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ABSTRAK 

Sistem pemantauan secara atas talian merupakan kriteria penting dalam sistem 

pembuatan di dalam era revolusi industry 4.0. Dalam aplikasi kimpalan laser, kaedah 

akustik adalah merupakan salah satu kaedah yang menarik perhatian para pengkaji atas 

beberapa kelebihan utama seperti, sistem yang ringkas, kos yang rendah dan penderia 

yang tidak bersentuhan. Namun, mengaplikasikan kaedah ini dalam proses kimpalan 

laser mod denyutan (PW) adalah sangat mencabar disebabkan sifat isyarat dan hingar 

yang berbeza diperoleh semasa proses ini berbanding proses laser mod berterusan 

(CW). Justeru, kajian ini menyasarkan untuk mengkaji sifat isyarat akustik yang 

diperoleh dari proses kimpalan PW, membangunkan algorithma pemprosesan isyarat 

yang dapat mengekstrak ciri isyarat bunyi yang kurang dipengaruhi hingar, serta 

membangunkan model impirikal yang dapat menganggar kedalaman kimpalan semasa 

proses. Bagi mencapai kesemua objektif, proses kimpalan laser dengan variasi kuasa 

puncak, dan durasi denyutan telah dijalankan keatas keluli boron 22MnB5 dengan 

ketebalan 1.8 mm. Semasa proses kimpalan, isyarat bunyi telah dicerap antara frekuensi 

20 Hz hingga 12.8 kHz. Ciri isyarat seperti sisihan min mutlak (MAD), sisihan piawai 

(SD), kurtosis, skala-L, kurtosis-L, kuasa jalur dan jumlah pekali anak gelombang 

pemerahan-segerak (CSqWCsum), telah diekstrak dari isyarat yang dicerap. Bagi 

membangunkan algoritma pemprosesan isyarat, kaedah Ruang fasa berbilang-bebatan 

(MLPS) telah dimodifikasi dengan cara memperkenalkan teknik ambang faktor puncak 

(CF) untuk mengurangkan pengaruh hingar. Keputusan menunjukkan bahawa isyarat 

bunyi yang dicerap adalah merupakan isyarat jenis denyutan dimana amplitudnya 

merekodkan sedikit perubahan keatas perubahan parameter kimpalan. Manakala, 

frekuensi dominan telah direkodkan sekitar 5760 Hz hingga 7000 Hz tanpa perubahan 

yang jelas terhadap perubahan parameter kimpalan. Keputusan analisis pemilihan ciri 

isyarat pula menunjukkan bahawa SD, kurtosis-L, dan MLPS-termodifikasi 

mencatatkan hubungan yang signifikan dengan kedalaman kimpalan. Kombinasi antara 

ketiga-tiga ciri ini dengan kuasa puncak laser dan durasi denyutan pula mencatatkan 

corak regresi yang lebih baik dengan Kuasa dua-R Terlaras yang direkodkan adalah 

0.937. Dua model empirikal telah dibangunkan dengan kombinasi ketiga-tiga ciri 

isyarat dengan parameter kimpalan menggunakan kaedah Regresi Lelurus Berbilang 

(MLR) dan Rangkaian Neural Buatan (ANN). Melalui kaedah MLR, model yang 

diperoleh adalah DOP =  0.634SD - 0.814LK + 0.0014MLPS + 116.44PD + 0.0014PP - 

0.7781. Keputusan analisis validasi menunjukkan bahawa kedua-dua model dapat 

menganggar kedalaman kimpalan dengan purata ralat kurang daripada 8%. Namun 

model ANN telah merekodkan anggaran yang lebih tepat dan jitu dengan purata ralat 

anggaran sebanyak 3.3%. Keputusan kajian ini menunjukkan bahawa kaedah akustik 

dapat digunakan untuk memantau kedalaman kimpalan secara atas-talian semasa proses 

PW. Melalui kaedah ini, kedalaman kimpalan dapat dinilai secara kuantitatif semasa 

proses PW. Penemuan ini dapat memberikan solusi kepada pembangunan sistem 

pemantauan secara masa-nyata keatas proses kimpalan laser PW, dimana ianya sejajar 

dengan keperluan utama dalam era baru sistem pembuatan. 
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ABSTRACT 

Real-time monitoring system is one of the essential criteria in the era of the fourth 

industrial revolution (Industry 4.0). Among the monitoring systems in laser welding 

applications, acoustic methods have recently caught the attention of researchers due to 

their benefits in promoting simple, low-cost, and non-contact systems. However, 

applying this method in PW mode laser was challenging due to the different 

characteristic of signal and noise acquired from this process as compared to CW 

process. Therefore, this particular work aims to investigate the characteristics of 

acoustic sound signal from PW Fiber laser, develop an appropriate signal processing 

algorithm to suppress the effect of noise on the extracted sound features, and develop an 

empirical model for weld depth estimation. To achieve the objectives, a 1.8 mm thick 

22MnB5 boron steel plate was welded with varied laser peak power (PP) and pulse 

duration (PD) levels. Simultaneously, the sound signal was acquired between the 

frequency of 20 Hz to 12.8 kHz throughout the process. Signal features, such as mean 

absolute deviation (MAD), standard deviation (SD), kurtosis (K), L-scale (LS), L-

kurtosis (LK), bandpower (BP), and sum of synchrosqueezed wavelet coefficient 

(CSqWCsum) were extracted from the acquired sound. To develop the signal 

processing algorithm, multi-lag phase space (MLPS) method was adopted in which 

some modifications on its original algorithm were made by introducing the localized 

crest factor (CF) thresholding method to reduce the influence of noise. Results showed 

that the acquired sound recorded transient behaviors with a slight change in its overall 

amplitudes with respect to the change in the level of weld parameters. Meanwhile, the 

dominant frequency was found to be fluctuated between 5760 Hz and 7000 Hz without 

a clear pattern in the case of different levels of weld parameters involved in this study. 

The results from feature selection analysis show that the combination of SD, L-kurtosis, 

and modified-MLPS recorded the most significant relation with weld penetration. 

Furthermore, the combination of these features with the laser peak power and pulse 

duration recorded a better regression trend with an adjusted R-squared of 0.937. Two 

empirical models for weld depth estimation were developed from the combination of 

these sound features and weld parameters using the multiple linear regression (MLR) 

and artificial neural network (ANN) methods. Through MLR method, the obtained 

model was DOP =  0.634SD - 0.814LK + 0.0014MLPS + 116.44PD + 0.0014PP - 

0.7781. Results from the model validation analysis showed that both models could 

significantly estimate weld penetration during the PW laser welding process with an 

estimation error less than 8%. However, the ANN model recorded a more accurate and 

precise estimation with the lowest estimation error, i.e., 3.3%. The results of the 

analysis suggest that the acoustic methods can be used to monitor weld penetration on a 

real-time basis during PW mode laser welding process. Moreover, the methods can also 

be used to provide a quantitative assessment on weld penetration during the process. 

This finding gives alternative solution to the development of a real-time process 

monitoring system in PW mode laser welding, which aligns with the criteria needed in 

the new era of manufacturing system.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Introduction 

Recently, there are increasing demands for the application of laser welding from 

numerous clusters of industries. Large industries such as automotive (Hong, K. M. & 

Shin, Y. C., 2017), oil and gas (Guo, N. et al., 2017), and shipbuilding (Martukanitz, R., 

2005) have started to look into the application of laser welding because of its capability 

in promoting high accuracy, excellent repeatability, versatility and low heat affected 

zone (Bhadra, R. et al., 2015; Wang, P. et al., 2016). Besides, it is also getting popular 

due to its ease of use with robots, reduced workforce, full automation, and 

systematization (Katayama, S., 2013).  

In the automotive sector, the laser welding process has been applied to fabricate 

the Tailor Welded Blank (TWB), as depicted in Figure 1.1. TWB consists of two metal 

sheets with dissimilar thickness, material, and coating, and it is produced by the laser 

welding process before it is formed into desired parts via the post-metal forming 

process (Saunders, F. I. & Wagoner, R. H., 1996). It has been vastly used in the 

modern-day automotive sector to decrease manufacturing costs, reduce vehicle weight, 

and improve the strength of automotive body components (Kinsey, B. et al., 2000). 

Similar to other processes, TWB also has issues relating to weld quality. The existence 

of defects, such as lack of penetration, misalignment, pin-holes, mis-weld, and sheet 

deformation is possible in TWB (Vidal, F. et al., 2010). Among these defects, the lack 

of penetration is quite severe in TWB. A series of studies proved that the existence of 

incomplete penetration can affect the formability of TWB (Abbasi, M. et al., 2011; 

Bandyopadhyay, K. et al., 2016). Besides that, it was found that the lack of penetration 

tended to be a crack initiation point, and could degrade fatigue life (Berto, F. et al., 

2016; Boulton, C. F., 1976; Lawrence, F. & Munse, W., 1973; Singh, P. J. et al., 2002).  
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Figure 1.1 Tailor Welded Blank for B-Pillar production 

Source: Tisza, M., (2013) 

Even though optimized process conditions have been applied to obtain pristine 

weld quality, uncertainties, such as fault in focusing optic, material imperfection, 

unforeseen contamination, and environmental disturbance can reduce weld quality 

(Dawes, C., 1992; Lee, S. et al., 2014).  Therefore, the development of an in-process 

monitoring system is believed to be the essential solution to this problem due to its 

advantages in reducing the amount of reject, improving reproducibility, saving cost, and 

also enhancing the development of process control system in the future (Purtonen, T. et 

al., 2014). These are aligned with the needs of Industry 4.0, where an appropriate 

monitoring system is indicated to be one of the essential criteria to achieve flexible and 

automated production (Popescu, D. & Amza, C., 2017). 

In laser welding, abnormal behaviors of plasma plume, keyhole, and molten 

metal can lead to information relating to weld penetration condition. Therefore, 

physical responses in the form of electrical, thermal, optical and acoustic were analyzed 

in previous works to detect the aforementioned phenomena. In work related to the 

analysis of electrical signal, the plasma charge voltage signal was found to be 

significantly correlated with the plasma temperature that emerged from the process. Li 
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et al., (1996) claimed that the deeper the penetration, the larger the amount of plasma 

plume liberated. This resulted in higher power absorption and increased plasma 

temperature. 

Apart from electrical signal, other works proved that the thermal signal used is 

helpful in determining the welding condition. Bertrand et al., (2000) reported that the 

brightness of temperature profile captured by a pyrometer indicated the drop in laser 

power, which resulted in the lack of penetration. On the other hand, Gao et al.,(2012) 

demonstrated the analysis of temperature gradient to evaluate the position of laser beam 

to avoid misalignment, which could lead to incomplete penetration at certain points 

along the weld bead.  

In the optical method, the light signal emerged from the plasma will be 

decomposed and analyzed. Besides, this method involves the acquisition and analysis of 

high-speed digital imaging. Earlier studies demonstrated, phenomena such as molten 

metal dynamics (Eriksson, I. et al., 2013; Eriksson, I. et al., 2010; Sheng, J. et al., 

2017), and plasma intensity (Kong, F. et al., 2012; Sibillano, T. et al., 2012) monitored 

using these sensors led to the information relating to weld penetration condition. 

Other than the previously discussed approaches, acoustic methods have been 

proven to be able to assess the penetration condition on a real-time basis (Huang, W. & 

Kovacevic, R., 2009, 2011). There are two types of acoustic signal commonly used for 

monitoring purposes, which are structure-borne and air-borne acoustic signals, and each 

signal is captured using different types of sensors.       

1.2 Research Overview 

There are several approaches for monitoring weld penetration during the laser 

welding process, namely the electrical, thermal, optical, and acoustic methods. Each 

method can provide different results. Among these methods, the air-borne acoustic 

method draws attention from previous researchers owing to some of its unique features, 

such as high responsible speed, non-contact, and simple sensor setup (Ao, S. et al., 

2015; Huang, W. & Kovacevic, R., 2009, 2011; Luo, Z. et al., 2016).   
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Theoretically, the air-borne acoustic waves are generated from sources within an 

audible frequency range between 20 Hz and 20 kHz. In the laser welding process, these 

waves originate from the fluctuation of plasma plume ejected from the keyhole. The 

dynamic pattern of plasma plume results from the interaction between the keyhole and 

molten metal oscillation (Ao, S. et al., 2015; Farson, D. F. & Kim, K. R., 1999; 

Hoffman, J. et al., 2002; Szymanski, Z. et al., 2000). Earlier studies proved that the 

amount of plasma plume is directly related to the laser energy absorption and weld 

penetration condition (Farson, D. et al., 1998; Lewis, G. & Dixon, R., 1985). Therefore, 

any instability of plasma plume may affect the behavior of the acquired sound signal 

and lead to information relating to weld penetration. 

In the earlier works, weld penetration condition was accessed from the spectral 

information of the acoustic signal. Studies reported that amplitude (Duley, W. W. & 

Mao, Y. L., 1994) and spectral energy (Farson, D. et al., 1996) dropped when 

insufficient penetration was detected as low amount of plasma plume was produced at 

that point. Recently, Ao et al., (2015) modeled the spectral behavior of molten metal 

from different penetration conditions and their model recorded good precision after a 

comparison of results was made. In studies involving a broader range of laser power 

and weld speed, the penetration condition was reported to be evaluated up to the case of 

overheat penetration using the acoustic method. Features, such as root mean square 

(RMS) (Farson, D. et al., 1998), sum of squared deviation (Gu, H. & Duley, W. W., 

1996), and sound pressure deviation (Huang, W. & Kovacevic, R., 2009) were extracted 

by implying various signal analysis methods. These features were reported to show 

distinguishable trends according to the penetration categories.  

Apart from qualitative evaluation, previous studies proved that quantitative 

assessment of weld condition can be made via the acoustic method. Huang & 

Kovacevic, (2011) extracted the sound pressure deviation and bandpower from the 

acquired signal. The weld penetration estimation model was developed by learning the 

trend of these features, and the validation result of the model showed good agreement 

with the experiment. 
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It could be noticed that reasonable numbers of studies have been made to gain a 

deep comprehension of the relation between the emitted sound and weld penetration 

condition. Moreover, some studies investigated the sound characteristics during the 

presence of other defects in the laser welding process (Ao, S. et al., 2010; Lee, C. J. et 

al., 2015; Luo, Z. et al., 2016) . Therefore, it can be concluded that the acoustic methods 

have shown a bright potential to be used in the online monitoring system for the laser 

welding process. The development of a monitoring system can allow better quality 

control, and it is one of the essential criteria in modern manufacturing. However, to 

ensure the robustness of the acoustic methods, many studies are still needed to 

guarantee that the methods can be extensively used in a wide variation of laser welding 

process.   

1.3 Problem Statement 

Based on the research overview, studies related to air-borne acoustic signals for 

monitoring laser welding covered significant variation in experiment setups and 

analysis approaches in solving different angles of problems. In order to establish the 

acoustic methods for industrial applications, there are some problems that lead to the 

need for extensive studies and it will be the focus of this work. 

Based on previous studies, it was found that little attempt was made to 

understand the emitted sound behavior during pulse mode (PW) laser welding. Most of 

the recent work focused on the continuous mode (CW) where stationary random-type 

sound signal emerged from this process (Huang, W. & Kovacevic, R., 2009, 2011; Lee, 

C. J. et al., 2015; Luo, Z. et al., 2016). PW laser welding promotes other advantages 

such as low power and more reliable to heat-sensitive component compared to CW 

process which makes it as one of the popular choice in industry (Assuncao, E. & 

Williams, S., 2013; Jiang, Z. et al., 2016; Wu, D. J. et al., 2013). Thus, it is important to 

extend the capabilities of the acoustic method in PW process application. In PW 

process, a non-stationary random signal will be emitted, which will lead to different 

challenges in extracting information relating to the weld penetration condition. More to 

the point, it is vital to understand the characteristics of sound emitted from PW laser 

welding to relate them with the penetration condition.  



 

 6 

Most of the authors agreed that the influence of environmental noise under harsh 

process surroundings was the main challenge in applying the acoustic methods (Ao, S. 

et al., 2010; Huang, W. & Kovacevic, R., 2009, 2011). However, there is an insufficient 

number of literatures that emphasizes the application of signal analysis for noise 

elimination. Several literature lines were found to demonstrate the application of band-

pass filter (Lee, C. J. et al., 2015), spectral subtraction method (Huang, W. & 

Kovacevic, R., 2009, 2011) and short-time fourier transform (STFT) (Farson, D. et al., 

1996) to diminish the noise but these studies were connected to the CW process. In the 

analysis of transient signals, both spectral-based and STFT methods are often 

unsatisfactory due to the instantaneous behavior of the signals (Digulescu, A. et al., 

2016; Reinhold, I. et al., 2018). Therefore, it is crucial to develop a suitable analysis 

method for transient signals acquired in the case of PW process. This is important in the 

attempt to extend the capabilities of the acoustic methods in the laser welding process.  

Most of the previous studies highlighted the classification of the acquired sound 

signals based on the penetration condition. Nevertheless, it will be more noteworthy if 

the correlation between acoustic sound signal and penetration depth can be modeled. By 

developing a model based on the sound features, the weld depth can be estimated on an 

online basis, which is essentially needed in Industry 4.0 (Zhou, K. et al., 2015).  In past 

research, the empirical model for weld penetration estimation from the acquired sound 

was developed using artificial neural network (ANN) and multiple linear regression 

(MLR) methods (Huang, W. & Kovacevic, R., 2011). However, this study involved 

stationary random signals from the CW mode. Hence, the development of a suitable 

framework is needed in the case of the PW process to enhance the robustness of the 

acoustic methods. 

1.4 Objectives 

In order to answer the stated problems, three objectives were established for this 

study.  

a) To investigate the acoustic signal characteristic from pulse mode laser welding 

process with different weld parameters level. 
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b) To develop a signal processing algorithm to eliminate noise and extract sound 

features associated with the source of information related to the weld 

penetration status. 

c) To develop the prediction model that that is capable of estimating weld 

penetration from the acquired sound during the pulse mode (PW) laser welding 

process. 

1.5 Scopes 

Basically, in this project, the study will cover the following scopes 

a) A test is run using pulse mode (PW) fiber laser welding with a maximum peak 

power of 2 kW. 

b) The material under study is ferrous metal. Specifically, the test was conducted 

on a 22MnB5 Boron steel plate with a thickness of 1.8 mm.  

c) For the weld condition, this study only looks into the depth of penetration 

condition, as it is also vital to ensure the strength of the weld joined. 

d) Laser peak power and pulse duration were set as independent variables in this 

study. 

e) Acoustic signals were acquired within the audible frequency range of 20 Hz to 

12 800 Hz.  

f) The development of an algorithm in this study involves both sound feature 

extraction based on time-domain analysis and thresholding method for signal 

de-noising. Other analysis type such as frequency-based and time-frequency 

analysis were not considered in this study. 

g) In this study, stepwise regression, which is regression-based feature selection 

methods, is used to determine the significance of the feature extracted from the 

developed algorithm. Deep learning feature selection method was not 

considered in this study. 
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h) Prediction models for effective penetration estimation were developed using 

MLR and ANN methods. Other deep learning methods were not considered in 

this study. 

1.6 Hypothesis 

In this study, hypothesis was made by relating the weld parameters, phenomena 

that occur during laser welding, penetration depth, and behavior of the acquired sound 

based on previous literature. Based on Figure 1.2, the parameters that were identified to 

give the main contributions to weld penetration depth are peak power, pulse duration, 

and focal length.  

 

 

 

 

 

 

Figure 1.2 Relation between welding parameters with penetration depth and the 

emerging sound 

Previous studies proved that increasing laser peak power and pulse duration 

resulted in larger laser energy given to the welded material, and deeper penetration. On 

top of that, the appropriate combination of laser peak power, pulse duration, and focal 

length will enhance the laser energy density and consequently influence the depth of 

penetration. Specifically, a larger laser energy will produce more plasma plume, and the 

pressure from this plasma plume will produce a keyhole shape opening that allows 

deeper penetration of energy coupling. As energy coupling penetrates deeper, more 

molten metal is produced from the heating process. A significant amount of plasma 

plume will be forced to flow out from the keyhole due to the dynamic interaction 
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between the plasma plume pressure and molten metal oscillation. This particular flow 

creates the dynamic changes in the air pressure on top of the keyhole opening, which 

produce sound. Since sound waves will emerge from these phenomena, the hypothesis 

that can be made is there is a significant relation between the emitted sound wave and 

penetration depth.   

1.7 Thesis Organization 

This thesis is composed of five chapters. The first chapter briefly introduces the 

application of laser welding mainly in the automotive sector. It also emphasizes the 

importance of the monitoring system due to the endless quality issues. Apart from that, 

the overview of the related research, problem statement, objectives and scope of study 

are described. The final part of the chapter explains in detail the hypothesis and focus of 

the research 

The second chapter begins with a deeper explanation on the application of laser 

welding in the industry, and related physical mechanisms in laser welding process 

starting from energy coupling to the cooling process. The chapter explains the laser 

wave mode and all associated weld parameters. It also describes the common defects 

that occur during the process and the approaches taken for detecting the existence of 

these defects in previous studies. In this chapter, the source of acoustic signal and 

studies related to the use of acoustic methods are elaborated in detail. 

In Chapter 3, the type of material used in this study and its preparation method 

are explained. Next, the preliminary experiment method is described and the main 

results from this experiment are presented to justify the values or range of weld 

parameters used in this study. The chapter continues with the description of the data 

acquisition setup, data sampling, and how the macro images of the welded samples 

were taken. In the next part, the feature extraction method will be explained. The 

process of developing the signal processing algorithm and empirical model for weld 

penetration estimation will also be elaborated in detail. 

All the results from the experiment and analysis elaborated in Chapter 3 are 

discussed in Chapter 4. Specifically, Chapter 4 starts with the discussion on the 
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behavior of sound signal acquired from the PW laser welding process. The trend of 

features extracted from time-domain, frequency-domain, and time-frequency analyses 

from the process with different laser peak power levels and laser pulse durations is 

presented. The performance results of the feature extracted from the developed signal 

processing algorithm through the feature selection analyses are also discussed in detail. 

The estimation model developed from both MLR and ANN methods is presented and 

the results from the validation are discussed at the end of this chapter. 

In the closing chapter of this thesis, a summary of the results is presented before 

the entire work is concluded. At the end of Chapter 5, several recommendations for 

future work are pointed out. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

Over many decades, metal joining has been applied in various industries from 

large scale such as ship fabrication, gas pipeline networking, automotive assembly, and 

small scale like electronic component. Under this fact, the technology of metal joining 

has overgrown, which results in the establishment of various techniques for welding, 

soldering, and the other type of joining method. 

Laser welding has some unique features compared to the other joining method 

because of its ability to promote good quality welding and reduce the post-machining 

process (Dawes, C., 1992; Katayama, S., 2018). Due to this fact, it is essential to 

comprehend the physics of the laser welding process. In this chapter, the physical 

phenomena behind the process were explained in detail after the general overview of 

the laser welding is given. Moreover, the wave mode involved in laser welding and 

how its parameters upbringing the influence to the welding process and quality was 

discussed. In conjunction with this section, the mechanism of defect formation was 

pointed out to understand how the combination of parameter sets would enhance the 

existence of defects. On the other hand, the application of real-time monitoring 

methods in observing the laser welding process was also described. The next part 

explained more on the application of the acoustic method due to its interesting features 

such as low cost, simple and easy setup. In the last part of this chapter, the needs for 

extensive research in both the laser welding process and the monitoring method were 

highlighted. Additionally, the main focus of this particular work was described, as well.  

2.2 Laser Welding Application in Industries 

Recently, laser welding has become more prevalent in the manufacturing 

process as it has been used in many types of industries. Heavy industries such as 

automotive (Hong, K. M. & Shin, Y. C., 2017), oil and gas (Guo, N. et al., 2017), and 
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shipbuilding (Martukanitz, R., 2005) applied this technology due to its advantages such 

as high accuracy, excellent repeatability, versatility, and low heat affected zone 

(Bhadra, R. et al., 2015; Wang, P. et al., 2016). As a result, laser welding technology's 

rapid development could be observed for several decades. Different laser technology 

offers a different range of wavelength, average power, and any other important 

parameters that could reflect the physical process during welding, and production cost. 

Laser welding technology could be characterized based on its active medium, 

which functioning as a laser source. These active mediums are categorized as solid-

state and gas-state (Dawes, C., 1992). Neodynium yttrium aluminum garnet (NdYAG) 

and CO2 are typical examples of solid-state and gas-state active mediums. Commonly, 

the output power of NdYAG laser welding that available in industry is up to several 

kW. Even though NdYAG provides lower average power as compared to the CO2 laser, 

it could be operated with higher peak powers in pulse mode. Thus, deeper penetration 

could be obtained from NdYAG laser welding via pulse mode. For this type of laser 

welding, the output wavelength is around 1.06 micrometers, allowing transmission 

through fiber optic cables.  Unlike NdYAG laser, CO2 laser welding provides more 

output power due to low beam quality, resulting in lower laser energy absorptivity.  

Therefore, to enhance deeper penetration, the output power for CO2 laser welding could 

be up to 25 kW, which obviously consumes much energy.   

Apart from solid- and gas-state laser sources like NdYAG and CO2, the use of 

fiber laser is also becoming popular lately. Unlike the other type of laser, the fiber laser 

beam is generated in an active fiber optic, which is doped with the rare-earth element 

and guided to the workpiece by a flexible delivery fiber (Quintino, L. et al., 2007). 

Besides, a higher degree of laser energy absorption in workpiece due to shorter 

wavelength have attracted the industry to use this type of laser weld (Kuryntsev, S. V. 

et al., 2017). Looking back on how this type of laser was developed, fiber laser was 

invented since the sixties and took several decades of development before it was ready 

for commercial use (Shi, W. et al., 2014). The first commercially used fiber laser 

welding only uses a single-mode diode, producing a low power laser beam for the small 

scale application. Reasoning to the demand for high power laser in a wide variety of 

industries, an erbium-doped fiber laser was introduced. This invention becomes the 

groundbreaking finding as the rapid evolution of fiber laser welding technology begins 
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from this point. By using an erbium-doped fiber laser, a more powerful and precise 

laser beam could be produced from a single-mode. Accordingly, it became useful for 

more applications in industries. In modern-day fiber laser technology, further 

development was done by combining multiple mode pump sources, as shown in Figure 

2.1, to achieve greater power (Young, D. & Roychoudhuri, C., 2003). From this point, 

the introduction of high power fiber laser welding has been dramatically increasing 

until recently. Unlike its early developed version, the fiber laser welding technology 

used in industries nowadays could offer some other advantages compared to NdYAG 

and CO2 laser. According to Quintino, L. et al., (2007), currently introduced fiber laser 

welding technology could offer high power, low beam divergence, and flexible beam 

delivery. Moreover, unlike the other types of laser welding, no alignment is needed for 

this type of laser, which results in low operating and maintenance costs. Besides that, 

the good absorptivity of this type of laser beam could promote high electrical 

efficiency.   

 

 

Figure 2.1 Multiple-mode fiber laser. 

Source: Young, D. & Roychoudhuri, C., (2003) 

 

In various disciplines of industries, the selection of laser type is explicitly made 

based on several main factors such as design, productivity as well as production cost. 

