia Computer Science
Soft Comput. Soft Computing
IET Softw. IET Software
J. Software Maint. Evol. Res. Pract. Journal of Software Maintenance and Evolution: Research and Practice
Inf. Sci. Information Sciences
Wuhan Univ. J. Nat. Sci. Wuhan University Journal of Natural Sciences
IEEE Trans. Reliab. IEEE Transactions on Reliability
Future Gener. Comput. Syst. Future Generation Computer Systems
Empir. Softw. Eng. Empirical Software Engineering
Comput. Oper. Res. Computers and Operations Research
Expert Syst. Appl. Expert Systems with Applications
J. Supercomput. Journal of Supercomputing
Comput. Lang. Syst. Struct. Computer Languages, Systems, and Structures
Comput. Optim. Appl. Computational Optimization and Applications
Arabian J. Sci. Eng. Arabian Journal for Science and Engineering
Adv. Eng. Softw. Advances in Engineering Software
J. King Saud Univ. Comp. Info. Sci. Journal of King Saud University: Computer and information sciences
Front. Comput. Sci. Frontiers of Computer Science
Form. Asp. Comput. Formal Aspects of Computing
Cluster Comput. Cluster Computing
J. Ambient Intell. Humaniz. Comput. Journal of Ambient Intelligence and Humanized Computing
Comput. Electr. Eng. Computers and Electrical Engineering
J. Comput. Lang. Journal of Computer Languages
IEEE Access IEEE Access
Front. Inf. Technol. Electron. Eng. Frontiers of Information Technology and Electronic Engineering
Autom. Softw. Eng. Automated Software Engineering
ACM SIGSOFT Software Eng. Notes ACM SIGSOFT Software Engineering Notes
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remain. To address this issue, the snowballing
method was intensively applied to reduce the possi-
bility of missing important related papers.

� Paper inclusion/exclusion criteria: Application of
the criteria can suffer from single-author judgment
and personal bias. To address this issue, each paper
was included or excluded for this study only after
the authors reached a consensus.

� Accuracy of data extraction: Data extraction can suf-
fer from the single-author experience. Accordingly,
each author individually performed the data extrac-
tion process, and the outcomes of all authors were
compared in an online meeting. In the meeting, all
authors discussed differences between the outcomes
until a final and agreed consensus was reached.
Automatic filtering provided by Microsoft Excel was
also used to ensure the accuracy of the data extrac-
tion process.

� Reproducibility of the study: The issue here is
whether other researchers can perform this study
with similar results. Accordingly, all the steps fol-
lowed and performed in this study were reported in
the research methodology (see Section 3).

6 CONCLUSION

This paper systematically reports the state-of-the-art empiri-
cal contributions in software module clustering. Thus, to
ascertain the recent clustering applications in software engi-
neering, the algorithms and tools used to enable the soft-
ware module clustering process were identified. A total of
143 papers from popular literature databases published in
the area of software module clustering from 2008-2019 were
selected for this study. The published papers were a combi-
nation of works from conferences, journals, symposiums,
and workshops. However, most of the published papers
were from conferences. From different perspectives and
based on several identified RQs, the selected studies were
thoroughly reviewed and analyzed. The findings were in
different categories. For instance, statistics on the published
studies, their publication venues, active authors, and coun-
tries were reported. Then, software module clustering
applications were categorized. All the algorithms, tools, tar-
get software systems, evaluations, and metrics that enabled

the clustering process were briefly discussed. Finally, as
there are many research studies on software module cluster-
ing, novice researchers are likely to experience difficulties in
addressing different aspects of the area. Therefore, we pro-
pose this analysis study as a primary reference to simplify
the process of finding the most relevant information.
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[3] G. Şerban and I.-G. Czibula, “Object-oriented software systems
restructuring through clustering,” in Proc. Int. Conf. Artif. Intell.
Soft Comput., 2008, pp. 693–704.

[4] J. Feng and H. Seok, “Applying agglomerative hierarchical clus-
tering algorithms to component identification for legacy sys-
tems,” Inf. Softw. Technol., vol. 53, no. 6, pp. 601–614, 2011.