This is to ensure that optimum benefit could be obtained without disregarding the 

manufacturing cost. In most cases, laser technology with the high power density and 

high-quality beam are more preferred to satisfy the demand in a wide variety of 

industries, including micromachining, laser marking, and medical applications 

(O’Neill, W. et al., 2004). Looking into this factor, fiber laser technologies that are 

available nowadays seems to promote more advantages as compared to CO2 or NdYAG 

laser. With inherent advantages and attractive properties of the latest technology, the 
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uses of fiber laser technology have been expanded into many areas, and its performance 

will continue to improve (Shi, W. et al., 2014).  

2.3 Principle of Laser Welding 

Laser welding is inherently different, as the physics behind the process is 

compared with other welding types. In general, to form a laser weld, the laser beam 

needs to be focused on the workpiece, and the process afterward involves three major 

processes, which are coupling, fusion, and cooling. 

In the very beginning stage of the laser welding process, the photon in laser 

beam is either absorbed or reflected from the workpiece surface. For the case of a 

workpiece with good reflectivity such as metal, majority of photon are reflected from 

the surface. However, some of the absorbed photon is converted into heat, resulting in 

increased local temperature. Hence, the absorptivity eventually increased by the local 

temperature gain. This is because absorptivity of the material could be induced by 

increasing temperature. As the absorptivity increases, more photons assimilate into the 

material and accelerate the heating process (Bergström, D., 2008; Kelkar, G., 2008). 

These whole processes explained the establishment of the coupling phase in the laser 

welding process. Another factor could enhance coupling, and numerous studies have 

attempted to explain on this. According to the previous studies, it is found that the 

surface oxidization (Dausinger, F. & Shen, J., 1993; Nath, A. K. et al., 2002), and 

increasing surface roughness (Barbarino, S. et al., 1982; Bergström, D., 2008; 

Bergström, D. et al., 2007) could intensify the absorptivity of the laser beam energy. 
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(a) 

 
(b) 

 

Figure 2.2 Weld geometry for a conduction and keyhole mode welding. (a) 

conduction mode (b) keyhole mode 

Source: Dawes, C., (1992) 

 

In the next phase, the process of authenticating the fusion zone is involved. This 

process could be accomplished in two different ways, which is either conduction or 

keyhole mode. Theoretically, the conduction mode welding occurs when the process is 

operated with low energy density, whereas heat generated from the coupling process is 

dispersed underneath the workpiece surface through conduction. When the melting 

point is achieved, the weld pool occupied by the molten metal is formed. These 

physical phenomena consequently produce a wide and shallow fusion zone (Dawes, C., 

1992; Quintino, L. & Assunção, E., 2013). Nevertheless, the heat-affected zone is also 

larger in size, as illustrated in Figure 2.2 (a). In contrast, at high beam energy density, 

the molten metal is forced to move to a weld pool surrounding by the plasma pressure 

produced from the evaporation of molten metal itself. As a result, a keyhole-shaped 

cavity is formed. This allows more photon absorption whilst increasing the absorption 

efficiency (Katayama, S., 2018). Zhang, Y. et al., (2012) in their investigation, have 

revealed that the distribution of absorbed laser energy inside the keyhole was not 

uniform. Uniquely, the maximum absorption was found at the keyhole's bottom due to 

both Friesnel and Inverse Bremsstrahlung absorption during multiple reflections. As a 

result, the laser beam could penetrate deeper into the workpiece, and due to this 
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phenomenon, the fusion zone becomes narrow and deeper in shape as illustrated in 

Figure 2.2 (b).  

After fusion stage established, the cooling process took place. In fact, for pulsed 

laser spot weld, cooling rates are one of the fastest, perhaps second only to resistance 

spot weld (Kelkar, G., 2008). At this stage, the defect formation is affected upon the 

cooling rate behavior. Such fast cooling rates can cause many issues, including trapped 

porosity (Zhou, J. & Tsai, H. L., 2006), high residual stress (Zhang, Y. et al., 2016), 

cracks (Böllinghaus, T. et al., 2011; von Witzendorff, P. et al., 2015), and excessive 

weld metal hardness (Malek, G. F. et al., 2007; Sokolov, M. et al., 2011) . However, 

some of these issues can be alleviated by controlling the cooling rate.  

As shown in Figure 2.2, in the progress of establishing the fusion zone, the 

process could happen either in conduction or keyhole mode (Dawes, C., 1992). In 

essence, the characteristic of conduction and keyhole mode laser welding is distinctive 

and identical, giving some of the advantages or drawbacks in different ways. For 

instance, Quintino, L. & Assunção, E., (2013) has put forward the comparison between 

those two modes of laser welding. Their review emphasized that in conduction 

welding, the heat deposited into the material could be easily controlled. Moreover, 

using a large beam in this mode could reduce the fit-up problem, and high beam quality 

is not a priority. Besides, fewer defects could be found for conduction mode welding 

due to the absence of spatter during the process (Assuncao, E. et al., 2012). Meanwhile, 

shallow penetration and low coupling efficiency are among the disadvantages of using 

this mode. According to Nath, A. K. et al., (2002), the coupling efficiency is achieved 

around 15 % only during the conduction mode welding. 

On the other hand, in keyhole mode laser welding, high productivity, deep 

penetration, and small heat-affected zone could be achieved (Ready, J. F. & Farson, D. 

F., 2001). However, this process is considered unstable due to the weld pool's 

dynamical behavior and plasma plume itself. This would enhance the formation of 

defects such as spatters, porosity, undercut, and incomplete penetration (Chen, M. et 

al., 2017; Pang, S. et al., 2016; Panwisawas, C. et al., 2017; Ready, J. F. & Farson, D. 

F., 2001). 
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Even though the difference between conduction and keyhole could be 

distinguished, the transition region between both modes is still one of the debating 

topics among scholars. In some studies, the threshold between conduction and keyhole 

mode welding is determined from power density value. For instance, it was explained 

that the conduction mode would present if the power density is lower than 10 MW/cm
2
 

while the opposite mode took place if this value is exceeded (Steen, W. M. & 

Mazumder, J., 2010). On the other hand, another popular approach in distinguishing the 

conduction and keyhole mode is by determining the depth-to-width ratio of the weld 

geometry. According to Nakamura, S. et al., (2000), conduction mode welding 

occurred when the aspect ratio less than 0.5. In another study, Assuncao et. al., (2012) 

believed that the other parameter such as welding speed, beam diameter, should not be 

completely neglected in defining the transition regime. They have also pointed out that 

previous approaches are assuming that there is a sharp transition between conduction 

and keyhole mode welding. Hence, in their investigation, it was revealed that the weld 

character in the transition regime is actually the combination of both modes, and no 

sharp transition is recorded from their observation. According to the finding, it was 

reported that the aspect ratio is the suitable parameter to determine the transition due to 

the result showing that there is a consistent aspect ratio value along with the transition, 

as illustrated in Figure 2.3. Nonetheless, the exact transition value of aspect ratio 

depended on the interaction time adjusted by varying the speed during the experiment. 

This finding was aligned with what has been reported by Chelladurai, A. M. et al., 

(2015). 

  

Figure 2.3 Aspect Ratio vs Laser Power Density  

Source: Assuncao, E. et al., (2012) 
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2.4 Wave Mode in Laser Welding  

Commonly, laser welding is conducted in continuous wave (CW) or pulse wave 

(PW) mode. As compared to the other type of welding process, continuous wave mode 

laser welding is similar to the standard arc welding. On the other hand, the PW mode 

resembles the resistant spot welding but a bit different because the spot could overlap 

with each other to obtain hermitic seam (Kelkar, G., 2008). In contrast to CW mode 

welding, pulse energy, pulse duration, duty cycle, pulse repetition rate, and pulse 

overlap are some of the additional parameters that commonly considered in PW mode 

laser welding alongside with the weld speed, average power, power density and the 

focal length (Yaakob, K. et al., 2017). 

Figure 2.4 illustrates specific parameters involved in pulse wave mode 

(Miyachi, A., 2017).  According to the figure, peak power, Ppk could be defined as the 

highest power whilst the pulse duration, tp is the exposed time in a single pulse. 

Meanwhile, the pulse energy, E, could be determined by the giving equation 

(Chelladurai, A. M. et al., 2015). 

 

E = Ppk  x  tp       2.1       

 

 

 

 

Figure 2.4 Parameters in pulse-mode laser welding 

Source: Miyachi, A.,(2017) 
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The shaded area in Figure 2.4 represents pulse energy. For the case of multiple 

pulses, the average power, Pavg, is obtained from the product of pulse energy, E, and 

pulse repetition rate, PRR, as shown by equation 2.2 (Miyachi, A., 2017). 

 

Pavg =E x PRR       2.2  

 

where the pulse repetition rate, PRR represent the amount of pulse given each seconds. 

 

                                PRR = 1
T

      2.3  

  

Beside all these parameters, other essential parameters that need to be 

considered in pulse wave mode are the duty cycle, DC, and pulse overlap, PO, which 

could be calculated by using equation 2.4 and 2.5 respectively (Yaakob, K. et al., 

2017). 

 

DC = PRR x tp         2.4  

PO= 1 - ( vw

ds X PRR
)                  2.5  

 

Theoretically, the duty cycle, DC, is the ratio between the pulse duration, tp, and 

the total period, T, for one complete cycle. Meanwhile, the pulse overlap, PO, is the 

percentage of overlapping along the seam whereas vW and ds in equation 2.5 represent 

the weld speed and spot diameter respectively. 

On the other hand, CW mode laser welding is usually operated by controlling 

the speed and power. Nevertheless, other common parameters that would affect the 

weld geometry and quality for both type of wave mode are beam diameter and 

interaction time. Beam diameter is an important measure because it could influence the 

beam power density given to the workpiece. Basically, the power density, PD, could be 

determined by equation 2.6, whereas db in this equation is the diameter of the laser 

beam at the weld spot (Assuncao, E. & Williams, S., 2013). 

 PD=
P

πdb
2      2.6  
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As compared to the CW mode, PW mode emerged the difference in the process 

nature and involving more parameters. Both types are widely used in industries for 

various applications. However, the specific reason for the selection of different type of 

laser emission is yet unclear among both scholars and industries (Caprio, L. et al., 

2018). Comparing both types, PW mode seems to be advantageous if the average 

power is the only thing that is considered. By using  PW mode, high average power 

laser machines are unnecessary (Dawes, C., 1992). If compared both processes under 

the same condition, Assuncao, E. & Williams, S., (2013), reported that PW process 

gives same penetration at lower laser density as compared to CW process as shown in 

Figure 2.5. This finding suggested that PW process gives higher penetration efficiency 

as only low heat input was needed to achieved same penetration with CW process. This 

advantage results in low distortion on the welded joint as well as giving more chances 

to weld heat-sensitive components (Assuncao, E. & Williams, S., 2013; Frewin, M. R. 

& Scott, D. A., 1999; Liu, J. T. et al., 1993; Weckman, D. C. et al., 1997; Wu, D. J. et 

al., 2013). However, reaching the process stability in PW welding is quite difficult, as 

numerous parameters need to be considered. This attracted the scholars to study more 

in-depth on PW weld and how it could overcome the drawback from CW mode weld 

(Assuncao, E. & Williams, S., 2013; Jiang, Z. et al., 2016; Kuo, T. Y., 2005).  

 

Figure 2.5 Comparison between PW and CW process under the same interaction 

time  and beam size 

Source: Assuncao, E. and Williams, S., (2013) 
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2.5 Defect Formation during Laser Welding Process 

The previous section clearly shows that the laser welding process involves 

various parameters, especially in PW mode. Due to this reason, reaching process 

stability is one of the major challenges. Obtaining the process stability is essential to 

avoid the formation of a defect and get the desired weld quality. Generally, if the 

instability occurs during the laser welding process, both geometrical imperfection and 

sub-surface defects could exist. Moreover, the laser machine consistency and 

environmental disturbance could also contribute to defects formation. As a result, it 

would also affect the physical or mechanical properties of the welded parts. Therefore, 

it is crucial to understand deeper into the mechanism of defect formation before 

selecting parameters for the process. In this section, the formation welding imperfection 

and it's effect was discussed. 

2.5.1 Geometrical Imperfection 

Commonly in industries, the product is fabricated by the series of metal forming 

and machining. Likewise, in some fabrication involving laser welding, the post-

machining process is necessary until the complete product is finished. Hence, avoiding 

geometrical imperfection such as distortion, burn through, underfill, humping, and 

undercut is truly important. This is because any of these geometrical imperfections tend 

to affect the mechanical properties of the product in later stage of machining process. 

2.5.1.1 Weld Distortion 

For product fabrication that involves stamping after the welding process, weld 

distortion is one of the major issues. Weld distortion would appear when there is a large 

difference between the top and the bottom width of the weld pool. As a result, uneven 

thermal expansions occur at the upper and lower part of the workpiece, which 

consequently bends it (Carrolo, V. S., 2010), as illustrated in Figure 2.6. Apart from 

weld pool geometry, uneven residual stress that emerged from the welding process also 

contributes to distortion formation (Moraitis, G. A. & Labeas, G. N., 2009), Moreover, 

this type of defect could also exist in case of high thermal expansion coefficient and 

low thickness material (Katayama, S., 2013).  
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Figure 2.6 Distortion of the welded thin plate.  

Source: Carrolo, V. S.,(2010) 

 

Because of the quality problem that emerged from the distorted welded product, 

some alternatives have been suggested to overcome this problem. Appropriate 

clamping method (Katayama, S., 2013), pre-bending process (Carrolo, V. S., 2010), 

and rapid cooling (Zhang, Y. et al., 2016) were the proposed method in the previous 

research. Uniquely, the application of this methods were proven to reduce the amount 

of distortion.  

2.5.1.2 Burn through 

Apart from distortion, another critical defect that would affect the post-weld 

quality is burn-through. As shown in Figure 2.7, Burn-through exists when melt in a 

molten pool is dropped down during the welding process to form underfill bead with a 

concave top and convex bottom surface. This is happen due to excessive plasma 

pressure as a result from high heat input (Akman, E. et al., 2009; Luo, Z. et al., 2016). 

Commonly, this defect tends to exist when the process involves full penetration 

welding with a wide bottom surface of the weld pool with high heat input (Katayama, 

S., 2013). Avoiding burn through defect is highly important because this defect could 

degrade the strength of the welded joint (Abbasi, Z. et al., 2018). However, it's 

visibility degree is making it easy to be visually detected, which allows the rejection 

before the next machining process. Process parameters optimization has been reported 

as one of the solution to suppress this kind of defect (Dawes, C., 1992; Katayama, S., 

2013; Liu, L. et al., 2018).  
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Figure 2.7 Burn through defect 

Source : Luo, Z. et al.,(2016) 

 

2.5.1.3 Underfill 

Underfill could be described as incomplete penetration on the top surface of the 

fusion zone, and this is drawn in Figure 2.8. This type of defect takes place mainly due 

to the severe spattering of melts during the laser welding process (Kawahito, Y. et al., 

2009; Wahba, M. et al., 2010). Based on the previous studies, the existence of low 

boiling temperature element (Kaplan, A. F. H. & Powell, J., 2011), keyhole instabilities 

(Chang, B. et al., 2016; Kawahito, Y. et al., 2015; Volpp, J., 2017; Zhang, M. J. et al., 

2013), and excessive metal evaporation (Li, S. C. et al., 2014) were among the factors 

leading to the large amount of spatter. To tackle this issue, finding the optimized 

parameter is important in which the power needs to be reduced without disregarding the 

other factor, especially the desired penetration (Heider, A. et al., 2015; Li, S. C. et al., 

2014; Matsunawa, A. et al., 1992).  

 

        

 

Figure 2.8 Underfill defect  

Source: Huang, W. & Kovacevic, R.,(2011) 

 



24 

 

2.5.1.4 Undercut 

A bit different from the underfill, the undercut could be described as a groove 

along the toe of the weld bead (Figure 2.9). It is likely to occur due to high power and 

high pressure of an assisted gas (Dawes, C., 1992). On the other hand, the undercut 

formation might as well occurred from the process with low welding speed (Frostevarg, 

J. & Kaplan, A. F. H., 2014). Basically, with slower welding speed, non-uniform 

cooling process could form pre-solidified material at the gouge rim. In case of butt 

joint, an excessive gap could result in improper melt flow, and the gouge is too far to be 

filled completely leading to the undercut formation. Since inappropriate parameter 

condition has contributed to undercut formation, the optimization of welding condition 

is needed as a measure to overcome this problem (Katayama, S., 2013). 

 

 

 

Figure 2.9  Undercut defect  

Source: Dawes, C.,(1992) 

 

2.5.1.5 Humping 

Unlike another type of geometrical imperfection, humping is formed due to the 

backward flow of melt due to the ejection of plasma plume and high surface tension of 

accumulated melt due to narrow molten pool width (Gratzke, U. et al., 1992). The 

narrow molten pool may occur due to small focused beam during high weld speed 

(Amara, E. H. & Fabbro, R., 2010; Thomy, C. et al., 2008). Consequently, a hump-

shaped weld bead is formed on top of weld bead, as shown in Figure 2.10. The 

occurrence of humping might be suppressed under a defocused condition (Kawahito, Y. 

et al., 2009). Moreover, by shifting from partial to full penetration, the ejection of melt 

in upward direction might reduce, which lessens the tendency of humping to form 

(Katayama, S., 2013).  
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Figure 2.10 Humping Defect  

Source: Gratzke, U. et al., (1992) 

 

2.5.2 Sub-surface Defect 

Another major problem associated with the welding quality is the formation of 

sub-surface defects such as incomplete penetration, crack, and porosity. These defects 

are more severe than the other geometrical imperfection due to the difficulties in 

detecting it. Detecting sub-surface defects could be done through a nondestructive 

testing method such as X-ray radiography, ultrasound, and acoustic emission. However, 

they were costly, time-consuming, and need a certified practitioner to run the test and 

interpret the data. 

2.5.2.1 Incomplete Penetration 

One of the common internal defects that possibly occurred from the laser 

welding process is incomplete penetration. As illustrated in Figure 2.11, this type of 

defect existed when the process of laser energy coupling is not desirably completed, 

which causing the fusion zone not reach the bottom of the workpiece. This might 

degrade the strength of the welded joint, and conceivably happen due to several factors. 

Based on the previous studies associates with the process optimization in pulse mode 

laser welding (Assuncao, E. & Williams, S., 2013; Assuncao, E. et al., 2012; Nath, A. 

K. et al., 2002; Ready, J. F. & Farson, D. F., 2001), weld penetration was reported to be 

closely related to several parameters, but it is mainly affected from the focal position, 

laser peak power, and pulse duration. This is due to the fact that the laser energy 

coupling process is depending on the amount of laser energy as well as its absorptivity 

(Bergström, D., 2008; Bergström, D. et al., 2007; Kelkar, G., 2008).  
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Conceptually, by controlling the above-mentioned parameters, the incomplete 

penetration in pulse mode laser welding are simply could be addressed. However, the 

occurrence of these types of defects remains an issue until now. Even though the 

process have been carry out with the optimal parameter set, the faulty on the focusing 

optic might certainly cause a sudden drop in laser power, which subsequently results in 

the sudden loss of weld penetration. On the other hand, the dynamic of the plasma 

cloud that emerged along the process might causing the fluctuation of energy 

absorption, and sudden shallow penetration might appear accordingly (Dawes, C., 

1992). 

 

 

Figure 2.11 Incomplete Penetration 

Source: Huang, W. & Kovacevic, R., (2009) 

 

2.5.2.2 Crack 

In laser welding process, crack formation can be categorized into hot and cold 

crack. Hot cracking presence at the weld fusion and heat-affected zone. In establishing 

solidification process, certain alloy forms a brittle incomplete solidified mass until it 

cooled into lower temperatures. This brittle liquid film is present surround the grains or 

dendrite. When it is subjected to high transverse contraction stress, solidification 

cracking might be introduced in the film boundaries as shown in Figure 2.12. In steel, 

elements such as sulphur, phosphorus, and boron could induce solidification cracking 

(Dawes, C., 1992).  

In particular, the tendency of the occurrence of solidification cracking is larger 

for the case of PW laser welding (Katayama, S., 2013; Kelkar, G., 2008) or high-speed 

welding with CW laser (Katayama, S., 2013). Several studies show that there is an 
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alternative to suppress the formation of this defect. According to the previous studies, 

optimum weld speed (Kadoi, K. et al., 2013),  cooling time (Kelkar, G., 2008; Yan, F. 

et al., 2017), and pulse shape control (von Witzendorff, P. et al., 2015) were proven to 

be significant in reducing the critical strain which could initiate the solidification crack.  

On the other hand, the formation of cold cracking took place when there is 

hydrogen accumulated in the highly stress-concentrated zone (Stout, R. D. & Doty, W. 

D., 1971). The crack usually forms in the heat-affected zone in the post-weld phase, but 

it could also occur in the fusion zone (Dawes, C., 1992). In addition, it occurs in a 

shorter period under conditions of higher hydrogen content, higher restraint stress, and 

higher hardness of the weld (Katayama, S., 2013). 

 

 

Figure 2.12 Solidification crack  

Source: Yan, F. et al., (2017) 

 

2.5.2.3 Porosity 

Apart from hot and cold cracking, another type of defect underneath the fusion 

zone is porosity. Porosity takes place when there are trapped bubbles during the 

solidification phase (Dawes, C., 1992). These bubbles were originated from vapor and 

ambient gas at both the rear side and tip of the keyhole. It were trapped upon the 

accomplishment of the solidification process as a result from slow back-filling speed 

(Berger, P. et al., 2011). Meanwhile, inappropriate solidification rate or backfilling 

speed are initiate from the instability of keyhole or molten metal (Chen, M. et al., 2017; 

Li, K. et al., 2015; Meng, W. et al., 2014; Pang, S. et al., 2016; Pastor, M. et al., 1999; 

Zhou, J. & Tsai, H. L., 2006). In attempts to reduce the formation of porosity, several 

approaches have been taken in the previous research. Generally, optimization of weld 

speed, defocusing value, peak power was proven to be significant in reducing the 
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occurrence of porosity (Li, K. et al., 2015). In case of PW welding, it have been 

reported that the porosity could be suppressed almost completely when the overlapping 

factor reaches 75% (Gao, X. L. et al., 2014). Meanwhile, in case of lap joint, the 

amount of porosity could be reduced by optimizing the gap between the upper and 

lower plate to be joined (Meng, W. et al., 2014). The gap and root porosities were 

shown in Figure 2.13. 

 

 

 

Figure 2.13 Porosity  

Source: Meng, W. et al., (2014) 

 

Table 2.1 shows the summary of the defects formation sources of all types of 

defects discussed in 2.5.1 and 2.5.2. According to the table, it is clear that the welding 

defects emerge from numerous physical sources that were initiated from improper 

welding design, material selection, and parameter combination. In the previously 

discussed topic, optimizing the welding condition by finding a suitable combination of 

parameters seems to be a feasible solution to this problem. However, quality assurance 

is still could not be fully guaranteed because the defects might still occur from ambient 

factors such as machine instability and faulty. 

 

In TWB production, all types of defects discussed in Section 2.5 are commonly 

existed (Vidal, F. et al., 2010). The occurrence of these defects could degrade the 

strength of the welded joint which makes it important to be controlled during the 

process. Comparing between two different categories of defect in section 2.5.1 and 

2.5.2, sub-surface defects are more severe as it is not easy to be detected. In previous 

studies, non-destructive testing has been demonstrated to be useful to detect sub-surface 

defect (Chengning, Z. et al., 2010; Montgomery, A. et al., 2003). However, the 

suitability and sensitivity of these option is subjective (Li, M. M., 2011).   
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Table 2.1 Summary on the defect formation sources. 

Defect Physical source 

of defect 

Parameter that influence 

the source of defect 

References 

Distortion Inappropriate size of 

weld pool 

dimension 

Uneven residual 

stress 

Groove design 

Laser power/energy 

Workpiece thickness 

(Carrolo, V. S., 2010; Katayama, 

S., 2013; Moraitis, G. A. & 

Labeas, G. N., 2009; Zhang, Y. 

et al., 2016) 

Underfill Excessive spattering 

Molten pool and 

keyhole instability 

Laser Power/energy 

Gap size ( In case of lap 

joint) 

Material (with low boiling 

temperature element) 

(Chang, B. et al., 2016; Heider, 

A. et al., 2015; Kaplan, A. F. H. 

& Powell, J., 2011; Kawahito, 

Y. et al., 2009; Li, S. C. et al., 

2014; Matsunawa, A. et al., 

1992; Nakamura, S. et al., 2000; 

Volpp, J., 2017; Wahba, M. et 

al., 2010; Zhang, M. J. et al., 

2013) 

Undercut Non-uniform 

cooling 

High pressure of 

assisted gas 

Welding speed 

Shielding Gas 

Gap size (In case of lap 

joint) 

(Dawes, C., 1992; Frostevarg, J. 

& Kaplan, A. F. H., 2014; 

Katayama, S., 2013) 

Humping Backward flow of 

melt 

Ejection of melt 

from plasma plume 

pressure 

Narrow keyhole size 

Focal length 

Laser power/energy 

(Amara, E. H. & Fabbro, R., 

2010; Gratzke, U. et al., 1992; 

Katayama, S., 2013; Kawahito, 

Y. et al., 2009; Thomy, C. et al., 

2008) 

Incomplete 

penetration 

Laser energy 

coupling 

Dynamic of plasma 

cloud 

Focal position 

Laser power 

Pulse duration ( in case of 

pulse mode) 

Weld speed 

(Assuncao, E. & Williams, S., 

2013; Assuncao, E. et al., 2012; 

Bergström, D., 2008; Bergström, 

D. et al., 2007; Kelkar, G., 2008; 

Nath, A. K. et al., 2002; Ready, 

J. F. & Farson, D. F., 2001) 

Crack Improper 

solidification 

 

Welding Speed 

Pulse repetition rate (in case 

of pulse mode) 

 

(Dawes, C., 1992; Kadoi, K. et 

al., 2013; Katayama, S., 2013; 

Kelkar, G., 2008; von 

Witzendorff, P. et al., 2015; 

Yan, F. et al., 2017) 

Porosity Rapid solidification 

Improper backfilling 

speed 

Gas trapped 

Weld speed 

Pulse repetition rate 

 

(Berger, P. et al., 2011; Chen, M. 

et al., 2017; Dawes, C., 1992; 

Gao, X. L. et al., 2014; Li, K. et 

al., 2015; Meng, W. et al., 2014; 

Pang, S. et al., 2016; Pastor, M. 

et al., 1999; Zhou, J. & Tsai, H. 

L., 2006) 

 

Among the described subsurface defect, incomplete penetration is one of the 

defects that need to be controlled in TWB production. Li, M. M., (2011) pointed out 

that incomplete penetration have better chance to be detected by using ultrasound and 

eddy current method. However it is difficult to discover when the depth is less than 0.1 

mm. Previous study revealed that the existence of incomplete penetration caused the 

reduction in weld geometry and simultaneously affect the strength of the welded joined 
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(Bandyopadhyay, K. et al., 2016). Another study showed that the dome height which 

represented as the degree of formability was reduced as the incomplete penetration 

existed. This was clearly shown in Figure 2.14 whereas the fracture was found initiated 

at the weld zone (Abbasi, M. et al., 2011). 

 

 

Figure 2.14 Fracture from weld line due to incomplete penetration during metal 

forming process 

Source: Abbasi, M. et al., (2011) 

 

Apart from formability issue, the existence of incomplete penetration is also 

being concerned due to its ability to turn into a crack tip and speed up the fatigue 

failure (Berto, F. et al., 2016). In earlier work by Boulton, C. F., (1976), the fatigue life 

of the welded joint with incomplete penetration was estimated by developing the 

mathematical model. This study revealed that the toe size and the location of the 

incomplete penetration play an important role to the fatigue life. Similar finding also 

have been reported by Singh, P. J. et al., (2002). 

 

2.6 Monitoring the Laser Welding Process 

The mechanisms of defect formation have been described in section 2.5. Among 

the suggested solution to reduce these defects, identifying the optimum welding 

parameters seem to be one of the popular solution. However, despite the right practical 

steps, quality assurance still becomes a major issue for several reasons. As example, a 

fault occurring in the focusing optic like thermal distortion and cracked lens would 
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distort the focus spot, consequently changing the power density (Dawes, C., 1992). 

Furthermore, material imperfection and unforeseen contamination would also reduce 

the absorptivity of laser beam energy. From another angle of view, other scholar 

pointed out that the occurrence of defects might also happen when the process 

responding in non-linear way even though the optimum parameters have been set out 

(Lee, S. et al., 2014). Considering this factor, it is difficult to rely only on parameter 

optimization to overcome the weld quality problems. Hence, the feasible solution for 

this drawback is to develop an in-process monitoring system. Process monitoring is the 

essential way to reduce the amount of reject, improve reproducibility, and save cost. 

Furthermore, it could also enhance the development of the process control system in the 

future (Purtonen, T. et al., 2014). 

During the laser welding process, many physical responses in the form of 

electrical, thermal, optical, and acoustic were dynamically emerged from the laser-

material interaction. Due to this reason, monitoring the laser welding process is 

commonly done by capturing the information concerning to these responses. For 

instance, previous work related to the electrical signal demonstrated that the analysis of 

a plasma potential signal significantly aided in monitoring laser weld quality. This is 

because the emitted plasma potential signal contains the information related to the size 

and behavior of plasma plume in which it could be correlated with the penetration 

status and other types of defects (Li, L. et al., 1996). As illustrated in Figure 2.15, 

measuring the plasma potential in the vicinity between the weld nozzle and workpiece 

could be done using a plasma charge sensor (You, D. Y. et al., 2014). 

 

Figure 2.15 Schematic diagram of plasma charge sensor 

Source: You, D. Y. et al., (2014) 
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Apart from the electrical signal, the use of thermal signal is also helpful in 

evaluating the welding condition. By utilizing probes such as pyrometer and infrared 

camera, the temperature trends during the cooling process could be monitored. 

Bertrand, P. et al., (2000) have demonstrated the use of a pyrometer to monitor the 

surface temperature during CW laser welding. It was reported that the signal from 

different wavelengths acquired by pyrometer shows a trend according to the 

solidification stage. Moreover, the drop in laser power, presence of contamination, and 

lack of shielding gas could be detected by brightness temperature from a particular 

wavelength. This could be referred in Figure 2.16. In another study, (Gao, X. et al., 

(2012) used the infrared camera to extract the thermal distribution of the molten metal 

during the process. As a result, this parameter could be used to determine the deviation 

between the laser beam focus and weld seam center, which significantly helped control 

the process.   

  
(a) (b) 

 
(c) 

Figure 2.16 Brightness temperature reading acquired from pyrometer with respect to 

the variation of (a) Laser power (b) presence contamination (c) shielding gas.  

Source: Bertrand, P. et al., (2000) 

 

By the fact that the laser-material interaction produces a large amount of light, 

the spectrometer application for monitoring purposes has also been established. 
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Basically, spectroscopic analysis is carried out by acquiring the light emission from the 

plasma, and the characteristic of this signal has been proved to show good agreement 

with the welding condition. For example, in the previous work, Kong, F. et al., (2012) 

revealed that the zinc vapor originated from the workpiece coating could be detected 

from the spectroscopy analysis. According to their result in Figure 2.17, the plasma 

intensity above the weld pool seems to be reduced when there is zinc coating on the 

workpiece surface. In another part of their study, the increase in weld speed was found 

to cause a drop in plasma intensity value because the increasing speed would reduce the 

interaction time, which consequently caused a lack of plasma plume formation. This 

have leading to the information related to the penetration condition (Sibillano, T. et al., 

2012). Apart from penetration condition, defect such as porosity (Zhang, Z., Kannatey-

Asibu, E., et al., 2015), and local thickness reduction (Sebestova, H. et al., 2012) were 

previously detected from spectroscopic analysis. 

 

(a)      (b) 

Figure 2.17 Spectrum of laser-induced plasma captured by spectroscopy of lap-

jointed galvanized steel with a speed of 30 mm/s (a) without zinc coating (b) with zinc 

coating 

Source :  Kong, F. et al., (2012) 

 

In another approach, the use of acoustic signals has also been demonstrated to 

monitor the laser welding process. Theoretically, the acoustic signal emitted from the 

laser welding process lies within 20 Hz to several MHz, propagating through air or 

structure. Many research shows that this method was capable of detecting defect such 

as burn through (Ao, S. et al., 2010; Luo, Z. et al., 2016), humping (Lee, C. J. et al., 

2015), and porosity (Gu, H. & Duley, W. W., 1996; Sun, A. et al., 2001). Furthermore, 
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instability in weld pool oscillation (Ao, S. et al., 2015) and the dynamic of plasma 

plume (Farson, D. F. & Kim, K. R., 1999) have also been studied using this approach. 

Table 2.2 Summary of four major categories of laser welding process monitoring 

methods 

Signal Type Sensor Commonly detected 

phenomena 

References 

Electrical Plasma Charged 

Sensor 

Plasma Plume Size (Li, L. et al., 1996; You, D. Y. 

et al., 2014) 

Thermal Pyrometer 

Thermal Camera 

Cooling trend 

Thermal Distribution 

(Bertrand, P. et al., 2000; Gao, 

X. et al., 2012) 

Optical Spectrometer 

 

Plasma intensity 

Weld pool dynamic 

Keyhole oscillation 

(Kong, F. et al., 2012; 

Sebestova, H. et al., 2012; 

Sibillano, T. et al., 2012; 

Zhang, Z., Kannatey-Asibu, E., 

et al., 2015) 

Acoustic Microphone 

Acoustic Emission 

Sensor 

Plasma plume dynamic 

Weld pool dynamic 

Keyhole oscillation 

Phase transformation 

(Ao, S. et al., 2010; Farson, D. 

F. & Kim, K. R., 1999; Gu, H. 

& Duley, W. W., 1996; Lee, C. 

J. et al., 2015; Luo, Z. et al., 

2016; Sun, A. et al., 2001) 

 

Based on four major categories of monitoring method summarized in Table 2.2, 

it was clear that different method have its own ability to monitor different phenomena 

during the laser welding process. However, there are plenty of options for monitoring 

phenomena such as plasma plume, weld pool, and keyhole dynamic which could lead 

to the significant information related to the penetration condition. Comparing between 

the options lead to the subjective answer as each method promotes their advantages in 

different ways. However, the use of microphone grasp attention by the researchers 

lately due to its high responsible speed, non-contact, and simple sensor setup features 

(Ao, S. et al., 2015; Huang, W. & Kovacevic, R., 2011; Luo, Z. et al., 2016). 

 

2.7 Signal Analysis of the Acquired Sound 

Based on the explanation in Section 2.6, it was learned that in any method, 

signal was acquired and analyse to investigate its correlation with weld condition. In 

work involving the single-dimensional data or signal, the analysis was done by 

extracting the signal features. In some works related to the acoustic method application, 

the filtering methods have been implemented to enhance the trend of the extracted 

features (Duley, W. W. & Mao, Y. L., 1994; Huang, W. & Kovacevic, R., 2009, 2011; 
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Lee, C. J. et al., 2015). Meanwhile, many studies implement direct feature extraction 

analysis (Ao, S. et al., 2010; Farson, D. et al., 1998; Farson, D. F. et al., 1999; Gu, H. & 

Duley, W. W., 1996; Sun, A. et al., 2001). The trend of these features was learned or 

analyzed in order to develop the predictive model which can be used to predict the weld 

condition. As shown in Figure 2.18, prediction model can be categorized into two sub-

areas which are regression and pattern classification. According to Fahrmeir, L. et al., 

(2013), regression model is the type model which is able to make a prediction on 

continuous variable. In other word, this type of model offers a quantitative estimation 

of the measurable weld condition such as the size of porosity, crack length, and the 

depth of penetration. On the other hand, pattern classification is the approach where the 

weld conditions were evaluated qualitatively (García-Laencina, P. J. et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Analysis of the acquired signal for welding process monitoring 

 

2.7.1 Common type of signal acquired from sensors 

Before giving further explanation on the signal analysis, it is also essential to 

know the general type of signals. As depicted in Figure 2.19, two major types of signals 

are the periodic and random signals. For a periodic signal, the characteristic of several 

features such as peak amplitude and cycle period is periodically constant. Additionally, 

this type of signal could be formed from a single- or multi-frequency. In contrast, the 
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random-type signal typically appeared in a random pattern. It is a combination of an 

infinite number of periodic signals with different amplitudes and frequencies.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 Types of Signals 

Source: Fish, P. J., (2017) 

 

Despite its distinguishable trend, a random signal is characterized based on 

some features. According to Fish, P. J., (2017), the random signal can be categorized 

into two groups, which are stationary and non-stationary random. In stationary random 

signals, features such as mean and variance from the segmented part are normally 

recorded almost constant value. Meanwhile, the non-stationary random signal behaves 

in another way round. This is why the challenge in characterizing non-stationary 

random signals such as transient might be different compared to the stationary-random 

signal. 

Previous studies revealed the difficulties of characterizing the transient-type 

signal due to their broad spectrum and short duration (Digulescu, A. et al., 2016; 

Digulescu, A. et al., 2019). It have been reported that the stationary random acoustic 

signal was recorded in the previous studies related to CW mode laser welding process 

(Huang, W. & Kovacevic, R., 2009, 2011). However, due to the pulsation characteristic 

of PW mode laser welding process, it is expected that non-stationary type of acoustic 

signal is occurred during this process.  
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2.7.2 Signal Filtering 

Figure 2.18 briefly elaborated on the common approaches taken in signal 

analysis for the process monitoring purpose. In some studies, signal filtering was done 

prior to the feature extraction analysis. Basically, the purpose of this process is to 

eliminate the unrelated bandwidth or noise which influence the trend of signal features. 

This is vital as the signal features is the predictive variables which could entirely affect 

the efficiency of the developed predictive model. The acquired signals are filtered 

either by analog or digital filters (Regalia, P., 2018). Jan, J., (2000) claimed that the 

digital filter is more adaptive to the modern-world signal processing system as 

compared to the analog-type. 

In signal processing, digital filter can be categorize into Finite Impulse 

Response (FIR) and Infinite Impulse Response (IIR) filter. Both type of filters can be 

applied in form of low-pass, band-pass, and high-pass. For the FIR filter, the general 

transfer function is as shown in equation 2.7 (Kamen, E. W. & Heck, B. S., 2006).  

Hd(z)= ∑ hd[n]z
-nN-1

n=0       2.7  

 

In this equation, Hd(n), and N are the truncation of the impulse response, and the 

length of filter respectively. Meanwhile, the truncation of the infinite impulse respond 

can be obtained by using equation 2.8 in which it is the multiplication product of the 

impulse response h(n) and window w(n). 

ℎ𝑑[𝑛] = 𝑤(𝑛). ℎ[𝑛]     2.8  

 

Basically, there are several types of window that are available. The most 

common ones are the rectangular, hanning, and hamming which are shown in equation 

2.9, 2.10, and 2.11 respectively. 

 

𝑤(𝑛)𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 = 1       2.9  

𝑤(𝑛)ℎ𝑎𝑛𝑛𝑖𝑛𝑔 = 
1

2
 (1 − 

𝑐𝑜𝑠 2𝜋𝑁

𝑁−1
)     2.10  

𝑤(𝑛)ℎ𝑎𝑚𝑚𝑖𝑛𝑔 = 0.54 − 0.46 𝑐𝑜𝑠 (
2𝜋𝑛

𝑁−1
)   2.11  
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On the other hand, the IIR filters are commonly applied to save time and when 

the linear phase are secondary factor that need consideration (Smith, S. W., 1997). This 

type of filter is widely used in sensor signal processing. The most common type of IIR 

filters are Butterworth and Chebyshev (Kamen, E. W. & Heck, B. S., 2006). 

Comparing between both types of filters, Chebyshev offer a sharper transition from the 

passband to the stopband. However, the ripple in the passband might cause significant 

loss of information which makes Butterworth filter became a popular choice based on 

the previous works (Bakshi, S. et al., 2019; Rabbi, N. F., 2021). The transfer function 

of the Butterworth filter is shown in equation 2.12 (Kamen, E. W. & Heck, B. S., 

2006). In that equation, |𝐻(𝜔)|, 𝜔, 𝜔𝑐 and p are the filter transfer function, frequency, 

cut-off frequency and pole index respectively. 

 

|𝐻(𝜔)| =  
1

√1+ (
𝜔

𝜔𝑐
)
2𝑝

     2.12   

 

In the previous studies, the uses of filter have been proven to give a significant 

impact on the predictive model. For instance, in the work related to laser welding 

process, bandpass filter have been used to enhance the signal features such as root 

mean squares, and bandpower. As a results, the information associate with the keyhole 

status, penetration condition, spatter, underfill and humping were well extracted from 

the filtered signal (Duley, W. W. & Mao, Y. L., 1994; Lee, C. J. et al., 2015).  

Apart from the frequency-based filtering method, there is another filtering 

technique which is made based on the amplitude threshold. Through this technique, the 

threshold value was set whereas the time-series amplitudes which exceed or less than 

this value was filtered out. In case of hard-thresholding, the amplitudes that were less 

than threshold are eliminated. Meanwhile the opposite procedure is implemented in 

case of soft-thresholding process (Bindusri, M. & Rao, S. K., 2019). 

Previous studies associated with transient-type signals, such as in speech 

(Mihov, S. G. et al., 2009) and electrocardiogram (ECG) applications (Devnath, L. et 

al., 2015; Karthikeyan, P. et al., 2012) have revealed the significance of the 

thresholding technique for noise elimination purposes. Among the various techniques, 

the wavelet thresholding method offers a good de-noising effect and simple algorithm, 
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making it a popular choice in signal de-noising (He, C. et al., 2015). Basically, 

Heursure, Rigrsure, Sqtwolog, and Minimaxi are the four types of thresholding 

methods in wavelet de-noising. However, a comparison between these methods based 

on the previous works leads to contradicting answers since the performance of these 

thresholds depends on the decomposition level and type of mother wavelet (Valencia, 

D. et al., 2016).  

Basically, if the time series signal, x(t) is represented as a vector with the length 

of N, the following equation can determine the Sqtwolog threshold (Verma, N. & 

Verma, A. K., 2012). 

𝜆𝑠𝑞𝑡𝑤𝑜𝑙𝑜𝑔 = 𝜎𝑗√2 𝑙𝑜𝑔𝑁    2.13  

 

In the above equation, 𝜎𝑗 is represented by the following equation 

𝜎𝑗 =
𝑚𝑒𝑑𝑖𝑎𝑛 (|𝑥|)

0.6745
    2.14  

 

Different from the Sqtwolog thresholds, the Rigrsure threshold was obtained 

from several steps of the algorithm (Raj, A. S. et al., 2016). The process began by 

obtaining a new sequence of f(k) by sorting the squared element of xi in ascending order 

as shown in equation 2.15.  

𝑓(𝑘) = (𝑠𝑜𝑟𝑡(|𝑥𝑖|))
2  k=0,1,2,3,…N-1 2.15  

 

Next, the square root of each element of f(k) was calculated through equation 

2.16 to obtain a series of threshold 𝜆𝑘 

𝜆𝑘 = √𝑓(𝑘)     2.16  

 

Then, a series of risk, 𝑅𝑖𝑠𝑘(𝑘) from the series of threshold k was determined 

according to Equation 2.17. 

𝑅𝑖𝑠𝑘(𝑘) =  [𝑁 − 2𝑘 +
∑ 𝑓(𝑖)+(𝑁−𝑘)𝑓(𝑁−𝑘)𝑘

𝑖=1

𝑁
]  2.17  
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Finally, the index of k, which corresponded to the minimum risk point in Risk(k) 

plot was identified and denoted as kmin to determine the threshold, as shown in Equation 

2.18. 

 

𝜆𝑟𝑖𝑔𝑟𝑠𝑢𝑟𝑒 = √𝑓(𝑘𝑚𝑖𝑛)    2.18  

 

Meanwhile, the heursure threshold is the combination of sqtwolog and rigrsure 

(Bindusri, M. & Rao, S. K., 2019; Valencia, D. et al., 2016).  Bindusri, M. & Rao, S. 

K., (2019) claimed that this type of threshold gives an impact if the rigrsure threshold is 

small. 

Unlike the unbiased risk estimation method, the formula for the Minimaxi 

threshold is much simpler. The model of this threshold is shown in Equation 2.19 

(Karthikeyan, P. et al., 2012). 

𝜆𝑚𝑖𝑛𝑖𝑚𝑎𝑥𝑖 = 𝜎𝑗(0.3936 + 0.1829 (𝑙𝑛𝑁))  2.19  

 

 

2.7.3 Signal Feature Extraction 

In order to build the predictive model for estimating the weld condition, the 

trend of predictive variables need to be studied. In signal analysis, these variables are 

often called the signal features. Basically, there are three main types of analysis 

involved in features extractions which are time-domain, frequency-domain, and time-

frequency analysis. In the time-domain analysis, the discrete point of amplitudes logged 

from the data acquisition process is normally accumulated in amplitudes distribution, as 

illustrated in Figure 2.20. Then, statistical features such as maximum amplitude, mean, 

median, standard deviation, skewness, and kurtosis are extracted from this amplitudes 

distribution. The trends of these features are commonly used to characterize the signal. 
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Figure 2.20 Feature extracted from a time-domain signal. 

 

In the previous studies, mean absolute deviation (MAD), standard deviation 

(SD), and kurtosis were proven to give a significant correlation with weld condition in 

the case of laser and arc welding processes (Farson, D. et al., 1998; Fidali, M., 2018; 

Huang, W. & Kovacevic, R., 2009; Zhang, Z., Chen, H., et al., 2015). These features 

are determined from the equation 2.20 to 2.22 

 

𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  
1

𝑛
∑ |𝑥𝑖 − 𝜇|𝑁

𝑖=1    2.20  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  √
∑ (𝑥𝑖−𝜇)2𝑁

𝑖=1

𝑁
    2.21  

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑁
∑ (

𝑥𝑖− 𝜇

𝜎
)
4

𝑁
𝑖=1      2.22  

 

Apart from the common features which apply the concept of statistical moment, 

there are another method which adapting the L-moment concept. L-moment concept 

was introduced by Hosking, J. R. M., (1990), to overcome the effect of sampling 

variability and outlier in the overall distribution. It is a linear combination of order 

statistic which is computed by using equation 2.23. In this equation r and j represents 

the L-moment index and sample subset. 

                                𝐿𝑟 = 𝑟−1 (
𝑛
𝑟
)
−1

∑ (−1)𝑟−𝑗 (
𝑟 − 1

𝑗
)𝑥1<⋯< 𝑥𝑗<⋯<𝑥𝑟
𝑥𝑗              2.23

            

Meanwhile, features such as L-Scale, L-Skewness and L-Kurtosis could be 

extracted from the ratio between the L-moment. The L-scale, L-Skewness and L-

 Maximum 
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kurtosis were determined by the L-moment ratio shown in Equation 2.24 and Equation 

2.26, respectively. 

𝐿 − 𝑆𝑐𝑎𝑙𝑒 =  
𝐿2

𝐿1
     2.24     

𝐿 − 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
𝐿3

𝐿2
     2.25  

𝐿 − 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
𝐿4

𝐿2
     2.26  

 

Even though the use of this type of features is not yet being demonstrated in the 

studies related to the welding process, it has been proven to be significant in other 

condition monitoring application recently. In the work associates with the bearing fault 

diagnosis, Liu, S. et al., (2018) claimed that the use of L-kurtosis extracted from the 

vibration signal can overcome the inherent drawbacks of the traditional kurtosis which 

is too sensitive to the outliers. Align with this claim, Bao, W. et al., (2020) detected the 

periodic impulse by determine the L-kurtosis of the enveloped spectrum of the 

vibration signal. As a result, the condition of rolling element bearing was successfully 

revealed. Disregard of these works, there were also other studies which demonstrated 

the implementation of L-moment concept for rotating machinery application (Gao, Q. 

et al., 2021; Liu, H. & Shi, Z., 2020) 

Apart from statistical moment, the exploration on the other types of algorithm 

for extracting features from time-series signal still active until recently. Methods such 

as Non-circular MUSIC algorithm (Chen, Z. et al., 2018), subspace tracker (Lassami, 

N. et al., 2020), and Multi-lag Phase Space (Bernard, C. et al., 2014) were among the 

recently proposed method to a time-series signal analysis. Those algorithms were 

introduced to adapt with various problems related to the signal characteristic which 

make it challenging to develop the predictive model.  
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Figure 2.21 Conversion from time-domain signal to a frequency-domain signal.  

Source: Staszewski, W. J. & Worden, K., (2009) 

 

In frequency domain analysis, the time-series amplitude is converted into a 

frequency-amplitude representation by Fourier transform, as shown in Figure 2.21. The 

conversion is made based on equation 2.27 whereas Xn, xr, and N, are the complex 

spectral line, discrete time-series, and number of data point respectively (Staszewski, 

W. J. & Worden, K., 2009). Based on frequency-amplitude representation, features 

such as the dominant frequency and bandpower are extracted to characterize the signal. 

In the previous work, the analysis of amplitude at the dominant frequency band have 

been claimed to be significant in detecting weld condition (Duley, W. W. & Mao, Y. 

L., 1994). Moreover, the use of bandpower in the study by Huang, W. & Kovacevic, 

R., (2009) results in the reliable weld depth prediction model.   

 

𝑋𝑛 =  ∑ 𝑋𝑟
𝑁−1
𝑟=0 𝑒

−𝑖2𝜋𝑛𝑟

𝑁      2.27  
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Transform 
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(a) (b) 

Figure 2.22 Conversion from time-domain to time-frequency representation 

(a)Short-time Fourier Transform (b) Wavelet Transform. 

Source: Giurgiutiu, V. & Yu, L., (2003) 

 

On the other hand, due to the incapability of time-amplitude and frequency-

amplitude representation to provide much information simultaneously, analysis of time-

frequency is preferable in some applications. Commonly, time-frequency representation 

is obtained from the Short-Time Fourier Transform (STFT), or wavelet transforms 

(WT). Both analyses imply a different algorithm that provides their advantages in 

different ways. As shown in Figure 2.22, time-frequency representation through STFT 

is done by segmenting the signal into a finite number of components with different time 

interval and converting each segment into frequency-amplitude (Portnoff, M., 1980). 
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This provided fast and non-complex analysis, which could save more processing time 

(Durak, L. & Arikan, O., 2003).  

Unlike STFT, the WT represents different frequency resolutions at different 

bandwidth due to scaling and shifting process of the mother wavelet. As a result, good 

time resolution but relatively poor frequency resolution could be obtained at high 

frequencies. Meanwhile, a contradict pattern could be found at low frequencies. This is 

the reason why WT gives excellent advantages in the analysis of the transient signals 

(Giurgiutiu, V. & Yu, L., 2003). 

Generally, continuous wavelet transform could be done by the formula in 

equation 2.28 (Staszewski, W. J. & Worden, K., 2009), whereas a, b and φ are scale 

factor, shifting factor, and mother wavelet, respectively. Specifically, the relationship 

between frequency, f, and scales, a, is mathematically explained by equation 2.29 

whereas ω0 is the central frequency 

𝑊𝑥 (𝑎, 𝑏) =  
1

|𝑎|1/2 ∫ 𝑥(𝑡)𝜑 (
𝑡−𝑏

𝑎
)𝑑𝑡

∞

−∞
   2.28  

𝑎 =
𝜔0

𝜔
        2.29  

  

Meanwhile, 𝜑(𝑡) in equation 2.28 is the function of mother wavelet. Basically, 

there are several types of mother wavelet that are available for the analysis. In case of 

transient-type signal, Morlet mother wavelet provided more advantageous as compared 

to the others (Li, H., 2010). The model of the morlet mother wavelet is shown in 

equation 2.30 (Iatsenko, D. et al., 2015). 

𝜑(𝑡) =
1

√𝜋
4  𝑒−𝑗𝜔0𝑡𝑒−

𝑡2

2     2.30  

 

After conversion from scale to the frequency in time-frequency space, the 

wavelet transform of x(t) for a chosen 𝜑(𝑡) could be written as  

𝑊𝑥(𝜔, 𝑡) =  ∫ 𝑥
+
(𝑡)𝜑∗(

𝜔(𝑡−𝑏)

𝜔0
)

𝜔𝑑𝑡

𝜔0
    2.31  
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2.7.4 Predictive Modelling 

Conceptually, the predictive model is developed either for qualitative evaluation 

or quantitative assessment of the process condition or the output product quality. For 

the purpose of the quantitative predictive model development, regression-based 

approach is commonly applied. In welding quality monitoring studies, the most popular 

methods are the multiple linear regression (MLR) and the artificial neural network 

(ANN) (Chen, C. et al., 2020; Tomaz, I. V. et al., 2021; Wan, X. et al., 2017; Zhao, D. 

et al., 2020). 

In essence, the development of regression-based predictive model involved 

several predictive variables from both signal features and process parameters. Through 

multiple linear regression (MLR) method, the predictive model was generated using a 

general model shown in Equation 2.32 (Olive, D. J., 2017). 

 

𝑌 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑛𝑥𝑛    2.32  

 

In Equation 2.32, n is a series of predictive variables from both sound features 

and weld parameters selected based on the feature selection analysis result. 𝛽0 is the 

intercept of multi-dimensional surface, while 𝛽𝑛 is a series of partial regression 

coefficients. These coefficients were obtained from the least squares estimation 

method. 

The least squares function is shown in Equation 2.33, and it must be minimized 

by satisfying both Equation 2.34 and Equation 2.35 to obtain the optimal value of 

regression coefficients (Montgomery, D. C. & Runger, G. C., 2010). In these equations, 

n and k represent the number of predictive variables and total number of samples, 

respectively. 

 

𝐿 =  ∑ (𝑌𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=1 )

2𝑛
𝑖=1     2.33  

 

𝜕𝐿

𝜕𝛽0
|
�̂�0,�̂�1,…,�̂�𝑘

= −2∑ (𝑌𝑖 − �̂�0 − ∑ �̂�𝑗𝑥𝑖𝑗
𝑘
𝑗=1 ) = 0𝑛

𝑖=1    2.34  
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𝜕𝐿

𝜕𝛽0
|
�̂�0,�̂�1,…,�̂�𝑘

= −2∑ (𝑌𝑖 − �̂�0 − ∑ �̂�𝑗𝑥𝑖𝑗
𝑘
𝑗=1 )𝑥𝑖𝑗 = 0𝑛

𝑖=1    2.35  

 

In the recent work, Zhao, D. et al., (2020) used MLR method to develop the 

predictive model for estimating the nugget diameter during the spot welding. Using five 

different features which were extracted from the power signal, the MLR model was 

successfully developed. The mean of errors of the model recorded in this study was 

5.29%. In another study related to the laser welding process, MLR model (as shown in 

equation 2.36) was developed to estimate the depth of penetration (Huang, W. & 

Kovacevic, R., 2011). This model was constructed from the series of predictive 

variables that combined both sound signal features and weld parameters such as sound 

pressure deviation (SPD), band power (BP), laser power (LP) and weld speed (WS). 