[5] R. A. Bittencourt and D. D. S. Guerrero, “Comparison of graph
clustering algorithms for recovering software architecture mod-
ule views,” in Proc. 13th Eur. Conf. Softw. Maintenance Reeng.,
2009, pp. 251–254.

[6] B. Joshi, P. Budhathoki, W. L. Woon, and D. Svetinovic,
“Software clone detection using clustering approach,” in Proc.
Int. Conf. Neural Inf. Process., 2015, pp. 520–527.

[7] R. Naseem, A. Ahmed, S. U. Khan, M. Saqib, and M. Habib,
“Program restructuring using agglomerative clustering tech-
nique based on binary features,” in Proc. Int. Conf. Emerg. Tech-
nol., 2012, pp. 1–6.

[8] M. Kargar, A. Isazadeh, and H. Izadkhah, “Multi-programming
language software systems modularization,” Comput. Electr.
Eng., vol. 80, pp. 1–22, 2019.

[9] Y. Yu, J. Lu, J. Fernandez-Ramil, and P. Yuan, “Comparing web
services with other software components,” in Proc. IEEE Int.
Conf. Web Services, 2007, pp. 388–397.

[10] N. Arunachalam, A. Amuthan, C. Kavya, M. Sharmilla,
K. Ushanandhini, and M. Shanmughapriya, “A survey on web
service clustering,” in Proc. Int. Conf. Comput. Power Energy Inf.
Commun., 2017, pp. 247–252.

[11] M. Shtern and V. Tzerpos, “Clustering methodologies for soft-
ware engineering,” Advances Softw. Eng., vol. 2012, pp. 1–18,
2012.

TABLE 14
List of Active Conferences With Abbreviations

Acronym Conference Full Name

ICPC International Conference on Program Comprehension (ICPC)
CSMR European Conference on Software Maintenance and Reengineering (CSMR)
WCRE Working Conference on Reverse Engineering (WCRE)
ASE International Conference on Automated Software Engineering (ASE)
ICSM International Conference on Software Maintenance (ICSM)
CSSE International Conference on Computer Science and Software Engineering (CSSE)
MySEC Malaysian Software Engineering Conference (MySEC)
CCECE Canadian Conference on Electrical and Computer Engineering (CCECE)
COMPSAC Annual Computer Software and Applications Conference (COMPSAC)
SETN Hellenic Conference on Artificial Intelligence (SETN)
GECCO International Conference on Genetic and Evolutionary Computation (GECCO)
KBEI International Conference on Knowledge Based Engineering and Innovation (KBEI)

1924 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 6, JUNE 2022

Authorized licensed use limited to: Universiti Malaysia Pahang. Downloaded on July 06,2022 at 01:41:46 UTC from IEEE Xplore.  Restrictions apply. 



[12] V. Singh, “Software module clustering using metaheuristic
search techniques: A survey,” in Proc. 3rd Int. Conf. Comput. Sus-
tain. Global Develop., 2016, pp. 2764–2767.

[13] F. Morsali and M. R. Keyvanpour, “Search-based software mod-
ule clustering techniques: A review article,” in Proc. IEEE 4th Int.
Conf. Knowl.-Based Eng. Innov., 2017, pp. 0977–0983.

[14] M. Harman, “The current state and future of search based soft-
ware engineering,” in Proc. Future Softw. Eng., 2007, pp. 342–357.

[15] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based soft-
ware engineering: Trends, techniques and applications,” ACM
Comput. Surv., vol. 45, no. 1, pp. 11:1–11:61, 2012.

[16] A. Ram�ırez, J. R. Romero, and S. Ventura, “A survey of many-
objective optimisation in search-based software engineering,” J.
Syst. Softw., vol. 149, pp. 382–395, 2019.

[17] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for
conducting systematic mapping studies in software engineering:
An update,” Inf. Softw. Technol., vol. 64, pp. 1–18, 2015.