𝐷𝑊 = 0.7428 + 1.4714 𝑆𝑃𝐷 − 2.0614 𝐵𝑃 + 0.8227 𝐿𝑃 − 0.5504 𝑊𝑆     2.36  

 

In ANN approach, the series of n input parameters have been analyzed to train 

the neural model. Similar to the MLR method, the general form of the neural network 

model is formed from the linear combination of weightage and input parameters as 

shown in equation 2.37. Meanwhile, the overall process flow is illustrated in Figure 

2.23 

𝑓(𝑥1, 𝑥2, … 𝑥𝑛)  =  𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛   2.37  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23 Neural Network model development flow diagram 
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As shown in Figure 2.23, prior to the neural model development, all the input 

and output data were normalized. This pre-processing technique is important to ensure 

that the difference in each input range does not affect the entire trend learning (Gupta, 

A. et al.; Huang, W. & Kovacevic, R., 2011; Zhang, T. & You, X., 2015). Basically, 

there are several options for the data normalization such as z-score, min-max, 

lognormal and tanh (Chen, L. et al., 2018; Wu, G. D. & Lo, S. L., 2010). Comparing 

these methods, min-max seems to be a popular choice cause it offers less time, space 

and algorithm complexities (Chen, L. et al., 2018). Through min-max technique, both 

inputs and output were normalized to ensure they ranged from -1 to 1. This was done 

using Equation 2.38, where y, xi, xmax and xmin are the normalized input variables, 

original input variables, maximum value in the original input variables, and minimum 

value in the original input variables, respectively. Meanwhile, ymax and ymin are 1 and -1, 

respectively, in this case. 

 

𝑦 =  [𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛]. [
𝑥𝑖− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
]     2.38  

 

After the normalization process, the neural model training is being done. There 

are plenty of alternatives for this purpose and the Lavenberg Marquart backpropagation 

is the most commonly used neural training model due to its adaptive behavior 

(Marquardt, D. W., 1963).  The purpose of the training algorithm is mainly to minimize 

the sum of squares error of the network model (Bishop, C. M., 2006; Dreyfus, G., 

2005) 

Based on the illustration in Figure 2.24, when the multi-layer neuron network 

received the inputs, the output for each neuron which is the weighted sum of input, is 

computed by the activation function. Through Lavenberg-Marquart method, both 

weight and biased is keep on updated until the sum square error (SSE) recorded the 

lowest achievable amount (Lv, C. et al., 2018). The SSE is computed using equation 

2.39 (Yu, H. & Wilamowski, B. M., 2011)  in which H, J, µ and I are the SSE function, 

Jacobian Matrix, combination coefficient, and the identity matrix. 

𝐻 = 𝐽𝑇𝐽 +  𝜇𝐼     2.39  
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The relationship between gradient vector, g and Jacobian matrix, J is shown by 

equation 2.40. The element of gradient vector, g is gradient of the relation between 

errors of neural network model, e and its weightage, w as shown in equation 2.41. In 

equation 2.41, p is the pattern index while m is the output index. 

𝑔 = 𝐽𝑒      2.40  

𝑔𝑖 =
𝜕𝐸

𝜕𝑤𝑖
= 

𝜕(
1

2
∑ ∑ 𝑒𝑝,𝑚

2𝑀
𝑚=1

𝑃
𝑝=1 )

𝜕𝑤𝑖
    2.41  

 

Recalling back to the briefly explained activation function, there are several 

options can be choose such as pure linear, tan sigmoid and log-sigmoid. Using the pure 

linear function does not altering the inputs. However, through tan-sigmoid and log-

sigmoid, the inputs of any particular layers are transformed by the equation 2.42 and 

2.43 respectively (Kriesel, D., 2007). 

𝑓(𝑥) =  
2

1+ 𝑒−2𝑥 − 1       2.42  

 

𝑓(𝑥) =  
1

1+ 𝑒−𝑥      2.43  

 

 

 

Figure 2.24 Network Model 
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Like MLR method, the use of ANN method for constructing the prediction 

model for welding application also recorded a significant numbers. In the previous 

studies related to the welding process, the predictive models build by ANN method 

have been proven to be able to predict the nugget diameter during spot welding (Zhao, 

D. et al., 2020), failure load (Wan, X. et al., 2017) and the depth of penetration (Huang, 

W. & Kovacevic, R., 2011). The direct comparison between models developed from 

MLR and ANN methods show that the model developed from ANN method recorded 

less error (Huang, W. & Kovacevic, R., 2011; Zhao, D. et al., 2020). 

 

2.8 Application of Acoustic Method for Laser Welding Process Monitoring 

It was learned that there are plenty of options for monitoring the laser welding 

process, such as using the electrical, thermal, optical, or acoustic methods. Each 

method offers its capabilities uniquely in different ways. Among these methods, the 

acoustic method draws the most attention from previous researchers due to their unique 

capabilities. For the structure-borne acoustic method, its ability to capture higher 

frequency signals makes it free from environmental noise disturbance (Bastuck, M. et 

al., 2016). Besides, detecting a high-frequency signal could lead to the information 

associated with microscopic phenomena such as phase transformation. On the other 

hand, an airborne acoustic method has also attracted both academia and industrial 

practitioner due to their unique features such as high responsible speed, non-contact, 

and simple sensor setup (Ao, S. et al., 2015; Huang, W. & Kovacevic, R., 2011; Luo, Z. 

et al., 2016).  

In this section, the discussion was extended into the application of both 

structure-borne and air-borne acoustic methods in studies related to the monitoring 

laser welding process. Prior to that, the source of acoustic signal from the laser welding 

process was also explained. 

 

2.8.1 Source of Acoustic Signal during Laser Welding Process 

Acoustic signal is emerged from the physical phenomena that occur during the 

laser welding process. According to the reference (Sun, A. et al., 1999), the structure-

borne acoustic signals are commonly originated from crack formation, porosity, phase 
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transformation, and the back-reflected laser. However, until this point, the studies 

connected to the source of the structure-borne acoustic signal during the laser welding 

process were not involved the development of a mathematical model except for the 

case of back-reflected laser, which has been explained by Weerasinghe, V. M. et al., 

(1990).  

 

Figure 2.25 Source of air-borne acoustic signal during the laser welding process 

Source: Smith, E. T., (1999) 

 

Unlike the structure-borne acoustic signal, Smith. E. T., (1999) explained that 

physical processes such as plasma plume formation, weld pool dynamics, keyhole 

oscillation, and gas jet pulsation are among the sources of the air-borne acoustic signal. 

As illustrated in Figure 2.25, these phenomena resulted in the air pressure variations 

which fluctuated around the weld zone, producing the air-borne acoustic or sound 

signal. Previous research shows good agreement with this statement whereas the 

acquired sound has proved to be significantly related to the aforementioned 

phenomena. However, not many scholars try to present this correlation numerically due 

to the fact that many sources including noises influence acoustic generation. In 

agreement with this statement, Ali, M., (1999) emphasized that the question on how 

sound generated from laser welding process are still complex to answer, but many 

scholars agreed that its major source is from the violent plume fluctuation, which 

causing surrounding air displaced rapidly and propagated as an acoustic wave. Further 

detail of this phenomenon has been explained earlier through the mathematical model 

by Dowling, A. P. & Williams, J. E., (1983). In their work, it was pointed out that the 



52 

 

evaporation process could be modeled by vapor creation rate, m, which involve 

parameter such as volume fraction occupied by newly created vapor, 𝛽 , and vapor 

density 𝜌𝑚 as shown in equation 2.44 

 

m=
∂

∂t
(βρm)       2.44  

 

When the formed vapor is assumed to displace the ambient air as it streams out 

from the keyhole, the mass density in a control volume above the keyhole is given by 

the equation 2.45 

ρ=βρ
m

+(1-β)ρ
f
     2.45  

 

Whereas in this equation, the density of the ambient fluid is denoted as  𝜌𝑓 . 

Under this circumstance, a differential equation could be written as  

1

c2

∂p'

∂t
- ∇2p'= ρ

0

∂2β

∂t2
             2.46  

 

Under the assumption that the evaporant source is relatively small to the 

acoustic wavelength in ambient air, acoustic pressure at distance r from the source 

could be written as the following equation in which c is the speed of sound, and the 

mass flow rate from the keyhole is proportional to the time derivatives of the volume 

fraction 𝛽 

p'(r,t)= ρ
0

∂
2

∂t2
(

β(t- 
r

c
)

4πr
)            2.47  

 

m

ρm

= 
∂

∂t
(β)             2.48  

 

The sound pressure perturbation from unsteady evaporation relates to the time 

derivative of the evaporation mass flowrate. As the radius distance from the plume 

increases further, the sound pressure decrease. 
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Figure 2.26 Basic keyhole oscillation mode 

Source: Klein, T. et al., (1994) 

 

Basically, the oscillation pattern of the formed vapor streamed out from the 

keyhole was strongly related to the keyhole oscillation behavior. In the previous study, 

Klein, T. et al., (1994) numerically explained the keyhole oscillation phenomena in 

response to the difference in the process parameters such as laser energy and keyhole 

depth. The numerical model was initiated by assuming that the keyhole was cylindrical 

shape with the primary oscillation mode as depicted in Figure 2.26 

Before governing the equation, the pressure and energy balance equation at the 

equilibrium state was explained. Based on Kroos, J. et al., (1993) , the keyhole was 

held open by the balance between the surface tension, ablation pressure, and excessive 

pressure from gas flow along with the keyhole, as shown in equation 2.49 

𝑃𝑎𝑏𝑙 + 𝜕𝑃𝑔 = 𝑃𝛾     2.49  

 

Explicitly considering the physical phenomena behind the formation of each of 

the pressures denotes in equation 2.50, the pressure balance equation was expanded as 

follows 

𝑚𝑛𝑔𝑢𝑔
2 + 

1

3
𝑚𝑛𝑔𝑢𝑔

2 (
𝑑

𝑎
)
2

= 𝛾 (
1

𝑎
)     2.50  

 

In equation 2.50,  𝑚, 𝑛𝑔 , 𝑢𝑔 , 𝛾, 𝑑,  and a, represent the mass of ablating 

particles, hydrodynamic density, velocity, surface tension coefficient, the thickness of 

the workpiece, and equilibrium radius of the keyhole respectively. 



54 

 

Apart from the pressure balance equation, the energy balance equation was also 

governed to determine the equilibrium-state keyhole radius. In principle, the absorbed 

energy flux is balanced from the summation of ablation energy flux and heat 

conduction loss as been represented in equation 2.51 

𝑞𝑎𝑏𝑠 = 𝑞𝜆 + 𝑞𝑎𝑏𝑙      2.51  

 

Under an assumption that the laser power is distributed in Gaussian pattern and 

it is uniformly distributed along the keyhole’s wall, the absorbed heat flux density was 

governed as shown in equation 2.52 whereas A, PL, and r0 in the equation denotes the 

overall absorption coefficient, total power, and laser beam radius respectively.  

𝑞𝑎𝑏𝑠 = 
𝐴𝑃𝐿

2𝜋𝑎𝑑
 (1 − 𝑒

−2(
𝑎

𝑟0
)
2

)     2.52  

 

On the other hand, by the basis of the governing equation from the previous 

work related to the analysis of heat conduction in penetration welding (Simon, G. et al., 

1993), the approximation of heat loss represented in equation 2.53 

𝑞𝜆 = 
𝑇𝑠− 𝑇0

2
 𝜚𝑐𝑝𝑣 (

𝐾1(𝑃𝑒)

𝐾0(𝑃𝑒)
)     2.53  

 

In equation 2.53, Ts, cp, Pe, and ϱ are the keyhole surface temperature, specific 

heat, Peclet Number, and the average mass density of the liquid phase. Meanwhile, the 

ablation energy flux at the keyhole surface could be represented by equation 2.54 in 

which hev is the latent heat of evaporation 

𝑞𝑎𝑏𝑙 = 𝑚𝑛𝑔𝑢𝑔ℎ𝑒𝑣      2.54  

 

Combining these equations, the stable radius of keyhole at equilibrium state 

could be obtained. Based on this radius value, the fluctuation of the keyhole radius was 

represented in equation 2.55 in which α(t) denotes the oscillating value of the radius, a, 

with respect to time. 

𝑟𝑠(𝑡) = 𝑎 +  𝛼(𝑡)      2.55  
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This is also known as the ground mode oscillation, which is the basic mode of 

keyhole oscillation, and its eigenfrequency was governed by applying energy balance 

equations and Langrage mechanic (Klein, T. et al., 1994) as shown in equation 2.56 

𝜔00 = 
𝐵

𝜚 𝑎 ln (𝐶)
      2.56  

  

Referring to Figure 2.26, there is another mode of keyhole oscillation apart 

from the ground mode. Basically, the axial and azimuthal oscillation mode was 

represented by equation 2.57, whereas k denotes the axial wavenumber while n is the 

mode number. 

𝑟𝑠(𝑡) = 𝑎 + cos(𝑛∅) cos(𝑘𝑧)𝛼(𝑡)     2.57  

 

Like ground mode or radial oscillation, the eigenfrequency of the axial and 

azimuthal oscillation in equation 2.58 was also governed from the energy balance 

concept. 

𝜔𝑛𝑙
2 = 

𝑘𝑎 |𝑘𝑛′(𝑘𝑎)|

𝑘𝑛 (𝑘𝑎)
[

𝛾

𝑎3𝜚
(𝑛2 + 𝑘2𝑎2) + 

𝐵

𝑎 𝜚
]    2.58  

 

 

Figure 2.27 Eigen-frequency of radial, axial and azimuthal oscillation calculated for 

the iron plate with the variation of thickness 

Source: Klein, T. et al., (1994) 
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Figure 2.27 shows the variation of eigen-frequency of radial, axial, and 

azimuthal oscillation calculated for iron plates with the variation of thickness and laser 

beam radius of 150 µm (Klein, T. et al., 1994). In this figure, n and l represent the 

azimuthal and axial mode numbers, respectively. According to the plot, the frequency 

value is not much clearly distinguishable by the change in workpiece thickness and 

different axial wave number at the same azimuthal mode number. However, the change 

in frequency was quite evident when there is a change in azimuthal mode.  

 

 

2.8.2 Application Of Structure-Borne Acoustic wave for Monitoring Laser 

Welding 

As underlined in section 2.7, the acoustic method implies either by acquiring a 

structure-borne or air-borne acoustic wave signal. Table 2.3 shows the list of studies 

associated with laser welding quality monitoring using both types of acoustic signals 

for the past several decades. Basically, structure-borne acoustic wave or transient 

elastic wave is emitted as a response from the rapid release of energy from the localized 

source at a vast frequency range, typically from 20 kHz to 2MHz. Therefore, the 

acquired signal is usually not influenced by the harsh environmental noise from the 

process (Bastuck, M. et al., 2016). Besides, the phrase structure-borne is used due to its 

nature of propagating through the solid structure. For this reason, acquiring structure-

borne acoustic waves is commonly done by using a piezoelectric sensor which 

contacted directly on the surface of the workpiece (Lee, S. et al., 2014). 

Past evidence, which was generally described in Table 2.3, shows that this 

method is capable of detecting defects such as crack initiation mechanism (Lee, S. et 

al., 2014), back-reflected laser (Li, L., 2002; Weerasinghe, V. M. et al., 1990) as well 

as porosity (Sun, A. et al., 2001). In a study by Lee, S. et al., (2014), it was revealed 

that the acoustic emission signal was originated from the rapid phase transformation 

between liquid and solid state. As the crack are occurred from the uncertainties in 

solidification process (Huang, R. S. et al., 2008), the change in characteristic of the 

acoustic emission signal was lead to the information related to the initiation of crack. 

On the other hand, Sun, A. et al., (2001) revealed that the acoustic emission signal was 

more sensitive in detecting porosities underneath the weld bead. According to Berger, 
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P. et al., (2011), the porosity was formed due to inappropriate solidification rate and 

back filling speed of the molten metal. In case of PW mode laser welding process, 

plasma temperature dropped drastically when the laser beam was shut down, especially 

at the bottom part of the fusion zone. Consequently, the solidification completed before 

the keyhole is completely collapse which results in the formation of porosity as shown 

in Figure 2.28 (Zhou, J. & Tsai, H. L., 2006). As the rapid transformation between 

liquid and solid state have been the source of acoustic emission signal, these 

phenomena gives a significant impact to the characteristic of the signal.  

 

Figure 2.28  Evolution of keyhole collapse and solidification in a large depth-to-

width weld bead 

Source: Zhou, J. & Tsai, H. L., (2006) 

 

Even though the capabilities of the acoustic emission method have been 

reported in the previous studies, the application of this method recorded a lack in 

number. This might be due to the nature of this method, which needs the sensor to be 

directly contacted on the surface of the workpiece, which is considered difficult when 

dealing with high-temperature processes like welding. 
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Table 2.3        Studies related to the laser welding quality monitoring using structure-borne and air-borne acoustic method 

Author Methodology Material Signal Type Pre-Processing Analysis Detected phenomena 

(Weerasinghe, V. M. et al., 

1990) 

CO2 Laser 

Bead on plate 
N/A 

Acoustic 

emission 
N/A AE RMS, frequency Back reflected laser 

(Li, L., 2002) CO2 laser Mild Steel 
Acoustic 

Emission 
N/A AE RMS, frequency Back reflected laser 

(Lee, S. et al., 2014) 
NdYAG laser 

Pulse mode 
304 stainless steel 

Acoustic 

emission 
N/A 

AE signal values at selected 

frequency band 

Back Propagation ANN 

Melting 

Solidification 

Joined Condition 

(Sun, A. et al., 2001) N/A N/A 

Acoustic 

Emission 

Infrared 

Ultraviolet 

Acoustic 

N/A 
Choi William Kernel 

Distribution 

Depth of penetration 

Porosity 

(Farson, D. et al., 1998) 

CO2 Laser 

Continuous mode 

LapJoint 

Carbon steel Acoustic N/A Root Mean Square Depth of penetration (classification) 

(Duley, W. W. & Mao, Y. 

L., 1994) 

CO2 Laser 

Bead on plate 
Alluminum 1100 Acoustic Bandpass filter 

Amplitude of Frequency 

domain signal 

Depth of penetration 

keyhole condition 

(Farson, D. et al., 1996) 
Continuous mode 

Lap joint 
304 stainless steel Acoustic 

Short Time 

Fourier 

Transform 

Band power 

Artificial Neural Network 

(Classification penetration 

condition) 

Spectrum energy (Gap 

analysis) 

Depth of penetration 

Gap 

(Szymanski, Z. et al., 

2000) 

CO2 laser 

Continuous mode 

Mild steel 

Stainless steel 
Acoustic N/A 

Mathematical Model 

Spectrum analysis 
plasma plume oscillation 

(Hoffman, J. et al., 2002) N/A Austenitic steel Acoustic N/A 
Mathematical Model 

(Verified by experiment) 
plasma plume oscillation 

(Huang, W. & Kovacevic, 

R., 2009) 

Continuous mode 

Lap joint 
DP980 HS steel Acoustic 

Spectral 

Subtraction 

Band power 

Sound Pressure Deviation 
Depth of penetration (classification) 

(Huang, W. & Kovacevic, 

R., 2011) 

Continuous mode 

Lap joint 
DP980 HS steel Acoustic 

Spectral 

Subtraction 

Band Power  

Sound Pressure Deviation  

Artificial Neural Network  

Multiple regression 

Depth of penetration (estimation 

model) 

(Ao, S. et al., 2015) 
NdYAG laser Iron Acoustic N/A 

Mathematical Model 

(Verified by experiment) 
Weld Pool Oscillation frequency 
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Table 2.3      Continued 

Author Methodology Material Signal Type Pre-Processing Analysis Detected phenomena 

(Luo, Z. et al., 2016) 
NdYAG laser 

Continuous mode 
Steel plate Acoustic 

N/A (use sound 

proofing 

equipment to 

avoid noise) 

Acoustic pressure level 

Time delay recognition  
Burn through  

(Lee, C. J. et al., 2015) 

CO2 Laser 

Continuous mode 

LapJoint 

AH 36 structural 

steel 

Acoustic 

Photodiode 
Bandpass filter Root Mean Square 

Spatter / Underfil 

Humping 

       

       

(Farson, D. F. et al., 1999) 

CO2 Laser 

Continuous mode 

ButtJoint 

Carbon steel 
Acoustic 

OpticalPlasma 
N/A Linear Discriminant analysis 

Classification of full penetration, 

overheat penetration and half  

penetration  

 

(Gu, H. & Duley, W. W., 

1996) 

CO2 Laser 

Lap & Butt joint,  

Bead on plate  

Mild & Galvanized 

steel 
Acoustic N/A 

Sum of a squared standard 

deviation 

Discriminant function 

Depth of penetration 

(Farson, D. F. & Kim, K. 

R., 1999) 

CO2 Laser 

Bead on plate 
Low carbon steel 

Acoustic 

Optical 
N/A Prediction model 

Acoustic and plasma emission trend 

based on material evaporation and 

formation of ionized plume 

(Ao, S. et al., 2010) 
NdYAG laser 

Bead on plate 
Cold rolled steel Acoustic N/A 

Frequency Domain 

PCA-ICA 
Blowholes 
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2.8.3 Application Of Air-Borne acoustic wave for Monitoring Laser Welding 

Process   

Apart from using a structure-borne acoustic signal, the use of air-borne acoustic 

signals as a medium for monitoring the laser welding process has also been explored 

since the past several decades. Theoretically, the air-borne acoustic waves are generated 

from sources within the audible frequency range between 20Hz to 20 kHz (Huang, W. 

& Kovacevic, R., 2011). It is propagating through the air, which would promote non-

contact measurement. Apparently, plasma plume formation and weld pool oscillation 

are two phenomena that could be considered major sound sources during the laser 

welding process (Smith, E. T., 1999; Ali, M., 1999; Dowling, A. P. & Williams, J. E., 

1983). Any instability on those occasions would consequently affect weld quality. 

Thence, it is crucial to monitor those phenomena. 

Studies related to the use of acoustic method for monitoring laser welding 

process were shown in Table 2.3. In early work, attempts have been made to understand 

the process of sound emission from the dynamic of plasma plume, keyhole, and molten 

metal. For example, Farson, D. F. & Kim, K. R., (1999) have formulated the prediction 

model for generating air-borne acoustic signals. According to their formulation, the 

generated sound pressure was influenced by the vapor flow rate since the surrounding 

air was displaced by the vapor emanating from the keyhole. Szymanski, Z. et al., (2000) 

and Hoffman, J. et al., (2002) also have confirmed this statement in both of their 

mathematical and experimental analysis. Moreover, in their analytical work, the zone 

occupied by plasma was considered as an impenetrable pulsating sphere.  

Regardless of plasma plume formation, the acoustic signal could also emerge 

from the weld pool or keyhole oscillation. Due to this fact, Ao, S. et al., (2015) make an 

effort to predict the oscillatory frequency from the modeling process of weld with 

different penetration depth induced by different weld speeds, as shown in Figure 2.29. 

Results from their work show that from two-dimensional modeling process, the 

simulated weld pool oscillation frequency deviates around 4 % from the experimental 

results.   
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Figure 2.29 Simulation results of the weld pool oscillatory profile from the process 

with  different weld speed (a) f=1453.125 Hz, v=3 cm/s (b) f=1890.625 Hz, v=4 cm/s 

(c) f=2750 Hz, v=5 cm/s 

Source :  Ao, S. et al., (2015) 

 

The earlier statement emphasized that any instability of physical phenomena 

that emerges from the laser welding process could lead to defects. Hence, despite 

implying an air borne acoustic signal to gain a deeper comprehend on plasma plume 

formation and keyhole oscillation, the direct relation between the behaviors of the 

acquired acoustic signal with weld condition also has been investigated. Some evidence 

proved that information embedded in the acquired acoustic signal could be significantly 

used to determine the weld condition, detect and locate the defect. For instance, the 

correlation between acoustic spectral features and depth of penetration has been 

investigated by Duley, W. W. & Mao, Y. L., (1994) . In their study, the test was done 

on 2 mm thickness Aluminum 1100 using CO2 laser welding while the captured sound 

signal was low passed filtered with a cut off frequency of 10 kHz. According to the 

result in Figure 2.30, it was reported that the emission of the acoustic signal was 

dominant between 0 - 1 kHz at low incident laser intensity. In contrast, a peak within 9 

kHz to 10 kHz was found increasing in its amplitude simultaneously with gaining laser 

intensity. Consequently, the overall amplitude arises with extended depth of 

penetration. Furthermore, the frequency component between 3 – 9 kHz was perceived 
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to be connected with the closure of the keyhole over part of its length due to 

hydrodynamical instabilities. Thence, the partial closure of the keyhole could be 

detected by observing the spectrum within this frequency range.    

 

 

Figure 2.30 Acoustic Spectral Trend from the process with different laser power and 

weld penetration 

Source: Duley, W. W. & Mao, Y. L., (1994) 

 

Similar work also has been reported by Farson, D. et al., (1996), whereas the 

characteristic of the acoustic signal was analyzed in an attempt to identify the weld 

quality, which is qualitatively determined by the depth of penetration and gapping. The 

experiment was done on a 304 stainless steel plate. Unlike the previously reported 

works, the time-frequency approach was taken by implying Short Time Fourier 

Transform (STFT) to identify the significant frequency range with respect to the weld 

quality. The significant range was recorded to be within 1 kHz to 2 kHz in which its 

energy dropped when insufficient penetration was detected through the analysis. This 

trend could be referred to in Figure 2.31. Meanwhile, by calculating the total signal 

strength, a clear distinction between the gapped and normal weld could be observed. 

The use of an Artificial Neural Network to classify the penetration status also has been 
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demonstrated in their study. With the use of ANN, full penetration and partial 

penetration weld could be distinguished in a different group. 

 

Figure 2.31 Spectrogram of acquired sound signal  

Source:  Farson, D. et al., (1996)  

 

As reported in earlier work, it could be concluded that monitoring the 

penetration status by analyzing the acquired sound is possible to be done. However, the 

reported work emphasizes the cases involving a narrow range of welding parameters, 

making it challenging to ensure the robustness of the method. Hence, in the 

comprehensive study by Farson, D. et al., (1998), the investigation was done in a 

broader range of power and travel speed. As a result, the classification of penetration 

status could be extended into moderately full penetration as an addition to the present 

full and partial penetration class. This work described that the Root Mean Square 

(RMS) of the acoustic signal was high at moderate full penetration and eventually 

decreasing as the penetration status felt into partial penetration class. Disparate from the 

other work, Farson, D. et al., (1999) paid more attention in identifying the penetration 

status during high power or keyhole welding. Supported by measured optical charged 

particle data, the depth of penetration status could be classified into full- , overheat- , 

and half-penetration. In this study, the overheat penetration referred to weld produced 

by excessive linear heat input, which consequently caused a significant level of top 

surface concavity and larger heat affected zone. Meanwhile, the classification was done 

through Linear Discriminant Analysis (LDA). Similar findings have also been 

described by Gu, H. & Duley, W. W., (1996), whereas through discriminant analysis, 

Energy drop within this bandwidth 
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three penetration status groups were successfully classified. Moreover, it was found that 

bad quality weld could be easily identified by determining the sum of a squared 

standard deviation. In another work by Huang, W. & Kovacevic, R., (2009), the 

classification was done by analyzing both time and frequency domain signal 

characteristics. Uniquely, in their research, the spectral subtraction method was 

demonstrated to diminish the influence of noise in the analysis result, and the outcome 

was found to be promising. As an observation made onto the captured time domain, it 

was reported that the overall sound pressure increase aligns with the growth in 

penetration depth. Meantime, the power density of the frequency spectrum from 500 Hz 

to 1500 Hz was large for full penetration cases as compared to half penetration. 

Classifying the penetration status is insufficient for the case where the 

quantitative assessment of weld penetration is needed. To overcome the drawback, 

Huang, W. & Kovacevic, R., (2011) have utilized the Artificial Neural Network (ANN) 

analysis in an attempt to quantitatively characterize the relation between the captured 

sound and the depth of penetration. In this extended work, the multiple regressions also 

have been applied and campared with ANN results. According to the obtained results, 

by giving the value of sound pressure deviation and band power as an input to the 

model, the best neural network model was found to predict penetration depth with a 

standard deviation error of 8.91%. Meanwhile, for the multiple linear regression model, 

the standard deviation error was recorded to be 8.25 %.   

Despite the classification and characterization of the weld penetration depth, 

studies were also extended into the detection of other types of defects. For instance, 

Luo, Z. et al., (2016) exhibit the use of multiple microphones to detect and locate the 

burn through. In their study, the soundproof equipment was specially design and used to 

avoid the influence of noise during the sound acquisition process. Based on the 

illustrated result, soundproof equipment was evidently influence the result. It was noted 

that the detection and location of burn trough defect based on the sound pressure level 

and time delay recognition analysis was done with a lesser error when soundproof 

equipment was used.  
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Figure 2.32 RMS of the acoustic signal during the presence of damage 

Source:  Lee, C. J. et al., (2015) 

 

In other studies, the use of the acoustic method was also reported to be 

significant in detecting detect other types of defect such as underfil and humping. As 

depicted in Figure 2.32, in work by Lee, C. J. et al., (2015), the effect of Zn coating 

thickness and gap between the lap joint, to the degree of those defects were monitored 

based on the acquired sound signal. From the drawn result, the amount of spatter that 

influences the existence of underfil and humping was found to be consistent between 

0.08 to 0.2 mm gap size depending on the coating thickness. Simultaneously, within the 

same range, the recorded RMS of the sound signal was significantly changed. 

Moreover, the frequency spectrum analysis shows that the dominant frequency lies 

within 1 kHz for both 15 micrometers and 30 micrometers Zn coating thickness. 

However, the amplitude of the spectrum appeared in a descending pattern when coating 

thickness increased. They have suggested that this is due to the large thickness value 

contributing to high vapor pressure, which consequently suppressed the keyhole's 

periodic motion. In addition, the amplitude of the time-domain sound signal, which was 

filtered at the dominant frequency, has also show deviating values from 22V to 38V 

when the defect exists. In another unique study, Ao, S. et al., (2010) apply a blind 

source separation technique that combining principal component analysis (PCA) and 

independent component analysis (ICA). Through blind source separation analysis, the 

acoustic signal was successfully decomposed into cooling and keyhole component, and 

the existence of blowholes was detected.  



66 

 

 

2.9 Literatures Summary 

The chart in Figure 2.33 represents the summary of previous works discussed in 

section 2.7. According to the chart, studies that involved the use of sound method for 

monitoring the laser welding process were varied in its experimental setup, analysis 

approach, and giving different significant results. Focusing on the experimental setup 

variation, all studies were distinguishable by the different laser mode, laser type, 

workpiece materials, and the joining configuration or design. Meanwhile, the diversity 

in the analysis approach was also noticeable. However, it could be said in general that 

the sound feature extraction and noise elimination analysis have been implied to 

characterize the signal before correlating its trend with the weld condition. As a result, 

each study has given different contributions, which could be divided into three main 

categories which were the detection of defects, qualitative classification of defects, and 

characterization of defects. In studies that attempted to detect the presence of a defect, 

several signal feature extraction analysis have been explored to find the best features 

that could give significant information regarding defects during the process.  

In another group of work, the signal analysis was done to qualitatively classify 

the defect by its size. For example, the weld penetration size could be classified into 

half-penetrated and fully penetrated based on the trend of the analysis sound features. 

On the other hand, some studies significantly developed the model to quantitatively 

characterize the weld condition or the defect's actual size. 
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Figure 2.33 Summary of studies related to the analysis of airborne acoustic signal for 

laser welding monitoring  
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Based on the literatures discussed in Figure 2.33, it could be summarized that 

the sound method for laser weld process monitoring has been explored in a diversity of 

laser welding types, laser mode, workpiece material, and the joining design. The 

analysis approach also varied to achieve their different goals that contribute to 

knowledge. Nowadays, industries demand greater process control to achieve quality 

assurance, making the development of monitoring methods essential. Therefore, this 

knowledge is essential to expand or enhance the sound method's capability for 

monitoring the laser welding process before it is ready for commercialization 

In modern manufacturing nowadays, the customer requirement trend started to 

change, and the criteria needed in the production line also change accordingly. Zhou, K. 

et al., (2015), stated that Industry 4.0 tends to achieve more intelligent manufacturing 

processes through the construction of Cyber-Physical Production Systems (CPPS), and 

the implementation of smart factories. In constructing CPPS, the integration of process 

control and monitoring system are one of the essential factors. Based on the literature 

summary, it was learned that the capability of acoustic method for the online 

monitoring purpose has been widely explored in various laser welding mode, laser type, 

material as well as the joining design. As a result, numerous defects were detected, 

classified, and characterized by the acquired sound signal analysis during the laser 

welding process. All of these studies were important and significantly contributed to the 

knowledge in developing a robust process monitoring system. 

Basically, there are still many rooms for improvement before an acoustic 

method could be established in industrial applications, and Figure 2.34 illustrates the 

focus given in this study. In this particular study, attention was given to the weld 

penetration condition. The severity of incomplete penetration is not much different from 

the other types of defects if it has existed in the welded joint. According to some earlier 

studies (Boulton, C. F., 1976; Lawrence, F. & Munse, W., 1973; Singh, P. J. et al., 

2002), the spot where the incomplete penetration exists is possibly being a crack 

initiation point, which consequently reduces the fatigue life of the weld joint. This is the 

reason why this study tries to focus on this angle.  
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Figure 2.34 Research focus 

 

Most of the previous works reported in Figure 2.33 were emphasized on the 

continuous mode (CW) laser. It was perceived that lack of attempt is made to 

understand the emitted sound behavior during pulse mode (PW) laser welding and how 

it could be correlated with the weld penetration condition. Based on the previous 

studies, it could be summarized that the dynamic of the plasma plume might change 

when the laser energy penetrates deeper inside the material. This has resulted in a 

significant change of sound feature trend in the case of CW laser as it emitting a 

stationary random signal. However, the question that might arise among scholars is how 

the characteristic of sound changes with the deeper penetration in the pulse-mode 

process. Due to the reason that the pulse-mode laser welding could emit a non-

stationary random acoustic signal, extracting the information with respect to the weld 

penetration might be challenging. Therefore, it is also important to look into this matter. 

On another angle, previous studies have demonstrated the use of time-domain, 

frequency-domain, and time-frequency analysis to find the sound feature which gave a 

significant trend with the change in weld penetration (Duley, W. W. & Mao, Y. L., 

1994; Farson, D. et al., 1998; Farson, D. F. et al., 1999; Huang, W. & Kovacevic, R., 

2009, 2011; Sun, A. et al., 2000). Apart from the penetration condition, studies also 

revealed that these analyses were able to be used to monitor another type of defects 

(Ao, S. et al., 2010; Duley, W. W. & Mao, Y. L., 1994; Gu, H. & Duley, W. W., 1996; 
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Lee, C. J. et al., 2015; Luo, Z. et al., 2016; Sun, A. et al., 2000). Even though these 

studies were promising, the influence of noise during the acquisition process remains as 

a problem. Due to this reason, a method such as bandpass filter (Duley, W. W. & Mao, 

Y. L., 1994; Lee, C. J. et al., 2015), spectral subtraction (Huang, W. & Kovacevic, R., 

2009, 2011), Short-time Fourier Transform (Farson, D. et al., 1996), and William Choi 

Kernel Distribution (Sun, A. et al., 2001) have been used to improve the results.  As the 

pulse-mode process might emitting a sound signal with different behavior, it is crucial 

to understand what type of noise filtering method is suitable. Therefore, much space for 

a research exploration is still available to better understand this matter. This is why the 

exploration of the signal processing method for noise elimination and feature extraction 

is also emphasized in this work. 

In an earlier discussion, it has been explained that most of the studies related to 

the use of the sound method in monitoring the weld penetration look into how the trend 

of signal features could be used to classify the penetration condition. For example, the 

statistical feature was extracted from the acquired sound signal, and analyze to classify 

whether the weld joint was half-penetrated or fully penetrated. Basically, it is important 

to characterize the size of penetration instead of qualitatively evaluates its condition. 

This is because the severity of weld penetration was also high, even if it is incomplete 

in a minimal length. Huang, W. & Kovacevic, R., (2011) have put an effort to develop 

the weld depth estimation model from the analysis of sound in case of continuous mode 

laser welding. Basically, this finding has opened a way to achieve a great process 

control in industry 4.0 as the process could be controlled directly after getting the 

estimated weld depth from the sound measurement system. However, before it could be 

established, it is important to learn how the weld depth estimation model differently 

performed for the various types of laser welding processes, including the laser mode. 

Therefore, in this study, the weld depth estimation model was also developed.  
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

Figure 3.1 depicts the overall of methodology for the study. The entire process 

started with the specimen preparation. Then, the experiment was designed by carry out 

the preliminary experiment. Basically, the preliminary experiment was conducted to 

determine the optimum values for the constant parameters that were set in this study. 

Moreover, the optimum ranges for the independent parameters were also obtained from 

the preliminary experiment. This part of work was crucial because it explained how the 

experiment was designed in this study. Therefore some related results were also 

presented in this part. 

The process continued with experimental work. In Section 3.4 and Section 3.5, 

the method of experiment and data acquisition setup, respectively, was explained in 

detail before the method of sampling and macrographic imaging was further elaborated 

in Section 3.6. After the experiment and sampling process, the signal was analyzed by 

extracting its features. The method of feature extraction from the acquired sound signal 

was explained in Section 3.7. At the same time, another feature extraction algorithm 

was developed in this study and the development process was detailed out in Section 

3.8. To evaluate the significance of the extracted features, feature selection analysis was 

carried out and the method for this analysis was elaborated in Section 3.9. In the final 

part, the method of estimation model development was explained in detail. 
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Figure 3.1 Process flow of the entire work in this study 

  

3.2 Specimen Preparation 

In this study, a 22MnB5 boron steel plate with a thickness of 1.8 mm and 

chemical composition as shown in Table 3.1 was used in the experiment. The selection 

was made because of its increasing demand for TWB fabrication in the automotive 

sector (Vaissiere, L. et al., 2002). The detail on the result of spectroscopy analysis was 

shown in Appendix B.  
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Table 3.1 Chemical Composition of 22MnB5 Boron Steel  

Composition Manufacturer 

Salzgitter FlachStahl  

(Max %) 

Spectrometry Result 

(Average %) 

C 0.19 ~ 0.25 0.249 

Si 0.4 0.235 

Mn 1.10 ~ 1.4 1.15 

P 0.025 0.0092 

S 0.015 0.003 

Al 0.08 0.0765 

N 0.01 0.005 

Cr 0.03 0.147 

B 0.0008 ~ 0.005 0.0028 

Fe Bal. 98.0 

 

Before the experiment work, the specimen was cut into a size of 40 mm by 25 

mm using the shear cutting method. Basically, the length of this specimen was decided 

according to the clamping jig size. Meanwhile, the width of specimen was set to 25 mm  

to give enough distance for the occurrence of inconsistent weld geometry due to the low 

absorptivity of laser beam initially cause by high temperature gradient, before the laser 

absorptivity becomes stable  (Su, J. et al., 2019). 

As shown in Figure 3.2, the surface of the specimen was ground using 240 grit 

sand paper. It was done to create a slightly rough surface, which could possibly reduce 

the amount of back-reflected laser and simultaneously increase laser energy absorptivity 

during the energy coupling process (Bergström, D., 2008; Kelkar, G., 2008). On the 

other hand, the side of the specimen was ground by the surface grinding process. It was 

performed to remove the shear cutting mark. Moreover, it was also done to ensure that 

the edge surface of the specimen was flat enough to obtain nearly zero gaps for butt 

joint welding in the experiment. Figure 3.3 shown the side view of the test specimen 

used in this study after underwent the surface grounding process.  
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Figure 3.2 Illustration of the single-side of the test specimen 

 

  

(a)               (b) 

Figure 3.3 Image of the side surface of the specimen (a) Shear cutting mark before 

surface grounded (b) After surface grounding process. 

 

3.3 Design of Experiment 

Unlike continuous mode (CW), pulse mode (PW) laser welding involves more 

parameters. For this reason, focal length, weld speed, pulse repetition rate, and gas 

flowrate were set to be constant in this study. Meanwhile, laser peak power and pulse 

duration were set to be varied in their level. Both parameters were chosen as it have 

been proven to be significantly influenced the weld penetration in laser welding process 

(Assuncao, E. & Williams, S., 2013; Assuncao, E. et al., 2012). In order to identify the 

optimum value or range for these parameters, the preliminary experiment has been 

done. This part of work is crucial as it explained how the experiment was designed in 

this study. Therefore, important results from the preliminary experiment will be 

elaborated in this chapter to ensure that the selection of constant parameter values 

shown in Table 3.3 can be understood. 
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Figure 3.4 Process flow prior to the experiment setup 

 

As illustrated in Figure 3.4, the bead-on-plate welding was performed with the 

initial values set for one selected parameter while the others were set to be constant. 

After the welding process completed, the quality of weld was check at the end of test. 

Defect such as crack and large underfill were the criteria to be determine in this study. 

If these defect occurred, the process will be repeated with increasing level of the tested 

parameter. This step iterates until the weld joint was free from crack and large underfill. 

ISO 13919-1 standard suggest that the underfill must be less than 20% from the 

thickness of the welded component at an intermediate qualitative level, and 10% at 

stringent qualitative level to avoid the degradation on the strength (Pakmanesh, M. R. & 

Shamanian, M., 2018). Hence the acceptable underfill size considered in this study was 

referred to this value. After the optimal value was identified, the process was repeated 

for other weld parameters. Beside the other constant parameters, the beam angle was 

also set in a stationary position. Specifically, it was set at 5° to avoid reflected laser 

beam from damaging both the lens and laser head (Farson, D. F. et al., 1999).  
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3.3.1 Focal Position 

As briefly described in Section 3.3, the focal length was set in a fixed position in 

this study. The decision was made because the focal position will affect the laser beam 

size, which will simultaneously influence the laser energy density and cause several 

types of defects to occur at some point (Kaplan, A. F. H. & Powell, J., 2011). Bead on 

plate weld was performed in a wide range of focal length, laser peak power, and laser 

pulse duration in order to determine the optimum focal position. In this set of test, the 

laser peak power and pulse duration were set to 1200 W and 2 ms, respectively. This 

value was set to avoid burn-though defect in case of welding process at the focused 

point because excessive heat input tends to occur at this condition (Akman, E. et al., 

2009; Katayama, S., 2013; Luo, Z. et al., 2016). Meanwhile, the argon gas flow rate 

was set to 15 L/min. This value was initially set to reduce the occurrence of undercut to 

the result (Dawes, C., 1992).  

   

(a) (b) (c) 

Figure 3.5 Images of weld cross section area at the process with different focal 

position (a) 0 mm (b) -5 mm (c) +5 mm 

 

Figure 3.5 depicts the selected cross-section images of the welded specimen 

obtained from preliminary experiment. Based on Figure 3.5(a), it is clear that even 

though full penetration can be achieved as low as 60% of the maximum allowable laser 

peak power at the focus point, the quality of weld is unsatisfactory due to the 

occurrence of crack and a large amount of underfill. A similar pattern was observed 

during the welding process at -5 mm defocused position in Figure 3.5(b). In contrast, a 

good quality weld was recorded at +5 mm defocused position. This finding suggested 

that the optimum focal length for the experiment in this study was +5mm.  
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3.3.2 Weld Speed 

Besides focal length, the weld speed was also set to be constant, and its 

optimum value for this study was obtained from the preliminary experiment. The reason 

behind this decision was due to the fact that the process with lower speeds commonly 

suffers from excessive heat input, which can lead to the occurrence of top concavity (Li, 

S. et al., 2015; Westerbaan, D. et al., 2014).  

In investigating the optimum speed under the circumstances of the controlled 

experiment in this study, the maximum allowable speed at the lowest weld spot 

diameter was calculated using Equation 2.5. The lowest spot diameter was taken at the 

process with peak power and pulse duration of 1000 W and 1 ms, respectively. The 

lowest spot diameter was needed in the calculation to make sure that the pulse overlap 

of the welded joint does not less than its minimum allowable value during the real 

experiment. The minimum allowable pulse overlap was set to 80% according to 

Chmelíčková, H. & Šebestová, H.,(2012).  Figure 3.6(a) shows that the spot size is 0.38 

mm under the aforementioned process. Based on the calculation, the speed must not 

exceed 1.52 mm/s in order to obtain more than 80% pulse overlap for a hermitic seam.  

On the other hand, the effect of weld speed of lower than 1.5 mm/s was also 

investigated in the preliminary experiment. Figure 3.6 (b) to (d) shows the cross-section 

image of weld bead at 1 mm/s, 1.25 mm/s and 1.5 mm/s process speed. During the test, 

the peak power and pulse duration was set to 1200 W and 2 ms, respectively. Based on 

the Figure 3.6, the quality of the weld bead surface seemed to reduce as the speed 

decreased. Larger underfill has been detected for lower speed due to the existence of 

large amount of spatter.  Therefore, in this study, 1.5 mm/s was identified to be the 

optimum speed. 



78 

 

  

(a) (b) 

  

(c) (d) 

 

Figure 3.6 Minimum weld spot size and cross sectional image of weld quality at 

different speed (a) Weld spot size at 1000 W and 1 ms (b) Weld quality at speed of  1 

mm/s (b) Weld quality at speed of 1.25 mm/s (c) Weld quality at speed of 1.5 mm/s 

 

3.3.3  Pulse Repetition Rate 

As the welding speed was set to be fixed in this study, the optimum PRR value 

was determined based on the trend of pulse overlap at the smallest spot diameter that 

could be obtained in this study. The reason was same with what have been explained in 

section 3.3.2, whereas it was done to ensure that the pulse overlap obtained from the 

real experiment was not less than 80% (Chmelíčková, H. & Šebestová, H., 2012). 

Moreover, this value was also found to be suitable to suppress the amount of porosity, 

as the pulse overlap needs to be set above 75% to reduce this type of defect (Gao, X.-L. 

et al., 2014).  

0.38 mm 
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Figure 3.7 Laser Machine Specification 

Source: IPG Photonics Manuals  (2010) 

 

 

 

 
Figure 3.8 Variation of pulse overlap percentage according to the laser spot weld 

experiment with 1000 W Peak power and 1 ms pulse duration. 

 

According to the specification chart shown in Figure 3.7, the pulse duration 

must not exceed 10 ms to allow the laser peak power to be extended to its maximum 

capability. As the lowest pulse duration could be set at 1 ms, the spot diameter was 

determined from the process with laser peak power and pulse duration of 1000 W and 1 

ms, respectively. Figure 3.6(a) revealed that the spot diameter is 0.38 mm under this 

process condition. Based on this size, the variation in pulse overlap with different PRR 
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values is depicted in Figure 3.8. According to the figure, it is evident that the value of 

PRR must be at least 20 Hz in order to achieve more than 80% pulse overlap.   

 

3.3.4 Argon Gas Flowrate 

In the next part of the preliminary experiment, bead-on-plate PW laser welding 

was done with different gas flow rates. Specifically, pure argon gas was selected as it is 

an inert gas that does not react with metal during the process (Faerber, M., 1995), and 

the flow rate was set to be varied from 5 L/min to 25 L/min. As explained in Section 

2.5, an inappropriate amount of shielding gas will cause spatter during the process, thus 

affecting weld quality (Li, S. C. et al., 2014). Therefore, the evaluation of result was 

made based on the amount of spatter (in response to the variation in gas flow rate). 

 

Figure 3.9 represents the images of weld bead from the laser welding process 

with different shielding gas flow rates. By assuming that the spatter formation rate is 

constant along the process, the image was consistently zoomed for comparison. The 

spatter amount was qualitatively evaluated from the existence of a molten metal 

splattering mark within the set area. Based on the top view of the captured image, the 

amount of spatter was significantly reduced starting from the gas flow rate of 20 L/min. 
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(a) (b) 

  
(c) (d) 

 
(e) 

 

Figure 3.9 Weld bead image of weld sample produced from the process with 

different amount of gas flowrate (a) 5 L/min (b) 10 L/min (c) 15 L/min (d) 20 L/min (e) 

25 L/min 

 

3.3.5 Laser Peak Power and Pulse Duration Limit 

On another set of preliminary experiment, a bead-on-plate weld was carried out 

to find out the highest value of pulse duration that can be set in the experiment. As 

shown in Figure 3.7, the laser peak power and pulse duration can be set to different 

levels up to the maximum capability. However, the combination of both parameters 
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must comply with the duty cycle value, which was shown in Equation 2.4. Based on 

Figure 3.7, the maximum limit of laser peak power can be reduced by increasing the 

laser pulse duration. Therefore, in this preliminary experiment, the tests were done by 

varying both laser peak power and pulse duration until full penetration was reached. 

This was done to identify the limit of pulse duration level in which full penetration 

could not be achieved even though the highest possible laser peak power was set. 

  
(a) (b) 

  
(c) (d) 

 

Figure 3.10 Cross-section images of bead-on-plate laser weld experiment with a 

variation of laser peak power and laser pulse duration (a) 1800 W and 2 ms (b) 1600 W 

and 4 ms (c) 1400W and 6ms (d) 1300W and 7 ms 

 

Figure 3.10 shows the selected results from the four sets of experiments. Based 

on Figure 3.10(a), full penetration was achieved at laser peak power of 1800 W and 

pulse duration of 2 ms. However, at pulse duration of 4 ms, a lower laser peak power 

was needed to achieve full penetration, as shown in Figure 3.10(b). In this case, full 

penetration was achieved when the laser peak power was set to 1600 W. Meanwhile, as 

shown in Figure 3.10(c), at 6 ms laser pulse duration, only 1400 W laser peak power 

was needed to penetrate the workpiece fully. Unfortunately, at pulse duration of 7 ms, a 
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full penetration weld could not be obtained because the highest laser peak power could 

only be set at 1300 W before the machine was cut off at 1400 W laser peak power due 

to inappropriate duty cycle. Figure 3.10(d) depicts the cross-section image of the 

workpiece welded at laser peak power of 1300 W. These results show that the 

maximum pulse duration can be set in the real experiment was 6 ms. Meanwhile, there 

was no upper boundary for the laser peak power as it can be adjusted until full 

penetration weld achieved. 

 

3.4 Experimental Setup 

To establish the relation between the emitted sounds and weld depth, an 

experiment was set up according to Figure 3.11. The laser machine used in this 

experiment was IPG Photonics fiber laser, which can emit a laser at a wavelength of 

1.06 µm. The average power for this particular laser welding machine is 200 W, but in 

the PW mode, the peak power can reach up to 2 kW. 

 

  

Figure 3.11 Experiment Setup 

 

In this research, the levels of peak power and pulse duration were varied. 

Several literature lines also proved that these parameters have a major influence on 

weld geometry (Assuncao, E. & Williams, S., 2013; Assuncao, E. et al., 2012; Nath, A. 

K. et al., 2002; Ready, J. F. & Farson, D. F., 2001). Based on the preliminary test result, 

the varied levels of peak power and pulse duration were set as shown in Table 3.2. 

Basically, to collect all data for the development of an estimation model, each 
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experiment was repeated three times. Meanwhile, for the validation process, another set 

of experiment was conducted using the same set of parameters shown in Table 3.2 

In the preliminary experiment, it was revealed that in the case of 2 ms pulse 

duration, a full penetration weld could be achieved at laser peak power of 1800 W. This 

was the reason why the upper boundary of laser peak power was set to 90% from its 

maximum limit in Table 3.2. Meanwhile, the laser pulse duration was set up to 6 ms 

because the maximum allowable laser peak power that could be set at 7 ms pulse 

duration was insufficient for a full penetration weld. These have been explained in 

detail in Section 3.3.5. 

Table 3.2 Parameter variation for the experiment 
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On the other hand, other parameters were set to be constant during the entire 

process, as summarized from the preliminary experiment in Table 3.3. Based on the 

table, the focal angle was fixed at 5°. Meanwhile, the weld speed, argon gas flow rate, 

and pulse repetition rate were set to 1.5 mm/s, 20 L/min, and 20 Hz, respectively. These 

values were summarized from the preliminary experiment result elaborated in Section 

3.3. 

Table 3.3 Constant parameters for the entire experiments 

Parameters Value 

Focal Angle 5
0
 

Weld Speed 1.5 mm/s 

Pure Argon Gas Flowrate 20 L/min 

Pulse Repetition Rate 20 Hz 
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3.5 Data Acquisition setup 

In order to acquire the sound signal that emerges from the laser welding process, 

the data acquisition system is needed. Fundamentally, the data acquisition system 

consists of a sensor, an analog-to-digital converter, and also a digital signal analyzer, as 

illustrated in Figure 3.12 (Arbel, A. F., 1984). In this study, PCB piezotronics free-field 

microphone with TEDS preamplifier was used as a sensor. The sensitivity response 

over the operating frequency of this type of microphone can be referred from Table 3.4. 

 
 

 

 

 

 
 

 

Figure 3.12 Basic element in data acquisition system used in this study 

Source: Arbel, A. F., (1984) 

 

 

 

 

Table 3.4 PCB 378B02 Microphone Specification 

Specification  

Nominal Microphone Diameter 1/2" inches 

Frequency Response Characteristic (at 0° incidence) Free-Field 

Sensitivity 50 mV/Pa 

Inherent Noise 15.5 dB(A) re 20 µPa 

Dynamic Range (3% Distortion Limit) 137 dB re 20 µPa 

TEDS Compliant Yes 

Temperature Range (Operating) -40 to +80 °C 

 Source: PCB Piezotronics, (2016) 
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In this experiment, the microphone was attached in a fixed position to secure its 

distance from the laser-focused spot. The distance was set to 25 cm, whereas the angle 

was set to 30° from the horizontal plane. The decision was made based on the result 

from the signal-to-noise ratio (SNR) mapping around the laser machine, as depicted in 

Figure 3.13. On the other hand, this location was also found close to the previously 

reported works (Farson, D. F. & Kim, K. R., 1999; Huang, W. & Kovacevic, R., 2011). 