[18] B. Kitchenham and S. Charters, “Guidelines for performing sys-
tematic literature reviews in software engineering,” version 2.3.,
EBSE Technical Report EBSE- 2007–01, Software Engineering
Group, School of Computer Science andMathematics, Keele Uni-
versity, U.K. and Department of Computer Science, University of
Durham, 2007.

[19] O. Pedreira, F. Garc�ıa, N. Brisaboa, andM. Piattini, “Gamification
in software engineering – A systematic mapping,” Inf. Softw. Tech-
nol., vol. 57, pp. 157–168, 2015.

[20] M. Usman, R. Britto, J. B€orstler, and E. Mendes, “Taxonomies in
software engineering: A Systematic mapping study and a revised
taxonomy development method,” Inf. Softw. Technol., vol. 85,
pp. 43–59, 2017.

[21] B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures, “Constrained
interaction testing: A systematic literature study,” IEEE Access,
vol. 5, pp. 25 706–25 730, 2017.

[22] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil, “Lessons from applying the systematic literature
review process within the software engineering domain,” J. Syst.
Softw., vol. 80, no. 4, pp. 571–583, 2007.

[23] C. Wohlin, “Guidelines for snowballing in systematic literature
studies and a replication in software engineering,” in Proc. 18th
Int. Conf. Eval. Assessment Softw. Eng., 2014, pp. 1–10.

[24] Google. Google trends, 2020. Accessed: Mar. 10, 2020. [Online].
Available: https://trends.google.com/trends/?geo=US

[25] O. Pedreira, F. Garc�ıa, N. Brisaboa, andM. Piattini, “Gamification
in software engineering–A systematic mapping,” Inf. Softw. Tech-
nol., vol. 57, pp. 157–168, 2015.

[26] R. E. Lopez-herrejon, L. Linsbauer, and A. Egyed, “A systematic
mapping study of search-based software engineering for soft-
ware product lines,” Inf. Softw. Technol., vol. 61, pp. 33–51,
2015.

[27] A. Parashar and J. K. Chhabra, “Clustering dynamic class cou-
pling data to measure class reusability pattern,” in Proc. Int.
Conf. High Perform. Architecture Grid Comput., 2011, pp. 126–130.

[28] Amarjeet and J. K. Chhabra, “An empirical study of the sensitiv-
ity of quality indicator for software module clustering,” in Proc.
7th Int. Conf. Contemp. Comput., 2014, pp. 206–211.

[29] A. Prajapati and J. K. Chhabra, “A particle swarm optimization-
based heuristic for software module clustering problem,” Ara-
bian J. Sci. Eng., vol. 43, no. 12, pp. 7083–7094, 2017.

[30] Amarjeet and J. K. Chhabra, “FP-ABC: Fuzzy-Pareto dominance
driven artificial bee colony algorithm for many-objective soft-
ware module clustering,” Comput. Lang. Syst. Structures, vol. 51,
pp. 1–21, 2017.

[31] M. Kargar, A. Isazadeh, and H. Izadkhah, “Semantic-based soft-
ware clustering using hill climbing,” in Proc. Int. Symp. Comput.
Sci. Softw. Eng. Conf., 2017, pp. 55–60.

[32] A. Rathee and J. K. Chhabra, “Software remodularization by esti-
mating structural and conceptual relations among classes and
using hierarchical clustering,” in Proc. Int. Conf. Adv. Informat.
Comput. Res., 2017, pp. 94–106.

[33] Amarjeet and J. K. Chhabra, “Improving package structure of
object-oriented software using multi-objective optimization and
weighted class connections,” J. King Saud Univ. - Comput. Inf. Sci.,
vol. 29, no. 3, pp. 349–364, 2017.

[34] A. Rathee and J. Kumar, “Improving cohesion of a software sys-
tem by performing usage pattern based clustering,” Procedia
Comput. Sci., vol. 125, pp. 740–746, 2018.

[35] Amarjeet and J. K. Chhabra, “Many-objective artificial bee colony
algorithm for large-scale software module clustering problem,”
Soft Comput., vol. 22, no. 19, pp. 6341–6361, 2018.