Basically, the mapping in the figure was obtained from the measurement through the 

concept of a roving microphone and laser welding process with peak power and pulse 

duration of 800 W and 2 ms, respectively.  

 

 

 

 
(a) (b) 

 

Figure 3.13 Signal-to-noise ratio mapping test (a) test setup (b) signal-to-noise ratio 

mapping surround the laser weld machine 

 

Once the microphone acquired the analog sound signal from the welding 

process, the signal was sent to an analog-to-digital converter for discretization and 

digitization processes. The National Instruments DAQ NI 9234 analog-to-digital 

converter was used for this purpose and its specifications are shown in Table 3.5. Based 

on Figure 3.14, the sound was initially acquired at the operating range of the 

microphone. Then, the signal was filtered from 20 Hz to 12.8 kHz using a bandpass 

digital filter. In this study, Butterworth filter has been applied to avoid the ripple effect 

as could occur in Chebyshev type (Bakshi, S. et al., 2019; Rabbi, N. F., 2021). 

Meanwhile, the filter order has been set to 8. This was done to sharpen the transition 
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region between passband to stopband in order to reduce the leakage (Kamen, E. W. & 

Heck, B. S., 2006). 

  The selection of this bandwidth was made because several literatures associated 

with the study of sound signals that emerged from laser welding of steel proved that the 

information with respect to penetration status lies within this range (Duley, W. W. & 

Mao, Y. L., 1994; Farson, D. et al., 1996; Huang, W. & Kovacevic, R., 2009). 

Moreover, the down-sampling process was done with a rate of 25,600 samples per 

second before the analysis was preceded. It was done to reduce the processing time, 

mainly in the frequency-based analysis. 

 

 

 

 

 

Figure 3.14 Signal processing flow prior to analysis stage 

 

Table 3.5 National Instrument Analog-to-digital converter 9234 

Specification Value 

Minimum Sampling Rate 1.652kS/s 

Maximum Sampling Rate 51.2 kS/s 

Input Range ±5V 

Alias-free bandwidth 0.45fs 

 

 

3.6 Data Collection  

3.6.1 Data Sampling 

As mentioned previously, the test parameters were set according to Table 3.2, 

and each experiment was repeated three times. For each specimen, the weld penetration 

data and sound signal were measured at five different locations, as depicted in Figure 

3.15. It was done to ensure the consistency of penetration data which could be varies 

along the weld bead due to factors such as non-linear response of the process and 

machine persistency (Dawes, C., 1992; Lee, S. et al., 2014). As a result, there were 15 

Analog Sound 

Signal 

 Analog-to-

digital 

conversion 

 Signal 

Discretization 

 Digital Filter 

(Bandpass 20Hz – 

12800Hz) 

 Downsampling 

(25.6kSample/s) 

Signal 

Analysis 



88 

 

samples from all repeated sets of experiments, which gave a total of 195 samples from 

the entire experiment. In the previous study, Huang, W. & Kovacevic, R., (2011) 

successfully developed the predictive model to estimate the weld depth during CW laser 

welding process with 28 data samples. Therefore, the number of sample used in this 

study was predicted to be enough to obtain the reliable model. 

 

 

Figure 3.15 Data sampling from specimen 

 

As explained in section 3.4, another set of experiments was conducted for model 

validation purposes. Unlike the 195 training samples, the penetration depth sample was 

taken at three different locations, as represented by the red line in Figure 3.15. This 

resulted in a total of 39 samples for weld depth estimation model validation. Basically, 

the different sampling locations provided some variations in the validation process as 

compared to the training dataset.   

3.6.2 Macro graphic imaging 

As explained previously, data sampling was done at different locations, and the 

depth of penetration was measured at a selected point on the specimen. In order to 

obtain the penetration data, each specimen was cut at the selected location using a 

sectioning cut-off machine. This cutting method was selected to achieve a precise 

cutting and avoid the heat effect (Lopes, J. C. et al., 2020).   
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After this process, the specimen was mounted using the cold mount technique 

before the polishing work was done. In this study, the polishing process was done using 

sandpaper by stepping up the grit level from 220 to 1000 as suggested in ASTM E3-11. 

Next, the etching process was carried out to reveal the fusion zone to measure 

penetration.  The mounted specimen was dipped for several seconds into Nital solution 

with 3% nitric acid before it was cleaned using distilled water during the etching 

process. This procedure was based on the suggestion in ASTM E340-95. Meanwhile, 

the selection of etchant was made based on the previous studies which demonstrate the 

ability of the Nital solution to enhance the microstructural appearance in steel (Liu, Q. 

et al., 2018; Masoumi, M. et al., 2018). In the final step, the macro-imaging process and 

weld penetration measurement were logged using a microscope. 

3.7 Feature Extraction Analysis 

Commonly, the sound was characterized by its features trend to understand the 

mutual relation between the produced sound and the process condition. In this work, 

features were extracted from time-domain, frequency-domain, and time-frequency 

analyses. The feature trend extracted from these analyses was investigated before 

developing an algorithm for another feature extraction. In this section, the method of 

feature extraction will be explained in detail. 

3.7.1 Time-domain feature extraction 

In this work, mean absolute deviation (MAD), standard deviation (SD), and 

kurtosis shown by Equations 2.20 to 2.22 were extracted. The selection of these features 

was made because of their ability to give a significant correlation with weld condition 

in the case of laser and arc welding processes (Farson, D. et al., 1998; Fidali, M., 2018; 

Huang, W. & Kovacevic, R., 2009; Zhang, Z., Chen, H., et al., 2015). 

Apart from those features, the L-scale and L-kurtosis were also extracted. Both 

features were determined based on the L-moment concept which has been explained in 

section 2.7.3. Several scholars have proven that this method was able to suppress the 

effect of sampling variability and outliers (Bao, W. et al., 2020; Gao, Q. et al., 2021; 

Hosking, J. R. M., 1990; Liu, H. & Shi, Z., 2020; Liu, S. et al., 2018). This was the 

reason of why these features were also investigated in this study. 
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The L-scale and L-kurtosis were determined by the L-moment ratio shown in 

Equation 2.24 and Equation 2.26, respectively. Meanwhile, the 1
st
, 2

nd
 and 4

th
 order L-

moments which were represented as L1, L2 and L4 in both equation were obtained by 

expanding the equation 2.23. The results of the equation 2.23 expansions were given in 

equation 3.1 to 3.3 

                                 L1 = 
1

n
∑ xj

n
j=1         3.1 

                                 L2 =  2(
1

n
∑ xj[

j−1

n−1
]) − (

1

n
∑ xj

n
j=1 )n

j=2      3.2 

       

L4 =  20 (
1

n
∑ xj[

(j−1)(j−2)(j−3)

(n−1)(n−2)(n−3)
]n

j=4 ) − 30 (
1

n
∑ xj [

(j−1)(j−2)

(n−1)(n−2)
]n

j=3 ) + 12 (
1

n
∑ xj [

(j−1)

(n−1)
]n

j=2 ) −

(
1

n
∑ xj

n
j=1 )             3.3 

 

3.7.2 Frequency-domain feature extraction 

In the frequency-domain approach, the bandpower was extracted from the 

power spectrum density of time-domain acoustic signal, as shown in Equation 3.4 

(Jerbic, A. B. et al., 2015). 

 

𝐵𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟 =  ∑ 𝑃𝑆𝐷𝑥𝑖(𝑓)
𝑓𝑓

𝑓𝑖
    3.4  

 

In more detail, the bandpower was determined within the dominant frequency 

range from the first band, fi, until the last band, ff. In this study, fi and ff were set to 5960 

Hz and 6440 Hz, respectively. These limits were set based on the interquartile range of 

the dominant frequencies of all the acquired sounds from the entire experiment.  

The idea of using bandpower in this study was based on the previous finding, 

which proved that this type of feature can be used to develop the weld depth estimation 

model with reasonable errors (Huang, W. & Kovacevic, R., 2011). As these features 

were tested in the case of CW welding in previous work, the significant contribution of 

bandpower in PW laser welding was investigated in this study. 
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3.7.3 Time-Frequency features extraction 

Besides the time- and frequency-domain analyses, the feature trend from time-

frequency analysis was also investigated in this work. As discussed in Chapter 2, the 

time-frequency analysis of the acquired sound was revealed to be significant in 

monitoring weld penetration condition (Farson, D. et al., 1996) and detecting porosity 

(Sun, A. et al., 2001) during the laser welding process. This was the reason of the 

selection of time-frequency features in this study.  

In this study, a feature of the time-frequency signal was extracted via the 

synchrosqueezed wavelet transform, which was recently developed (Daubechies, I. et 

al., 2011; Iatsenko, D. et al., 2015).  Basically, synchrosqueezing provides a more 

concentrated representation in time-frequency space. It was done by joining the wavelet 

coefficients, 𝑊𝑥(𝜔, 𝑡) which was obtained from the equation 2.31, corresponding to the 

same phase velocity into one synchrosqueezed wavelet coefficient. The process began 

by extracting the instantaneous frequency, as described in Equation 3.5. 

𝑣𝑊(𝜔, 𝑡) =  
𝜕

𝜕𝑡
arg[𝑊𝑥(𝜔, 𝑡)] = 𝐼𝑚 [𝑊𝑥

−1(𝜔, 𝑡)
𝜕𝑊𝑥(𝜔,𝑡)

𝜕𝑡
]    3.5  

 

Then, the synchrosqueezed wavelet coefficients were obtained from Equation 3.6, 

 

𝑇𝑥(𝜔, 𝑡) =  𝐶𝜑
−1 ∫ 𝛿(𝜔 −

∞

0
𝑣𝑊(�̃�, 𝑡)) 𝑊𝑥(�̃�, 𝑡)

𝜕�̃�

�̃�
     3.6  

 

whereas Cφ was acquired from Equation 3.7 

 

𝐶𝜑 =
1

2
∫ �̂�∗(𝜔)

𝜕𝜔

𝜔

∞

0
      3.7  

 

In this study, the feature for the wavelet analyses were presented in cumulative 

form in which all coefficients from the variation in time (but at a specific frequency) 

were accumulated together, as shown in Equation 3.8. In the equation, t1 represents the 

time corresponding to the first data point, while tN represents the time for the last data 

point from each signal.  

𝐶𝑆𝑞𝑊𝐶(𝜔) =  ∑ 𝑇𝑥(𝜔, 𝑡)
𝑡𝑁
𝑡1

      3.8   
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Meanwhile, to extract the feature, the sum of 𝐶𝑆𝑞𝑊𝐶(𝜔) along the specific 

frequency range was calculated, as shown in Equation 3.9. The summation only 

considered the frequency region, where the amplitude at the corresponding frequency 

exceeded the threshold λ.  

𝐶𝑆𝑞𝑊𝐶𝑠𝑢𝑚 = ∑ 𝐶𝑆𝑞𝑊𝐶(𝜔)𝜔𝑖≤𝜆≤𝜔𝑓
   3.9  

 

As shown in Equation 3.10, the threshold was determined according to the 

maximum value of the cumulative synchrosqueezed wavelet coefficient (CSqWC) and 

the signal-to-noise ratio (SNR).  

𝜆 = 𝑚𝑎𝑥[𝐶𝑆𝑞𝑊𝐶(𝜔)] [
1

𝑆𝑁𝑅
]    3.10  

 

3.8 Development of algorithm for feature extraction. 

In this work, the algorithm for feature extraction was developed by adopting the 

multi-lag phase space (MPLS) method. The reason behind the selection of this method 

was because of it have been claimed to be sensitive in detecting any shift in both 

amplitude and frequency (Digulescu, A. et al., 2019; Rosu, G. et al., 2018). Moreover, 

the algorithm was also simple, fast and less complex (Bernard, C. et al., 2014). 

However, to specifically implement this method for this work, several challenges were 

identified. Therefore, some modifications were made to the original algorithm to 

increase the capability of this method. 

The entire modified MLPS algorithm was summarize in the flowchart in Figure 

3.16. Based on the flowchart, the process begins with the acquisition of the time-series 

signal as an input to the entire program. This signal can be represented by Equation 

3.11, where i and n are the ith sample and the total number of samples, respectively. 

𝑥 =  𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑡𝑖 , 𝑥𝑡𝑛      3.11 
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Figure 3.16 Flowchart of the modified MLPS algorithm development 

 

In the next process, initial lag value was set to proceed with the signal division 

and MLPS computation. Specifically, the initial lag value was set to 2. Moreover, the 

signal division was done by dividing the signal into Mth dimension of coordinate 

vectors. In this particular study, only 2 dimensional coordinate vectors were considered. 

This was due to reduce the complexity and processing time of the entire analysis 

(Digulescu, A. et al., 2016). The obtained coordinate vector from this process was 

represent in equation 3.12 where vj, m, τ and M are the phase space vector, dimension of 

phase space, lag between the sample, and total dimension of phase space, respectively 

(Bernard, C. et al., 2014). 

𝑣𝑗⃗⃗⃗  =  ∑ 𝑥[𝑗 + (𝑘 − 1)𝜏]               𝑗 = 1,𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗ 𝑚
𝑘=1 , 𝑀 = 𝑛 − (𝑚 − 1)𝜏    3.12  

 

Basically, plotting this vector in the phase space gives a trajectory of the system, 

as shown in Figure 3.17(b). From this plot, the ellipsoidal model was computed based 

on Equation 3.13. 
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 (a) 

 

(b) 

 

Figure 3.17 Fundamental concept of multi-lag phase space from a transient signal (a) 

example of transient signal (b) multi-lag phase space with a lag of sixteen data points 

 

 

𝑆 =  ∑ [𝐹(𝑥𝑗𝑦𝑗)]
2𝑚

𝑗=1             𝑤ℎ𝑒𝑟𝑒     𝐹(𝑥, 𝑦) = 𝛤2 + Ʌ2 + 1    3.13 

 

The least squares estimation method was applied to determine 1/√Ʌ and 1/√𝛤 

in equation 3.13. As a result, the value of semi-major axis a and semi-minor axis b was 

obtained to determine the MPLS, which was the area of ellipsoidal. According to the 

flowchart in Figure 3.16, this process was iterated by increasing the lag number by the 

scale of 2 until the maximum MLPS value was achieved.  

The second part in the flowchart in Figure 3.16 was the vital part as this is the 

point where the modification of the original MLPS algorithm was done. As explained 

earlier, the phase space was obtained from the ellipsoidal fitting using the least squares 

estimation method.  Based on the phase space plot in Figure 3.17(b), it is clear that the 

amount of data point scattered at the center of the ellipsoid in the phase space plot 

influences the least squares estimation process. Consequently, the smaller values of 

both semi-minor and semi-major axes were obtained, resulting in a smaller ellipsoid 

area. Therefore, the modification was done to optimize the fitted ellipsoid size in the 

phase space. This is important because the peak of the transient sound signal acquired 

from PW laser welding is located around the maximum and minimum points in the 

phase space.  

Based on the 2
nd

 part of the flowchart in Figure 3.16, the modification was done 

by adding the thresholding method into the process. In this study, Sqtwolog, Rigrsure, 
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and Minimaxi thresholding methods shown in equation 2.13, 2.18, and 2.19 was used.  

The use of these types of thresholding techniques was due to its simplicity and good 

denoising effect (He, C. et al., 2015). On the other hand, (Verma, N. & Verma, A. K., 

(2012) claimed that SURE method was giving the poor performance in case of high 

signal-to-noise ratio signals such as in transient signal. Therefore, Heursure method was 

not considered in this study.  

Besides the aforementioned thresholding method, other thresholding method 

was also proposed in this study. Specifically, this method was developed on the basis of 

the crest factor (CF) in a statistical study. In the analysis of a waveform, CF is a 

parameter that measures how extreme the peak is in the signal. This parameter can be 

obtained from Equation 3.14 (Jones, M., 2013) 

𝐶𝑟𝑒𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =  
|𝑥𝑚𝑎𝑥|

𝑟𝑚𝑠 (𝑥)
    3.14  

 

In this study, by adopting the CF theory, the localized CF was determined using 

Equation 3.15. By determining the localized crest factor, CFloc, the local region, where 

the amplitude point was above the signal energy average, was able to be identified. This 

can offer an adaptive way to de-noise a signal as the value depends on the ratio between 

local peak and the overall energy. 

𝐶𝐹𝑙𝑜𝑐 = 
|𝑥𝑖|

𝑟𝑚𝑠 (𝑥)
     3.15  

 

In this research, the transient part in the time-domain signal was significant as it 

contained valuable information with respect to the weld condition. Due to this reason, 

the hard thresholding method was implemented by eliminating the part of the signal that 

recorded CFloc of less than 2. 

𝜆𝐶𝐹 = 𝑥(𝐶𝐹𝑙𝑜𝑐 𝑖 > 2)     3.16  

 

Specifically, the selection of this value was made on the basis of z-score. As 

depicted in Figure 3.18, in transient-type signal, most of the noise amplitudes illustrated 

in red-shaded area were scattered within the 95% confidence interval of the amplitude 

distribution. Meanwhile, z-score value at 95% confident interval is approximately close 
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to 2 (Hazra, A., 2017). By comparing the z-score in Equation 3.17 and Crest Factor in 

Equation 3.14, it was notable that the Crest Factor only ignored the mean, µ in its 

equation. Considering that the signal acquired in this study had an approximately zero-

mean, the CF was assumed to be equal to z-score. 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑥𝑖− 𝜇

𝜎
      3.17  

 

 

Figure 3.18 Noise amplitude distribution in transient signal 

 

In order to select the best thresholding method, the MLPS value was computed 

using the simulated signal. The simulated signal was basically the amplitude-modulated 

transient signal in which its amplitude was increase from 4.6 to 5 with an increment of 

0.01. The selection criterion was the stability of the MLPS value with respect to the 

change of simulated signal amplitude. In order to determine the stability of the 

threshold, the gradient of the MLPS must be constant. This is because the constant 

gradient indicates the constant rate of change of MLPS value in response to the uniform 

increment of the signal amplitude. 

 

3.9 Feature Selection Analysis 

Among all type of extracted sound features explained in section 3.8, only 

several number of feature might be suitable for predictive model. In order to identify 

the suitable signal features for the prediction model, the stepwise regression was done 

in this study. This is essential to ensure the generated model is not underfit or overfit 

and takes the shortest processing time for training (Babyak, M. A., 2004).  
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In principle, stepwise regression was carried out by finding the relation between 

predictive variables, which gives a better fit to the response or output (Efroymson, M., 

1960). As illustrated in Figure 3.19, the algorithm automatically finds a linear, cross-

relation, or higher order relation of variables that are more significant to the response, 

and the process iterates until the criteria reach the desired value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 Flow chart of stepwise regression analysis 

Source: Efroymson, M., (1960) 

 

In this particular work, the backward-selection process was selected. The 

iteration started by considering all sound features and eventually rejecting features that 

were insignificant to the overall regression model. The rejection of features was done 

based on the absolute value of t-stats. Theoretically, a t-stat is obtained from the t-test, 

which measures the significance of each regression coefficient from each predictive 
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variable individually. It was determined from Equation 3.18, where �̂� and 𝑠. 𝑒(�̂�) are 

the regression coefficient and standard error, respectively.  

𝑡�̂� = 
�̂�

𝑠.𝑒(�̂�)
      3.18  

 

Fundamentally, t-stats is the measure of the likelihood that the actual is not 

equal to zero, which indicates the significance of the predictive variable in the 

regression model (Montgomery, D. C. et al., 2012). Therefore, the selection of 

predictive variables in stepwise regression analysis was made based on the larger 

absolute value of t-stats.  Meanwhile, the iteration stopping criterion was the root-mean-

square error of the overall model, which considered all selected features. 

3.10 Development of Depth of Penetration Estimation Model  

3.10.1 Multiple Linear Regression Method 

In this study, the development of weld depth estimation model involved several 

predictive variables from both sound features and weld parameters. Through multiple 

linear regression (MLR) method, the weld depth estimation model was generated using 

a general model shown in Equation 3.19 (Olive, D. J., 2017). 

𝐷𝑂𝑃 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑛𝑥𝑛    3.19  

 

In Equation 3.19, n is a series of predictive variables from both sound features 

and weld parameters selected based on the feature selection analysis result. 𝛽0 is the 

intercept of multi-dimensional surface, while 𝛽𝑛 is a series of partial regression 

coefficients. These coefficients were obtained from the least squares estimation method 

(Montgomery, D. C. & Runger, G. C., 2014) as shown in equation 2.33 to 2.35. 

 

3.10.2 Artificial Neural Network Method 

Apart from the MLR method, this study also applied the artificial neural 

network (ANN) method to develop the estimation model. Similar with the MLR 

method, it involves n input parameters, which have been analyzed to train the neural 

model. The overall process flow is illustrated in Figure 3.20. 
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Figure 3.20 Neural Network model development process flow 

 

According to the flowchart in Figure 3.20, prior to the neural model 

development, all the input and output data were normalized. This pre-processing 

technique is important to ensure that the difference in each input range value does not 

affect the entire trend learning (Gupta, A. et al.; Huang, W. & Kovacevic, R., 2011; 

Zhang, T. & You, X., 2015). In this particular study, the min-max technique was 

implemented due to its advantages in offering less time, and space and algorithm 

complexities (Chen, L. et al., 2018). Through this technique, both inputs and output 

were normalized to ensure they ranged from -1 to 1. This was done using Equation 2.38 

as explained in Section 2.7.4. 

After the normalization process, multilayer neuron was formed. In this study, 

three layers, which consisted of input, hidden, and output layers, were used. Meanwhile, 

the selected transfer functions for the hidden and output layers were tansig and pure 

linear, respectively. The number of neurons in the hidden layer was varied from 5 to 25 

to investigate their effects on the estimation error. In the neural model development, 

70% out of the 195 samples were randomly selected for training, and 15% each for 

model validation and testing. The network was trained using the Levenberg-Marquardt 

backpropagation method by following the computational process as shown from 
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equation 2.39 to 2.41. The use of this method was due to its adaptive behavior 

(Marquardt, D. W., 1963). 

3.11 Methodology Summary 

As a summary, the overall work which inclusive of several important stages was 

illustrated in Figure 3.21. The first stage of the entire work involved specimen 

preparation for the experiment. Then, a preliminary experiment was done to determine 

the range of weld parameter level and the optimum values for some constant 

parameters. Experiment work was carried out in the next stage, and the signal 

acquisition process was executed simultaneously. Thereafter, data collection and feature 

extraction analysis were done before feature selection analyses were performed. Finally, 

work comprising the estimation model development and model validation process was 

conducted. 

 

 

 

 

Figure 3.21 Process flow of the entire work. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

The first objective of this work aims to investigate the behavior of the acquired 

sound from PW laser welding. Previously, much work was done to gain a deeper 

comprehension of how the emerged sound signal from laser welding can characterize 

the penetration condition. However, studies involving PW laser welding in the 

aforesaid research were lacking in number until recently. As non-stationary random 

sound signal can emerge from this type of laser welding process according to its 

physical mechanism, it is essential to investigate how the sound captured from this 

process can characterize weld penetration. Therefore, in the first part of this chapter, the 

trend of time series and frequency spectrum acquired from the process with different 

peak power levels and pulse durations will be presented and discussed in detail. 

Apart from the need for comprehensive information on sound behavior from the 

PW laser process, there are other obstacles in applying the sound methods in weld 

condition monitoring. Basically, the major drawback of the acoustic methods is the 

influence of noise that emerges from harsh surroundings, making it difficult to 

characterize the sound features according to the weld condition. Therefore, the 

development of both noise elimination and feature extraction methods either 

simultaneously or implicitly, is important to improve the efficiency of the methods. In 

the second part of this chapter, the work will be highlighted on the development of an 

algorithm for noise elimination and feature extraction. The significance of the features 

extracted from the developed algorithm will be discussed based on the results of feature 

selection analysis.   

In the last part of this chapter, the focus of discussion will be more toward the 

results from work related to the weld penetration estimation model development. 

Basically, the work associated with the model development based on the sound feature 

or predictive variable trend learning will be presented and discussed in detail. This part 
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will reflect the final objective of this work. Moreover, the efficiency of the developed 

estimated model and the result from the validation experiment will be discussed.   

4.2 Effect of Peak Power and Pulse duration to Weld Penetration 

Chapter 3 explained that a test was carried out with variation in laser peak 

power and pulse duration, as shown in Table 3.2. Figure 4.1 depicts the selected cross-

section image of the welded sample from each weld parameter setup. According to the 

figure, it was found that there was no joining that occurred at the laser peak power of 

600 W for the case of 2 ms and 4 ms pulse durations. Meanwhile, the weld joint 

reached full penetration when the peak power was set to 1600W, 1400 W and 1200W 

for the process with pulse durations of 2 ms, 4 ms and 6 ms. 

Based on the results, to achieve full penetration, the amount of pulse duration 

influenced the limit of peak power. Smaller pulse durations needed higher laser peak 

power levels to achieve full penetration weld. Apart from inducing penetration depth, 

the amount of pulse duration also affected the width of the fusion zone. On the other 

hand, at a constant pulse duration, higher peak power levels gave deeper penetrations. 

The variation of weld penetration with different laser peak power levels and pulse 

durations was plotted in Figure 4.2. 

Pulse 

duration 

Peak Power (W) 

600 800 1000 1200 1400 1600 

2 ms Not Joined 

     
4 ms Not Joined 

    

- 

6 ms 

    

- - 

Figure 4.1 Selected cross-section image of the welded sample from each of the 

weld parameter setup 
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Figure 4.2 Weld depth variations from different peak power and pulse duration 

 

In this study, laser beam energy density leaned wholly on laser peak power and 

pulse duration due to the fixed focal position on the entire experiment. Results 

presented previously showed that laser peak power and pulse duration greatly 

influenced the penetration depth. This trend shows good agreement with what has been 

explained in the previous chapter. Based on the theoretical explanation in Chapter 2, it 

can be summarized that establishing coupling and melting is strongly related to the 

amount of absorbed laser energy. Higher laser beam energy densities allow deeper 

penetrations (Bergström, D., 2008; Kelkar, G., 2008). On the other hand, (Yaakob, K. 

et al., (2017) in their study, revealed the similar finding whereas the weld penetration 

was reported to be influence by both peak power and pulse duration.   

4.3 Effect of the Peak Power and Pulse duration to the characteristic of the 

Acquired Sound Signal 

Besides the variation in weld penetration, it is also important to observe the 

characteristics of the sound signal acquired from the PW laser welding and how it 

reacts with the variation in welding parameters. This is essential to gain a deeper 
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understanding of how the sound characteristic dynamically changes with the change in 

penetration depth before the estimation model is developed later on. In this section, the 

characteristics of time and frequency domains of the acquired sound signal will be 

presented. Moreover, the trend of the sound pressure level (SPL) against the variation 

in peak power and pulse duration will be elaborated in detail. 

Similar to the trend in this study, earlier studies explained that peak amplitude 

that appeared in the acquired sound signal could indicate the formation of a plasma 

plume (Hoffman, J. et al., 2002; Lewis, G. & Dixon, R., 1985; Szymanski, Z. et al., 

2000). A higher number of peaks indicate a larger amount of plasma plume formation, 

which is directly related to the laser pulse duration and peak power. With regard to the 

effect of peak power variation in Figure 4.3, an increasing trend of sound pressure 

amplitudes was displayed in this study. However, the amplitude increment rate was 

quite weak, making it slightly challenging to characterize the sound amplitude in 

response to peak power increment. For example, by comparing the acquired sound at 

peak power levels of 600 W and 800 W, it was found that the overall amplitudes of 

both signals were nearly 3 Pa. In contrast, a different trend was noted when the sound 

pulses acquired from the welding process with peak power levels of 1000 W and 1200 

W were compared. When the laser welding process was performed with a peak power 

of 1000 W, the overall amplitude of sound pulse approached 4 Pa, and only several 

points surpassed the value. Sound amplitudes that exceeded 4 Pa were increased during 

the welding process with a peak power of 1200 W.  On the other hand, comparison 

between the signals from the process with different laser pulse duration in Figure 4.4 

showed that both amplitudes and duration of the sound pulse increase as the pulse 

duration increased. 
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(a) (b) 

  
(c) (d) 

Figure 4.3 Sound signal acquired from laser pulse at 6 ms pulse duration and peak 

power of (a) 600W (b) 800 W (c) 1000 W (d) 1200W 

  
(a) (b) 

 
(c) 

 

Figure 4.4 Sound signal acquired from laser pulse with peak power of 1200 W and 

pulse duration of (a) 2 ms (b) 4 ms (d) 6 ms 
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Earlier studies involving the CW process claimed that the loudest acoustic 

signal could be captured at deeper penetrations. This phenomenon was found to be 

closely related to the amount of laser peak power given during the process. As the peak 

power increased, the vapor flow behavior also changed, and led to different behaviors 

of the emitted sound (Farson, D. et al., 1998; Farson, D. F. & Kim, K. R., 1999) 

Compared to the above findings, in this study, a weaker sound amplitude increment 

was found in PW as the peak power level increased.   

    
(a) (b) 

    
(c) (d) 

  

Figure 4.5 Frequency spectrum of the sound pulse from the welding process at 6 

ms pulse duration and peak power of (a) 600 W (b) 800 W (c) 1000 W (d) 1200 W 

 

In terms of frequency spectrum trend, the dominant frequency was found to 

record an indistinguishable pattern with respect to the change in peak power. As 

depicted in Figure 4.5, the dominant frequency was determined by the frequency at 

peak amplitude in the red shaded area. The frequency spectrum of the acquired sound 

from the process with laser peak power of 600 W, 800 W, 1000 W and 1200 W are 

illustrated in Figure 4.5. Based on the resulted trend, the spectrum from the process 

with a laser peak power of 600 W displayed a dominant frequency at 6620 Hz. As the 
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laser peak power increased from 800 W to 1200 W, a dominant frequency was recorded 

at 5960 Hz, 6000 Hz, and 6080 Hz, respectively.  

 

  
(a) (b) 

 
(c) 

Figure 4.6 Frequency spectrum of a sound pulse from the welding process at 1200 

W laser peak power and pulse duration of (a) 2 ms (b) 4 ms (c) 6 ms   

 

In another perspective, the effect of the laser pulse duration on the trend of 

sound frequency spectrum is depicted in Figure 4.6. Based on the presented results, the 

trend could not be clearly established. As observed in Figure 4.6(a), the dominant 

frequency during the laser pulse duration of 2 ms was recorded at 6340 Hz. Meanwhile, 

the dominant frequency in the case of 4 ms and 6 ms laser pulse durations was recorded 

at 6000 Hz and 6180 Hz, correspondingly.  

To get a clear picture of the overall trend, the dominant frequency of all 195 

sampled signals from the entire experiment was illustrated in a boxplot (Figure 4.7). 

Based on the boxplot, for the case of 2 ms pulse duration (Figure 4.7(a)), the dominant 

frequency varied between 5800 Hz to 6900 Hz at a peak power of 800 W. In contrast, a 

smaller range was recorded at a peak power of 1000W, and the dominant frequencies 

were recorded between 5760 Hz and 6600 Hz. Moreover, the dominant frequencies 



108 

 

were recorded from 5780 Hz to 6900 Hz, 5760 Hz to 6580 Hz, and 5780 Hz to 6580 Hz 

as the peak power increased from 1200 W to 1400 W, and 1600 W, respectively.  

  
(a) (b) 

 
(c) 

Figure 4.7 Boxplot of the overall variation of the dominant frequencies recorded 

during the process at different amount of laser peak power and pulse duration (a) 2 ms 

(b) 4 ms (c) 6 ms 

 

As the same trend was recorded (Figure 4.7(b) and Figure 4.7(c)), it can be 

summarized that the dominant frequency does not significantly respond to the change 

in the level of both peak power and pulse duration. Because of the depth of penetration 

influence by both laser peak power and pulse duration, the overall trend of the 

dominant frequencies with respect to the changed on the weld penetration was shown in 

Figure 4.8. Based on the result, it was clear that the dominant frequencies were not 

related to the change in the depth of penetration. 
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Figure 4.8 The dominant frequencies for all the acquired signal from the entire 

experiment 

 

Basically, the indistinct trend of sound frequency recorded in this study showed 

good agreement with past studies. Chapter 2 explained that the frequency of the 

acquired sound was influenced by the dynamic characteristics of plasma plume during 

the welding process. A significant number of previous work explained that the keyhole 

formed from the plasma plume pressure could oscillate from 600 Hz to 7000 Hz 

(Duley, W. W. & Mao, Y. L., 1994; Huang, W. & Kovacevic, R., 2009, 2011; Klein, T. 

et al., 1994). Klein, T. et al., (1994) revealed that the oscillation frequency was 

subjected to the mode of oscillation or Eigen-frequencies. Additionally, some studies 

suggest that the increasing level of laser peak power, which simultaneously increases 

the depth of penetration, will boost the amplitudes of sound energy instead of shifting 

the frequency value (Duley, W. W. & Mao, Y. L., 1994; Farson, D. et al., 1998; Farson, 

D. et al., 1996). 

Based on the trend from the results depicted in Figure 4.3 and Figure 4.4, it can 

be summarized that the acquired pulse sound recorded a change in its pattern when the 

laser welding process is performed with different levels of pulse duration. However, it 

was difficult to characterize the overall sound amplitude trend for the change in laser 

peak power. Due to this reason, the trend of sound pressure level (SPL) of each sound 

pulse sampled from the process with varied levels of peak power and pulse duration 

was plotted in Figure 4.9. Based on the plot, it was noted that the SPL only increased 
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slightly when the level of laser peak power increased, especially at pulse duration of 2 

ms.  

 

Figure 4.9 Sound pressure level variation from the process with increasing laser 

peak power and pulse duration. 

 

On the other hand, the range of SPL at any respective peak power and pulse 

duration was quite large. Consequently, some of the SPL from different laser peak 

power values fell within the same range. For example, at 800 W laser peak power and 2 

ms pulse duration, all sound pressure levels from different experiments were recorded 

between 83.73 dB and 84.59 dB. Meanwhile, when the laser peak power was increased 

to 1000 W, the SPL was recorded between 84.41 dB and 85.95 dB. This recorded 

information redundancy from 84.41 dB to 84.59 dB, as illustrated in the red shaded 

area. Based on the figure, the redundant information was quite large (i.e., from 1000 W 

to 1200 W laser peak power). This could cause difficulties in distinguishing the SPL 

values from different laser peak power levels. As a result, it was quite challenging to 

characterize the weld penetration from the SPL of pulse sound. In contrast, the SPL at 

different values of pulse duration recorded a distinct pattern. This can be clearly 

observed when comparing the SPL at a constant peak power. 
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4.4 The trend of sound features from the process with variation level of weld 

parameters 

In Section 4.3, the difficulties in distinguishing the SPL from different peak 

power levels have been revealed. Since the peak power significantly influences the 

weld depth, this trend has caused difficulties in characterizing the weld penetration 

from the acquired sound pulse. To address this issue, suitable sound features that can 

give a strong mutual relationship with penetration depth are needed. Therefore, it is 

crucial to find an appropriate algorithm to extract these features. As explained in 

Chapter 1, one of the aims of this work is to develop an algorithm for sound feature 

extraction. Therefore, the result related to this matter will be presented in this section. 

Commonly, to understand the mutual relation between the produced sound and 

the process condition, the sound was characterized by the trend of its features. In the 

sound signal analysis, features are extracted from the statistical analysis of sound 

amplitude distribution, frequency-domain analysis, and time-frequency analysis. In this 

study, the trend of features extracted from those analyses was investigated before 

developing the algorithm for feature extraction. 

4.4.1 Time-domain feature  

As explained in Section 3.7.1, the trend of mean absolute deviation (MAD), 

standard deviation (SD), kurtosis, L-Cv and L-kurtosis was analyzed in this study. 

Figure 4.10 illustrates the trend of MAD, SD, kurtosis, L-Cv and L-kurtosis from 

different values of laser peak power and pulse duration. In Section 3.6.1, it was 

mentioned that there was a total of 15 data points from each level of laser peak power 

and pulse duration. Therefore, all the features for specific peak power and pulse 

duration were plotted against their mean value and 95% confidence interval to observe 

the overall trend of all experiments.  
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 4.10 Trend of sound features at a different level of peak power and pulse 

duration (a) Mean Absolute Deviation (b) Standard Deviation (c) Kurtosis (d) L-Cv (e) 

L-Kurtosis. 

 

Based on Figure 4.10(a), it can be clearly observed that the MAD shows a 

significant trend at different values of pulse duration. Higher MADs were recorded for 

larger pulse durations at a constant peak power. However, at a constant pulse duration, 

an inconsistent trend of MAD was recorded when the laser peak power level varied. 

For instance, at a pulse duration of 2 ms, the MAD rose up when the laser peak power 
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was increased from 800 W to 1200 W. However, the MAD value dropped once the 

laser peak power reached 1400 W and slightly increased as the laser peak power was 

further increased. On the other hand, the MAD of sound amplitudes was found to have 

a direct and linear relationship with the variation in laser peak power at a pulse duration 

of 4 ms. In contrast, at 6 ms pulse duration, an inconsistent trend of MAD occurred 

from 600 W to 800 W of laser peak power.  

To explain this trend, the results presented in Figure 4.3 and Equation 2.20 need 

to be referred to. According to Equation 2.20, the model for calculating the MAD value 

represents the average of the deviation between the amplitudes of sound from its mean 

value. In the meantime, as observed in Figure 4.3, in most cases, the amplitudes of the 

sound signals only increased slightly with the change in peak power level. Therefore, 

this factor might be the reason for the fluctuating MAD trend on some levels of peak 

power. 

Unlike MAD, the SD of the sound amplitudes in Figure 4.10(b) increased with 

increasing laser pulse duration and peak power. This trend was predictable from the 

amplitude distribution of all time-domain signals, as illustrated in Figure 4.11. 

According to Figure 4.11(b), the sound amplitude distribution disperses in a wider 

range for larger laser pulse durations at a constant laser peak power. Theoretically, SD 

is the dispersion measure of amplitude distributions (Montgomery, D. C. & Runger, G. 

C., 2010). Therefore, this might explain why the SD of sound amplitudes increased as 

the laser pulse duration increased. Compared to MAD, the variation in the SD of sound 

amplitudes for the change of laser peak power recorded a better linearity trend. This 

happened because SD is the measure of cumulative amplitude dispersion, while MAD 

calculates the average value. This is why the SD showed a clear trend with the variation 

of peak power even though the amplitudes in the time-domain signal shown in Figure 

4.3 were difficult to be qualitatively characterized.  
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 Amplitude (Pa)  Amplitude (Pa) 

 (a)  (b) 

Figure 4.11 Sound amplitudes distribution acquired from the laser welding process 

with the variation of peak power and pulse duration (a) Process at a pulse duration of 6 

ms and different levels of peak power (b) Process at a peak power of 1200W and 

different level of the pulse duration. 

 

Apart from MAD and SD, sound amplitude kurtosis was also investigated in 

this study. In general, at a constant laser peak power, higher laser pulse durations give 

lower kurtosis values. Meanwhile, the trend was quite inconsistent for the case of 

different peak power levels. At 2 ms laser pulse duration, the kurtosis of sound 

amplitudes recorded a linear trend with respect to the change in laser peak power. 

However, the rate of change of kurtosis for the increment of the peak power was almost 

flat for the 4 ms and 6 ms pulse durations.  

Basically, kurtosis is the measure of spikiness of the amplitude distribution 

(Baren, J. V. et al., 2012). According to the shape of sound amplitude distribution in 

Figure 4.11(b), it was found that the spikiness of sound amplitude distribution 

decreased as the pulse duration increased. This might explain why the kurtosis recorded 

larger values at lower laser pulse durations. In contrast, based on Figure 4.11(a), the 

spikiness of amplitude distribution from the different laser peak power levels was quite 

indistinguishable, which explained the trend in Figure 4.10(c).   

Looking into the L-Cv and L-kurtosis of the acquired sound in Figure 4.10(d) 

and Figure 4.10(e), it was clear that both features recorded an inconsistent trend in most 

cases. However, L-kurtosis shown the smaller variation as compared to the Kurtosis 
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trend in Figure 4.10(c). This variation can be seen from the error bar in the figure, 

which was made based on 95% confidence interval. As explained in Chapter 2, the use 

of L moment gives more consistent and reliable trend even though there are outliers in 

the population (Hosking, J. R. M., 1990, 1992). This could possibly clarify the trend of 

the L-kurtosis features in Figure 4.10(e). Moreover, this finding was also align with the 

result from the previous study whereas the L-kurtosis trend was reported not too much 

influenced by the outliers (Liu, S. et al., 2018) 

4.4.2 Frequency-domain features 

As detailed out in Section 3.7.2, bandpower was extracted from the frequency 

spectrum of the acquired sound using Equation 3.4. The trends of bandpower are 

illustrated in Figure 4.12. According to the results, it can be summarized that 

bandpower can be used to quantitatively characterize the welding process from 

different laser pulse durations. In contrast, in the case of different peak power levels, 

the trend of both features recorded an indistinct trend, especially for the case of 2 ms 

laser pulse duration at peak power between 1000W and 1600W. Moreover, the average 

of band power was also detected to be drop at 800 W peak power and 6 ms pulse 

duration. 

 

 

Figure 4.12 Trend of Band power at a different level of peak power and pulse 

duration. 
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The trend recorded in this study was quite different to the result that have been 

reported in the other studies (Huang, W. & Kovacevic, R., 2009, 2011) as the band 

power recorded distinct trend with respect to laser power. To investigate deeper, the 

power spectrum density plot of the time-domain signal in Figure 4.3 was depicted in 

Figure 4.13. Overall, it was clear that the amplitude was dominant within the frequency 

of 5000 Hz to 7000 Hz in all cases. However, the amplitude pattern at the dominant 

frequency from different peak power levels recorded an unclear trend. As the 

bandpower was computed based on the amplitude energy of the signal spectrum 

(Jerbic, A. B. et al., 2015), this phenomenon lead to the inconsistent bandpower trend at 

some point in Figure 4.12. 

  

(a) (b) 

  

(c) (d) 

 

Figure 4.13 Power spectrum density of the acquired sound signal from laser welding 

with a pulse duration of 6 ms and peak power of (a) 600 W (b) 800 W (c) 1000 W (d) 

1200W. 

 

4.4.3 Time-Frequency features 

For the time-frequency analysis, the sum of synchrosqueezed wavelet 

coefficient (CSqWCsum) was extracted. The trends of CSqWCsum are illustrated in 

Figure 4.14. According to the results, it was noticeable that CSqWCsum from different 

laser pulse duration levels recorded a distinct trend similar to the bandpower. 
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Meanwhile, at each increment of the laser peak power, the value of CSqWCsum showed 

a weak linearity trend.  

 

 

Figure 4.14 Trend of Sum Sq. Wavelet Coefficient at a different level of peak power 

and pulse duration  

 

To understand deeper, the cumulative time-frequency plot of the time-domain 

signal is shown in Figure 4.15. This plot was obtained using Equation 3.8. Compared 

with the frequency-domain signal, the cumulative time-frequency signal plotted in 

Figure 4.15 gave a smoother pattern on its dominant amplitudes. This was due to the 

effect of squeezing, which resulted in the suppression of noise (Daubechies, I. et al., 

2011; Iatsenko, D. et al., 2015) . However, only a slight change in its amplitude value 

was recorded as the laser peak power increased, which could explain the weak 

inclination trend in Figure 4.14. By comparing bandpower and CSqWCsum, it was clear 

that CSqWCsum offered more advantages in characterizing the signal in response to the 

change in peak power. 
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(a) (b) 

  

(c) (d) 

Figure 4.15 Cumulative synchrosqueezed wavelet coefficient for the pulse sound 

signal acquired during laser welding process with pulse duration of 6 ms and peak 

power of (a) 600 W (b) 800 W (c) 1000 W (d) 1200 W 

 

 

4.5 Modified-MLPS algorithm for feature extraction. 

In Section 3.8, it was explained that the development of an algorithm for 

another type of sound feature was done by adopting the MLPS method. To suit with the 

challenges related to PW process, the original MLPS algorithm was modified by adding 

the thresholding method to optimize the output. In this thesis, a simple thresholding 

method was preferred in order to reduce the complexity and processing time. Localized 

CF threshold was introduced and its performance was compared with the commonly 

used thresholding methods in wavelet analysis. 

4.5.1  Thresholding Method for Noise Elimination 

To compare the proposed thresholding method with the Sqtwolog, Rigrsure and 

Minimaxi, the amplitude modulation transient signal was simulated based on the result 

presented in Section 4.3. According to the result in Figure 4.8, most of the dominant 

frequencies were recorded approximately between 5960 Hz and 6440 Hz for the entire 

experiment. Despite the unclear dominant frequency trend, the amplitude recorded a 

distinct trend in response to weld parameter variation even though the rate of change 
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was quite low. Due to this reason, the amplitude-modulation transient signal was 

simulated based on Equation 4.1. 

𝑥(𝑡) = 𝑓(𝑡). 𝐴 sin 2𝜋𝑓𝑡    4.1  

 

In this equation, f represents the average of dominant frequency from the entire 

experiment, which was set at 6200 Hz, while the amplitude A was modulated from 4.5 

mV to 5 mV with an increment of 0.01 mV. On the other hand, f(t) in Equation 4.33 

represents the rise and decay rates of the transient signal. Basically, f(t) was obtained 

from the average normalized envelope of all the signals acquired from the laser welding 

process with different pulse durations, as depicted in Figure 4.16(a). Meanwhile, Figure 

4.16(b) displays the normalized envelope of the sound signal from the process with 

laser pulse durations from 2 ms to 6 ms, which are from the lowest to the largest values 

used in the experiment. 

  

(a) (b) 

Figure 4.16 Process obtaining normalized enveloped from the acquired signal (a) 

Normalized enveloped obtained from all of the acquired sounds during the process at 2 

ms pulse duration (b) Normalized envelop from the process with different laser pulse 

duration. 

 

As explained earlier, the localized CF thresholding method was introduced in 

this study. It was applied in the MLPS algorithm, and the value was compared with the 

commonly used thresholding methods in wavelet analysis, as shown in Figure 4.17 and 

Figure 4.18. The overall trend showed that, in all cases, the MLPS value increased with 

increasing amplitude value. This trend proved the claim that MLPS is sensitive to the 
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change in amplitude (Bernard, C. et al., 2014; Digulescu, A. et al., 2019; Rosu, G. et 

al., 2018).  

 

  
(a) (b) 

  

Figure 4.17 Multilag phase space variation results from different thresholding 

methods in case of the simulated signal for a 2 ms laser pulse duration process. (a) 

Multilag phase space from different signal amplitude and thresholding method (b) 

Gradient of Multilag phase space trend from the variation of the thresholding method 

 

The impact of adopting different pre-processed thresholding methods was 

compared in Figure 4.17(a) and Figure 4.18(a). The results depicted in Figure 4.17(a) 

generally show that the trend of MLPS records different patterns for different types of 

thresholds. For instance, for the Rigrsure threshold method, it was found that the MLPS 

value increased with a consistent rate and dropped at a particular amplitude value. In 

contrast, a rapid increase of MLPS was found when the amplitude changed from 4.62 

to 4.63 when the Minimaxi method was used. The use of the Sqtwolog threshold 

recorded a similar trend, but a slightly different increment trend was detected when the 

amplitude changed from 4.81 to 4.83.  

Unlike these three thresholding methods, the increment of MLPS recorded a 

consistent trend when the proposed localized CF thresholding method was applied. 

This could be clearly observed when the change in the gradient of curve in Figure 

4.17(a) was plotted in Figure 4.17(b). A similar trend was recorded for the 6 ms 

transient signal in Figure 4.18, while the MLPS value of the de-noised signal using the 

Minimaxi and Sqtwolog thresholding methods recorded an inconsistent linearity trend. 

Uniquely, the MLPS that was obtained after the signal underwent the Rigrsure 
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thresholding method was found to increase consistently like in the case of the localized 

CF thresholding method. However, a comparison between the Rigrsure and localized 

CF thresholding methods showed that the optimum value of MLPS could be obtained 

from the de-noised signal using the localized CF method.  

  
(a) (b) 

  

Figure 4.18 Multilag phase space variation results from different thresholding 

methods in case of the simulated signal for a 6 ms laser pulse duration process. (a) 

Multilag phase space from different signal amplitude and thresholding method (b) 

Gradient of Multilag phase space trend from the variation of the thresholding method 

 

As briefly explained earlier, many studies that applied the common wavelet 

thresholding methods showed contradicting results, suggesting that the best 

thresholding method depends on several factors (Valencia, D. et al., 2016). Similar to 

the result in this study, the variation in the amplitude trend leads to the different results 

obtained from the common wavelet thresholding methods (Valencia, D. et al., 2016; 

Verma, N. & Verma, A. K., 2012). To explain this, the equations used to determine the 

threshold value from the Sqtwolog, Rigrsure and Minimaxi methods, as described in 

Equations 2.13, 2.18, and 2.19, need to be deeply understood. For example, the 

algorithms to determine the Sqtwolog and Minimaxi thresholds in Equation 2.13 and 

Equation 2.19, respectively, clearly showed that the value was closely related to the 

median of the signal amplitude distribution (Karthikeyan, P. et al., 2012; Verma, N. & 

Verma, A. K., 2012). In this simulation, small amplitude change might not affect the 

median value of the signal. However, small shift in amplitude might significantly affect 

the least square estimation which leads to the non-linear change of semi-minor and 

semi-major axis. In contrast, a deeper look into the Rigrsure algorithm in Equation 2.15 
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to 2.18 showed that the risk factor depended on the amplitude value (Raj, A. S. et al., 

2016), which correspondingly led to an inconsistent trend. On the other hand, the 

localized CF algorithm promoted the evaluation of the threshold based on the ratio 

between the localized amplitude and overall energy of the signal. This might explain 

why the trend of MPLS was more consistent after applying the localized CF 

thresholding method 

 

Figure 4.19 Multilag phase space variation from the process with different level of 

laser peak power and pulse duration 

 

Based on the afore-discussed simulation results, the MLPS algorithm was 

modified by introducing the localized CF thresholding method. Figure 4.19 represents 

the trend of MLPS for all 195 signals from different peak power levels and laser pulse 

durations. The results clearly showed a distinguishable trend of MLPS for the change in 

peak power and laser pulse duration. Basically, this trend can be explained by the 

MLPS algorithm itself. As briefed in the previous section, the MLPS algorithm is 

sensitive to the change in amplitude and frequency (Bernard, C. et al., 2014; Digulescu, 

A. et al., 2016; Digulescu, A. et al., 2019). In principle, the small change in amplitude 

of the transient signal will influence the shape of ellipsoid and result in different values 

in its area. Meanwhile, the change in frequency may also affect the shape of phase 

space as the signal cycle period changes at different frequencies, which results in the 

same phenomena. As discussed previously (based on Figure 4.8) the frequency does 
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not change significantly change due to the variation in peak power. However, the SD 

trend presented in Figure 4.10(b) evidently showed a difference in the amplitude 

pattern of time-domain from the variation in peak power and laser pulse duration. 

4.6 Feature Selection  

In order to evaluate the significant correlation between all features discussed in 

Section 4.4 to 4.5 with the weld penetration, the stepwise regression analysis was 

conducted. As explained in Section 3.9, the analysis was done to select the significant 

features. Table 4.1 shows the results from the stepwise regression, which were reported 

by the iteration sequence. In the first iteration, the adjusted R-squared value for the 

overall regression model, which considered all eight sound features, was 0.861. In the 

second iteration, the L-Cv was eliminated from the regression model due to the small t-

stat value. As explained in Section 3.9, t-stats measure the significance of each 

regression coefficient from each predictive variable (Montgomery, D. C. et al., 2012). 

As a result from the rejection of L-Cv, the adjusted R-squared value increased to 0.862. 

Even though the increment was too small, the regression model disregards of L-Cv 

yield better overall F-stats and P-value, which was recorded to be 173.93 and 2.49 x 10
-

78
, respectively. Higher F-stats and smaller p-value show the significance of the 

regression model (Montgomery, D. C. & Runger, G. C., 2010).  

In the third iteration, the synchrosqueezed wavelet coefficient was rejected due 

to the second-lowest t-stat value. As reported in the table, the adjusted R-squared 

increased by a small amount, F-stats increased to 203.97, and P-value reduced to 1.69 × 

10
-79

. Eventually, the process continued and stopped at iteration 6, and only SD, L-

kurtosis, and MLPS remained significant for the regression model. These results 

indicate that SD, L-kurtosis and MLPS recorded the strong correlation with the weld 

penetration and relevant to the estimation model. Aligned with previous study, the 

energy of the time domain signal which was commonly represented by SD or RMS was 

reported to show a significant relation with the weld penetration (Farson, D. et al., 

1998). On the other hand, even though the use of L-kurtosis and MLPS have not been 

demonstrated specifically in laser welding application, this finding proved that its 

algorithm offer advantages when applied in PW laser welding process.  
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As reported in Figure 4.10, the L-kurtosis recorded indistinct trend with 

variation of peak power and pulse duration, compared to the SD and MLPS. However, 

the feature selection analysis results showed that the linear combination of those three 

features yielded better results. This was happen due to the small variation of L-kurtosis 

at the same process condition as compared to the traditional kurtosis which was too 

sensitive to the outliers. As previously explained in section 4.4.1, this trend emerged 

from the L-moment algorithm itself which suppressed the effect of outlier (Hosking, J. 