[36] A. Rathee and J. K. Chhabra, “A multi-objective search based
approach to identify reusable software components,” J. Comput.
Lang., vol. 52, pp. 26–43, 2019.

[37] A. Corazza, S. Di Martino, and G. Scanniello, “A probabilistic
based approach towards software system clustering,” in Proc.
14th Eur. Conf. Softw. Maintenance Reeng., 2010, pp. 88–96.

[38] G. Scanniello, A. D’Amico, C. D’Amico, and T. D’Amico, “Using
the kleinberg algorithm and vector space model for software sys-
tem clustering,” in Proc. IEEE 18th Int. Conf. Program Comprehen-
sion, 2010, pp. 180–189.

[39] S. Romano, G. Scanniello, M. Risi, and C. Gravino, “Clustering
and lexical information support for the recovery of design pat-
tern in source code,” in Proc. 27th IEEE Int. Conf. Softw. Mainte-
nance, 2011, pp. 500–503.

[40] G. Scanniello and A. Marcus, “Clustering support for static con-
cept location in source code,” in Proc. IEEE 19th Int. Conf. Program
Comprehension, 2011, pp. 1–10.

[41] A. Corazza, S. D. Martino, V. Maggio, and G. Scanniello,
“Investigating the use of lexical information for software system
clustering,” in Proc. 15th Eur. Conf. Softw. Maintenance Reeng.,
2011, pp. 35–44.

[42] M. Risi, G. Scanniello, and G. Tortora, “Using fold-in and fold-
out in the architecture recovery of software systems,” Formal
Aspects Comput., vol. 24, no. 3, pp. 307–330, 2012.

[43] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class
level fault prediction using software clustering,” in Proc. 28th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2013, pp. 640–645.

[44] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello,
“Weighing lexical information for software clustering in the con-
text of architecture recovery,” Empir. Softw. Eng., vol. 21, no. 1,
pp. 72–103, 2016.

[45] S. Mohammadi and H. Izadkhah, “A new algorithm for software
clustering considering the knowledge of dependency between
artifacts in the source code,” Inf. Softw. Technol., vol. 105,
pp. 252–256, 2019.

[46] H. Masoud and S. Jalili, “A clustering-based model for class
responsibility assignment problem in object-oriented analysis,” J.
Syst. Softw., vol. 93, pp. 110–131, 2014.

[47] M. Akbari and H. Izadkhah, “Hybrid of genetic algorithm and
krill herd for software clustering problem,” in Proc. IEEE 5th
Conf. Knowl. Based Eng. Innov., 2019, pp. 565–570.

[48] A. H. Farajpour Tabrizi and H. Izadkhah, “Software modulariza-
tion by combining genetic and hierarchical algorithms,” in Proc.
5th Conf. Knowl. Based Eng. Innov., 2019, pp. 454–459.

[49] M. Kargar, H. Izadkhah, and A. Isazadeh, “Tarimliq: A new
internal metric for software clustering analysis,” in Proc. 27th Ira-
nian Conf. Electr. Eng., 2019, pp. 1879–1883.

[50] R. Naseem, O. Maqbool, and S. Muhammad, “Cooperative clus-
tering for software modularization,” J. Syst. Softw., vol. 86, no. 8,
pp. 2045–2062, 2013.

[51] R. Naseem and M. M. Deris, “A new binary similarity measure
based on integration of the strengths of existing measures: Appli-
cation to software clustering,” in Proc. Int. Conf. Soft Comput. Data
Mining, 2016, pp. 304–315.

[52] R. Naseem, M. M. Deris, O. Maqbool, and S. Shahzad, “Euclidean
space based hierarchical clusterers combinations: An application to
software clustering,”Cluster Comput., vol. 22, pp. 7287–7311, 2019.

[53] Z. Shah, R. Naseem, M. A. Orgun, A. Mahmood, and S. Shahzad,
“Software clustering using automated feature subset selection,”
in Proc. 9th Int. Conf. Adv. Data Mining Appl., 2013, pp. 47–58.

[54] S. Muhammad, O. Maqbool, and A. Abbasi, “Evaluating rela-
tionship categories for clustering object-oriented software sys-
tems,” IET Softw., vol. 6, no. 3, pp. 260–274, 2012.

[55] R. Naseem, M. B. M. Deris, O. Maqbool, J. Peng Li, S. Shahzad,
and H. Shah, “Improved binary similarity measures for software
modularization,” Front. Inf. Technol. Electron. Eng., vol. 18,
pp. 1082–1107, 2017.

[56] I. G. Czibula and G. Czibula, “Clustering based automatic refac-
torings identification,” in Proc. 10th Int. Symp. Symbolic Numeric
Algorithms Sci. Comput., 2008, pp. 253–256.

[57] I. Czibula and G. Czibula, “Hierarchical clustering for adaptive
refactorings identification,” in Proc. IEEE Int. Conf. Autom. Qual-
ity Testing Robot., 2010, pp. 1–6.

SARHAN ET AL.: SOFTWARE MODULE CLUSTERING: AN IN-DEPTH LITERATURE ANALYSIS 1925

Authorized licensed use limited to: Universiti Malaysia Pahang. Downloaded on July 06,2022 at 01:41:46 UTC from IEEE Xplore.  Restrictions apply. 

https://trends.google.com/trends/?geo=US


[58] Z. Marian, I. G. Czibula, and G. Czibula, “A hierarchical cluster-
ing-based approach for software restructuring at the package
level,” in Proc. 19th Int. Symp. Symbolic Numeric Algorithms Sci.
Comput., 2017, pp. 239–246.

[59] A. Alkhalid, C.-H. Lung, and S. Ajila, “Software architecture
decomposition using adaptive K-nearest neighbor algorithm,”
in Proc. 26th IEEE Canadian Conf. Electr. Comput. Eng., 2013,
pp. 1–4.

[60] A. Alkhalid, C.-H. Lung, D. Liu, and S. Ajila, “Software architec-
ture decomposition using clustering techniques,” in Proc. IEEE
37th Annu. Comput. Softw. Appl. Conf., 2013, pp. 806–811.

[61] D. Liu, C.-H. Lung, and S. A. Ajila, “Adaptive clustering techni-
ques for software components and architecture,” in Proc. IEEE
39th Annu. Comput. Softw. Appl. Conf., 2015, pp. 460–465.

[62] J. Huang and J. Liu, “A similarity-based modularization quality
measure for software module clustering problems,” Inf. Sci.,
vol. 342, pp. 96–110, 2016.

[63] J. Huang, J. Liu, and X. Yao, “A multi-agent evolutionary algo-
rithm for software module clustering problems,” Soft Comput.,
vol. 21, no. 12, pp. 3415–3428, 2017.

[64] W. Pan, B. Li, J. Liu, Y. Ma, and B. Hu, “Analyzing the structure
of Java software systems by weighted k-core decomposition,”
Future Gener. Comput. Syst., vol. 83, pp. 431–444, 2018.

[65] M. Risi, G. Scanniello, and G. Tortora, “Architecture recovery
using latent semantic indexing and k-means: An empirical eval-
uation,” in Proc. 8th IEEE Int. Conf. Softw. Eng. Formal Methods,
2010, pp. 103–112.

[66] A. Alkhalid, M. Alshayeb, and S. Mahmoud, “Software refactor-
ing at the function level using new Adaptive K-Nearest Neigh-
bor algorithm,” Advances Eng. Softw., vol. 41, no. 10/11,
pp. 1160–1178, 2010.

[67] A. Alkhalid, M. Alshayeb, and S. Mahmoud, “Software refactor-
ing at the package level using clustering techniques,” IET Softw.,
vol. 5, no. 3, pp. 274–286, 2011.

[68] M. D. O. Barros, “An analysis of the effects of composite objec-
tives in multiobjective software module clustering,” in Proc. 14th
Int. Conf. Genetic Evol. Comput. Conf., 2012, pp. 1205–1212.
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