R. M., 1990, 1992). The recorded RMSE, adjusted R-squared, F-stats, and P-value for 

the final regression model were 0.144, 0.862, 403.9, and 2.07 × 10
-82

, respectively. 
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Table 4.1 Stepwise regression results 

  In Features Beta Std. Error t-Stats P-Value 

 

  In Features Beta Std. Error t-Stats P-Value 

Iteration 1 

Yes Mean Abs. Dev -2.4471 2.2300 -1.0973 0.2739 

 

Iteration 4 

Yes Mean Abs. Dev -3.0682 1.9077 -1.6083 0.1094 

Yes Std. Dev. 1.7883 1.3425 1.3321 0.1845 

 

Yes Std. Dev. 2.0567 1.2556 1.6381 0.1031 

Yes Kurtosis -0.0030 0.0021 -1.4204 0.1572 

 

Yes Kurtosis -0.0032 0.0021 -1.5163 0.1311 

Yes L-Cv 0.0000 0.0001 0.1201 0.9046 

 

No L-Cv - - - - 

Yes L-Kurtosis -1.7850 0.8543 -2.0894 0.0380 

 

Yes L-Kurtosis -1.8410 0.8063 -2.2831 0.0235 

Yes BandPower -0.5825 0.9182 -0.6343 0.5266 

 

No BandPower - - - - 

Yes Sq. WC 0.0005 0.0035 0.1517 0.8796 

 

No Sq. WC - - - - 

Yes MLPS 0.0481 0.0028 16.9207 1.72E-39 

 

Yes MLPS 0.0477 0.0027 17.6682 6.95E-42 

RMSE = 0.1438, Adj. R-Square =  0.8611, F-stats= 151.38, P-val = 3.39E-77 

 

RMSE = 0.1428, Adj. R-Square =  0.8630, F-stats= 245.50, P-val = 1.23E-80 

Iteration 2 

Yes Mean Abs. Dev -2.4297 2.2195 -1.0947 0.2750 

 

Iteration 5 

Yes Mean Abs. Dev -2.3120 1.8476 -1.2514 0.2123 

Yes Std. Dev. 1.7789 1.3367 1.3308 0.1849 

 

Yes Std. Dev. 1.8623 1.2533 1.4860 0.1389 

Yes Kurtosis -0.0030 0.0021 -1.4211 0.1570 

 

No Kurtosis - - - - 

No L-Cv - - - - 

 

No L-Cv - - - - 

Yes L-Kurtosis -1.7767 0.8493 -2.0921 0.0378 

 

Yes L-Kurtosis -1.6594 0.8001 -2.0740 0.0394 

Yes BandPower -0.5692 0.9092 -0.6261 0.5320 

 

No BandPower - - - - 

Yes Sq. WC 0.0005 0.0034 0.1398 0.8890 

 

No Sq. WC - - - - 

Yes MLPS 0.0481 0.0028 16.9655 1.08E-39 

 

Yes MLPS 0.0456 0.0023 19.6230 1.43E-47 

RMSE =0.1434, Adj. R-Square =  0.8618, F-stats= 173.93, P-val = 2.49E-78 

 

RMSE = 0.1433, Adj. R-Square =  0.8621, F-stats= 304.22, P-val = 2.07E-81 

Iteration 3 

Yes Mean Abs. Dev -2.3970 2.2013 -1.0889 0.2776 

 

Iteration 6 

No Mean Abs. Dev - - - - 

Yes Std. Dev. 1.7878 1.3317 1.3426 0.1810 

 

Yes Std. Dev. 0.298623 0.0959 3.1140 0.00213 

Yes Kurtosis -0.0030 0.0021 -1.4180 0.1578 

 

No Kurtosis - - - - 

No L-Cv - - - - 

 

No L-Cv - - - - 

Yes L-Kurtosis -1.7479 0.8218 -2.1270 0.0347 

 

Yes L-Kurtosis -0.69933 0.2273 -3.0768 0.0024 

Yes BandPower -0.5512 0.8977 -0.6141 0.5399 

 

No BandPower - 0.7802 -1.3137 - 

No Sq. WC - - - - 

 

No Sq. WC - 0.0033 -0.3263 - 

Yes MLPS 0.04805 0.00277 17.34786 7.05E-41 

 

Yes MLPS 0.0475 0.0017 27.7068 7.91E-69 

RMSE = 0.1431, Adj. R-Square =  0.8625, F-stats= 203.97, P-val = 1.69E-79 

 

RMSE = 0.1435, Adj. R-Square =  0.8617, F-stats= 403.91, P-val = 2.07E-82 
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Figure 4.20 Deviation of t-stats of each feature from 0 for each sound features 

involved in the feature selection analysis 

 

To investigate why the L-kurtosis was selected in the stepwise regression 

analysis instead of the normal kurtosis, the trend of t-stats of each sound features during 

the first iteration was plotted in Figure 4.20. As mentioned earlier, the selection of the 

predictive variables in the stepwise regression analysis was made based on the t-stat 

value. It is basically the ratio between the mean of the coefficient and its standard error. 

Meanwhile, standard error is defined as the average distance from the real data point  to 

the estimated point in the regression line. This means that low standard error gives 

further t-stats value from zero.  

Based on the calculated ratio shown in Figure 4.20, it is clear that the t-stats of 

the regression coefficient for L-kurtosis are much further from 0. This indicates that the 

regression coefficient for L-kurtosis estimated by the regression process is more 

significant, which has been theoretically explained by Montgomery et al.,(2012). 

Recalling that the deviation trend in Figure 4.10 was based on 95% confident interval, 

this indicates that the L-kurtosis recorded low deviation and less outliers as compared 

to the other rejected sound features from the stepwise regression analysis.  

According to results of the stepwise regression analysis, the adjusted R-squared 

for the overall regression model (considering the best three sound features), was 0.862. 

Based on the general theory of regression, this value shows that the degree of 

correlation between sound features and weld penetration depth was quite strong 
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(Montgomery, D. C. & Runger, G. C., 2010). Despite the significant improvement in F-

stats and P-value of the overall model, it is believed that it is essential to include the 

peak power and pulse duration as parts of the predictive variables in developing a 

predictive model for weld depth estimation. This is important to observe how the weld 

parameters can improve the degree of correlation between all predictive variables in the 

model with the output. In the previous work by Huang, W. & Kovacevic, R., (2009), 

when developing a characterization model, the weld parameters were included as 

predictive variables, which resulted in a significant amount of estimation errors. 

Therefore, both parameters were considered for forward selection in further stepwise 

regression analysis, whereas SD, L-kurtosis, and MLPS remained as the pre-selected 

predictive variables. According to the result in Table 4.2, the addition of pulse duration 

and peak power was significant to the final model. By considering both weld 

parameters, the F-stats and P-values increased to 580.81 and 1.23 × 10
-112

, respectively. 

Table 4.2 Additional step in stepwise regression analysis by considering weld 

parameters 

  In Features Beta Standard Error t-Stats P-Value 

Iteration 7 

No 
Mean Abs. 

Dev 
- 1.90819 -1.06615 0.28772 

Yes Std. Dev. 0.4485 0.19491 2.30099 0.02248 

No Kurtosis - 0.00204 -1.21199 0.22703 

No L-Cv - 0.00007 -0.18285 0.85511 

Yes L-Kurtosis -0.7076 0.22762 -3.10860 0.00217 

No BandPower - 0.79134 -1.18631 0.23699 

No Sq. WC - 0.00362 0.00997 0.99205 

Yes MLPS 0.0467 0.0020 23.9100 3.44E-59 

Yes Pulse duration -11.3757 12.8782 -0.8833 0.378175 

No PeakPower - 8.89E-05 15.1803 1.49E-34 

RMSE = 0.1436, Adj. R-Square =  0.8615, F-stats= 302.77, P-val = 3.06E-81 

Iteration 8 

No 
Mean Abs. 

Dev 
- 1.2770 -1.8276 0.0692 

Yes Std. Dev. 0.6342 0.1318 4.8139 0.0000 

No Kurtosis - 0.0013 -3.7616 0.0002 

No L-Cv - 0.0000 -1.1741 0.2418 

Yes L-Kurtosis -0.8141 0.1534 -5.3086 0.0000 

No BandPower - 0.5323 -1.3407 0.1816 

No Sq. WC - 0.0024 -1.5195 0.1303 

Yes MLPS 0.0014 0.0033 0.4185 6.76E-01 

Yes Pulse duration 116.4430 12.0840 9.6361 3.96E-18 

Yes PeakPower 0.00135 8.89E-05 15.1803 1.49E-34 

RMSE =0.0966, Adj. R-Square =  0.9372, F-stats= 580.82, P-val = 1.23E-112 
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4.7 The Weld Depth Estimation Model  

4.7.1 Multiple Linear Regression Model 

Based on the stepwise regression analysis, standard deviation (SD), L-kurtosis, 

multi-lag phase space (MLPS), peak power, and pulse duration were found to be 

significant predictive variables for the weld depth estimation model. Therefore, 

multiple linear regression (MLR) analysis was conducted on the 195 training data from 

each parameter or feature, which gave the regression equation (Equation 4.2). In the 

equation, DOP, SD, LK, MLPS, PD, and PP represent the depth of penetration, 

standard deviation, L-kurtosis, multi-lag phase space, laser pulse duration, and laser 

peak power, respectively. The adjusted R-squared value for this regression equation 

obtained from the training dataset was 0.9373, which showed a good fitting with the 

penetration depth. The mean and SD of the estimation errors were 7.49% and 5.12%, 

respectively. 

DOP =  0.634𝑆𝐷 − 0.814𝐿𝐾 + 0.0014𝑀𝐿𝑃𝑆 + 116.44PD + 0.0014PP − 0.7781     4.2      

 

By observing the regression coefficient in Equation 4.2, it was clear that the 

results were similar with the coefficients obtained from the final iteration of the 

stepwise regression in Table 4.2. This was because the algorithm in stepwise regression 

applied the MLR method and the process iterated until the best model was obtained.  

 

4.7.2 Artificial Neural Network Model 

Apart from the multiple linear regression (MLR) method, the weld depth 

estimation model was also developed via the artificial neural network (ANN) approach. 

As explained in Section 3.10.2, the model training was done using a three-layer 

network with a varied number of hidden neurons, i.e., from 5 to 25. Figure 4.21 depicts 

the variation in output errors from all 195 samples in the training set for the 5-5-1, 5-

10-1, 5-15-1, 5-20-1, and 5-25-1 networks. Overall, it was noticeable that the highest 

average output error was recorded by the 5-5-1 network, at 4.35%. In descending order, 

it was followed by the 5-25-1, 5-15-1, and 5-10-1 networks, with an average output 
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error of 3.72%, 3.65%, and 3.5%, respectively. Meanwhile, the lowest output error was 

recorded by the 5-20-1 network, at 3.3%. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 4.21 Variation of output errors from all 195 samples in training set for 

network (a)5-5-1 (b)5-10-1 (c)5-15-1 (d)5-20-1 (e)5-25-1  

 

Since the average value was affected by the variation in output errors, the 

deviation of the recorded errors was also determined in this study. Based on the results, 

the lowest SD of errors was recorded by the 5-20-1 network. This was followed by the 

5-15-1, 5-10-1, 5-5-1, and 5-25-1 networks (in ascending order). Based on the trend of 

both average and deviation of the output errors, it can be summarized that the number 

of hidden neurons does not significantly influence the output errors of the trained 
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model. However, a higher amount of neurons might affect the processing time. 

Considering these facts, the network with the lowest number of neurons, which could 

give the lowest average of error, was the 5-10-1 network.  

4.8 Model Validation 

In order to test both empirical models, a validation experiment was done. As 

explained before, for each experiment, three points were selected for the study, which 

gave a total of 39 weld penetration data points for model validation. In the meantime, 

39 pulse sounds were also captured simultaneously, and all features stated in the 

estimation model were extracted to determine the estimated penetration depth. 

4.8.1 Multiple Linear Regression Model Validation 

Figure 4.22(a) depicts the estimated penetration depth determined from 

Equation 4.2 and the actual penetration measured from the validation experiment. The 

overall trend from the figure show that the estimated depth recorded different values 

compared to the actual penetration.   

𝑒 =  
|𝐷𝑂𝑃𝑎𝑐𝑡𝑢𝑎𝑙− 𝐷𝑂𝑃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

𝐷𝑂𝑃𝑎𝑐𝑡𝑢𝑎𝑙
      4.3  

 

To get a clear picture of how the estimated depth deviates from its actual value, 

the estimation errors for each point were calculated using equation 4.3 and plotted in 

Figure 4.22(b). Based on the figure, it can be seen that the highest estimation error was 

20.86%, while the lowest error is 0.203%. Overall, the calculated mean error was 

7.13%, while the interquartile range of all analyzed estimation error was between 3.77 

% to 10.05 %, which can be observed from the boxplot. As discussed in Section 2.7.4, 

in the work related to spot welding, the error of the developed MLR model was 

reported around the average of 5.29% (Zhao, D. et al., 2020). On another work 

associates with CW laser welding, the developed MLR models were recorded the 

average error between 6.44% and 10.07%  (Huang, W. & Kovacevic, R., 2011). Hence, 

the average error recorded for the model developed in this study was expected to be 

acceptable as compared to the previous work. 
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(a) 

 

(b) 

Figure 4.22 Estimated weld penetration from analysis of sound from validation 

experiment using multiple linear regression model (a) Actual and Estimated weld 

penetration (b) Estimation errors 

 

 

4.8.2  Artificial Neural Network Model Validation 

On another part of the work, five network models for weld depth estimation 

were successfully developed using the artificial neural network (ANN) method. To test 

the significance of these networks, the estimated weld depth was determined from these 
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networks using the same 39 data obtained from the validation experiment. Table 4.3 

shows the variation in estimated depth and the actual penetration measured from the 

validation experiment. 

  
(a) 

 
(b) 

Figure 4.23 Estimated weld penetration from analysis of sound from validation 

experiment using network 5-10-1 (a) Actual and Estimated weld penetration (b) 

Estimation errors. 

 

According to the results in Table 4.3, it was noticeable that the estimation errors 

were recorded from 0.21% to 13.76% for all networks. By comparing the mean of the 

estimation errors, the 5-10-1 network recorded the lowest value. On the other hand, the 

5-5-1 network showed the lowest fluctuation of estimation errors, as the SD of errors 

recorded the lowest value. In order to see a clear picture, the estimated depth, which 

was calculated using the 5-10-1 network and the errors are plotted in Figure 4.23(a) and 

Figure 4.23(b), respectively. Based on both figures, it is clear that the estimated depth 
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of penetration is slightly different from the actual depth. In the case of the 5-10-1 

network, the estimation errors varied from 1.75 % to 5.97 % according to its 

interquartile range. Meanwhile, the mean and SD of the estimation errors were recorded 

to be 4.08 % and 3.1 %, respectively, for this network.  
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Table 4.3 Estimated weld depth penetration by using the developed neural model 

Index 

5-5-1 5-10-1 5-15-1 5-20-1 5-25-1 

Est. Depth 

(mm) 

Act. 

Depth 

(mm) 

Est. 

Errors 

(%) 

Est. Depth 

(mm) 

Act. 

Depth 

(mm) 

Est. 

Errors 

(%) 

Est. Depth 

(mm) 

Act. 

Depth 

(mm) 

Est. 

Errors 

(%) 

Est. Depth 

(mm) 

Act. 

Depth 

(mm) 

Est. 

Errors 

(%) 

Est. Depth 

(mm) 

Act. 

Depth 

(mm) 

Est. 

Errors 

(%) 

1 0.57 0.61 6.67 0.59 0.61 3.14 0.60 0.61 1.92 0.60 0.61 1.29 0.62 0.61 1.00 

2 0.63 0.57 10.83 0.58 0.57 2.19 0.60 0.57 4.64 0.58 0.57 1.22 0.57 0.57 0.67 
3 0.60 0.63 4.34 0.58 0.63 7.48 0.60 0.63 4.06 0.59 0.63 6.57 0.57 0.63 9.63 

4 0.77 0.87 10.98 0.78 0.87 10.59 0.79 0.87 9.38 0.80 0.87 8.52 0.84 0.87 3.07 

5 0.78 0.84 6.78 0.78 0.84 6.55 0.75 0.84 10.40 0.78 0.84 7.25 0.76 0.84 9.83 

6 0.81 0.75 7.46 0.79 0.75 4.81 0.80 0.75 6.75 0.81 0.75 7.73 0.74 0.75 1.31 

7 1.11 1.20 7.64 1.03 1.20 13.76 0.98 1.20 18.43 1.02 1.20 14.80 0.98 1.20 18.44 

8 1.10 1.04 5.68 1.07 1.04 2.61 1.11 1.04 6.88 1.22 1.04 17.12 1.05 1.04 1.33 

9 1.01 1.08 6.74 0.98 1.08 9.02 1.01 1.08 6.93 0.98 1.08 8.93 1.00 1.08 7.64 

10 1.20 1.32 9.02 1.21 1.32 8.39 1.22 1.32 7.47 1.29 1.32 2.00 1.22 1.32 7.93 
11 1.35 1.33 1.27 1.35 1.33 1.56 1.34 1.33 1.05 1.45 1.33 9.18 1.34 1.33 0.54 

12 1.27 1.33 4.58 1.32 1.33 0.98 1.27 1.33 4.33 1.24 1.33 6.82 1.24 1.33 7.11 

13 1.48 1.46 1.36 1.49 1.46 2.06 1.51 1.46 3.51 1.48 1.46 1.27 1.52 1.46 4.10 

14 1.52 1.39 9.77 1.48 1.39 6.14 1.61 1.39 16.07 1.55 1.39 11.62 1.55 1.39 11.49 

15 1.41 1.47 3.90 1.40 1.47 5.48 1.43 1.47 3.06 1.31 1.47 10.94 1.18 1.47 19.61 

16 0.90 0.85 5.53 0.91 0.85 7.21 0.90 0.85 6.12 0.90 0.85 5.50 0.88 0.85 3.64 

17 0.90 0.86 5.16 0.90 0.86 5.12 0.91 0.86 6.35 0.94 0.86 9.30 0.82 0.86 4.97 
18 0.91 0.85 7.35 0.91 0.85 7.40 0.89 0.85 4.21 0.92 0.85 8.69 0.92 0.85 8.26 

19 1.17 1.20 2.41 1.18 1.20 1.68 1.19 1.20 0.72 1.21 1.20 0.89 1.18 1.20 1.53 

20 1.16 1.19 2.55 1.21 1.19 1.31 1.20 1.19 0.57 1.25 1.19 5.45 1.20 1.19 1.05 

21 1.15 1.24 7.33 1.21 1.24 2.79 1.20 1.24 3.45 1.23 1.24 0.57 1.22 1.24 1.98 

22 1.49 1.57 5.23 1.52 1.57 3.34 1.47 1.57 6.09 1.49 1.57 5.23 1.50 1.57 4.51 

23 1.51 1.45 4.27 1.52 1.45 4.84 1.47 1.45 1.60 1.48 1.45 1.99 1.51 1.45 4.24 

24 1.46 1.43 2.41 1.50 1.43 5.21 1.51 1.43 5.63 1.53 1.43 7.02 1.52 1.43 6.58 

25 1.82 1.80 1.20 1.87 1.80 4.02 1.76 1.80 2.23 1.87 1.80 3.67 1.81 1.80 0.51 
26 1.68 1.80 6.87 1.76 1.80 1.99 1.80 1.80 0.10 1.78 1.80 1.32 1.79 1.80 0.38 

27 1.63 1.80 9.59 1.66 1.80 8.03 1.80 1.80 0.27 1.70 1.80 5.58 1.93 1.80 6.97 

28 0.80 0.76 4.88 0.77 0.76 0.74 0.73 0.76 3.48 0.76 0.76 0.17 0.80 0.76 4.74 

29 0.81 0.78 4.23 0.76 0.78 2.30 0.81 0.78 3.66 0.81 0.78 3.64 0.78 0.78 0.33 

30 0.80 0.77 3.78 0.78 0.77 1.12 0.72 0.77 7.00 0.76 0.77 1.85 0.80 0.77 4.10 

31 1.01 1.03 1.51 0.99 1.03 3.51 1.03 1.03 0.35 0.98 1.03 4.79 1.02 1.03 0.77 

32 0.98 1.00 1.81 1.02 1.00 1.65 1.09 1.00 8.74 1.08 1.00 7.77 1.13 1.00 12.57 

33 0.97 0.92 5.41 0.95 0.92 3.07 0.79 0.92 13.40 1.12 0.92 21.36 0.88 0.92 0.04 
34 1.37 1.39 1.33 1.42 1.39 2.00 1.38 1.39 0.96 1.42 1.39 1.92 1.38 1.39 0.93 

35 1.40 1.37 2.11 1.39 1.37 1.43 1.35 1.37 1.51 1.40 1.37 2.48 1.38 1.37 0.82 

36 1.37 1.44 5.11 1.40 1.44 2.44 1.37 1.44 5.08 1.43 1.44 0.88 1.43 1.44 1.03 

37 1.76 1.80 2.30 1.80 1.80 0.21 1.77 1.80 1.86 1.78 1.80 0.96 1.79 1.80 0.49 

38 1.76 1.80 2.24 1.80 1.80 0.22 1.79 1.80 0.30 1.76 1.80 2.44 1.87 1.80 3.74 

39 1.78 1.80 1.00 1.85 1.80 2.56 1.75 1.80 2.61 1.74 1.80 3.38 1.77 1.80 1.75 

  Mean Errors 4.94 Mean Errors 4.08 Mean Errors 4.92 Mean Errors 5.69 Mean Errors 4.71 

 

Std. Dev. Errors 2.85 Std. Dev. Errors 3.10 Std. Dev. Errors 4.30 Std. Dev. Errors 4.82 Std. Dev. Errors 4.77 
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4.8.3 Estimation Models Comparison 

According to the ANN analysis results, it can be summarized that this method is 

better in developing the weld penetration estimation model than the MLR method. This 

is because the network model developed from ANN is more accurate and precise, 

owing to its lower mean and SD of estimation errors. Compared with the estimation 

model developed via the MLR method, all five network models gave lower values of 

mean and SD of errors.  

In order to show a clear comparison, the estimated depth from the MLR and 

ANN models was shown in Figure 4.24. Considering the 5-10-1 network as the best 

network among the five models developed from the ANN analysis, only the results 

from this model were compared with the results from the MLR model. Figure 4.24(a) 

depicts the estimated depth from the MLR model in Equation 4.2 and the 5-10-1 

network model in the case of the PW process with peak power and pulse duration of 

1000 W and 2 ms, respectively. The estimated weld depth from the MLR model was 

offset further from the actual depth compared to the estimated depth from the 5-10-1 

model. A quantitative comparison was made from the results shown in Figure 4.22 and 

Figure 4.23, and the results depicted in Figure 4.24 were taken from this point of 

experiment. Based on the sixth point in the validation experiment, the actual depth was 

0.75 mm. Meanwhile, the estimated depth for both the MLR and 5-10-1 network 

models was 0.89 mm and 0.79 mm, respectively.  

  

(a) (b) 

Figure 4.24 Cross sectional images of the actual and estimated depth obtained from 

both MLR and ANN model (a) 2 ms 1000 W (b) 4 ms 1400 W 
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On the other hand, a comparison in terms of efficiency of both models in the 

case of the process with 1400 W peak power and 4 ms pulse duration is illustrated in 

Figure 4.24(b). A similar trend was also recorded in which the estimated depth from the 

5-10-1 network model was closer to the actual depth.  

In Chapter 3, it was explained that the weld depth estimation model was 

developed by learning the sound feature and weld parameter trend. The sound feature 

was obtained from the sampled signal at the described location in Figure 3.15. In order 

to see the significance of the developed models, the ability of these models in 

estimating the weld depth for the entire process was also tested.  

To test both estimation models on the whole process, another two sets of 

validation experiment were done. One experiment was conducted with 1200 W peak 

power and 4 ms pulse duration, while the other was carried out with 600 W peak power 

and 6 ms pulse duration. Both MLR and the 5-10-1 network models were used to 

estimate the depth from the acquired sound along these experiments. To compare the 

estimated depth with the actual ones, the specimen was cut in longitudinal direction and 

the comparison is illustrated in Figure 4.25.  

(a)

 

(b) 

Figure 4.25 Longitudinal image of the actual and estimated depth from the process 

with (a) 1200 W, 4 ms (b) 600 W, 6 ms 

 

Overall, the estimated depth from both models showed an almost consistent 

value along the process. However, in the case of the process with 600 W peak power 

and 6 ms pulse duration, irregularities could be noticed at certain locations and a deeper 
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actual penetration occurred at a particular spot. Despite the larger penetration, a 

significant amount of underfill on top of the weld bead was also observed. Past 

evidence proved that the presence of a large underfill would affect the behavior of the 

acquired sound signal. However, in this study, the experiment was designed by 

minimizing the amount of defect. This has been explained in detail in Chapter 3. 

Therefore, the estimation models were developed by learning the trend of acoustic 

signal with less-influence from defect-source sound element. This might be the reason 

why the estimated depths from both models were far from the actual values. In general, 

the estimated depth from the 5-10-1 model was closer to the actual depth than the 

estimated depth from the MLR model. 

4.9 Results summary 

In the beginning of this chapter, the characteristics of sound acquired from the 

PW laser welding with variation in laser peak power and pulse duration were 

investigated. The results revealed that all the acquired sounds showed a transient 

pattern, and the duration of transient was directly related to the change in laser pulse 

duration. Meanwhile, the overall amplitude was found to be slightly increased as the 

laser peak power level increased. On the other hand, the dominant frequency recorded 

an indistinct pattern, which showed that the frequency did not significantly change with 

the variation in laser peak power and pulse duration. This part of the work suggests the 

importance of feature extraction analysis in characterizing the signal from the process 

with different laser weld parameters that affect weld penetration. 

Extensively, commonly used signal features were extracted from the analysis of 

time-domain, frequency-domain, and time-frequency representations of the acquired 

sound. This was carried out to understand how these features can be used to 

characterize a sound from different process parameters. In more detail, mean absolute 

deviation (MAD), standard deviation (SD), kurtosis, L-Cv, L-kurtosis, bandpower, and 

cumulative synchrosqueezed wavelet coefficient (CSqWC) were extracted from the 

previously mentioned analyses. Among the features, SD recorded the best linear trend 

in response to the change in the involved weld parameters even though the correlation 

seemed relatively weak. This trend verified the importance of exploring other signal 

processing methods for feature extraction when dealing with a signal acquired from the 

PW process.   
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In response to the previous matter, the use of the multi-lag phase space (MPLS) 

algorithm was explored. Based on the simulation results, the drawbacks of using the 

MLPS method were identified. The result revealed that noise from the signal affected 

the fitting process and reduced the MLPS value accordingly. Due to this reason, the 

original algorithm of the MLPS method was modified by adding the thresholding 

method to suppress the effect of noise. The localized crest factor (CF) thresholding 

method was introduced, and the significance of this method in optimizing the MLPS 

value was presented. Using the modified algorithm, the MLPS was extracted from the 

acquired sound signal from the process with various laser peak power levels and pulse 

durations. The results showed an improvement in the linearity trend as compared to 

other features. 

Apart from identifying the features that sensitively responded to the change in 

weld parameters, the importance of developing a model to estimate the weld penetration 

was also emphasized. Prior to developing the model, the significant features that were 

strongly related to the change in weld penetration were identified from the feature 

selection analysis. Results from the feature selection analysis revealed that the SD, L- 

kurtosis, and MLPS of the acquired sound were strongly related to the weld penetration. 

Better correlations were obtained when the laser peak power and pulse duration were 

also considered. Two models were developed by learning the trend of SD, L- kurtosis, 

MLPS, laser peak power, and laser pulse duration using the multiple linear regression 

(MLR) and artificial neural network (ANN) methods. The validation analysis showed 

that both models could estimate the weld penetration with an average error of less than 

8%. A comparison between both models showed that the model developed using the 

ANN method was more accurate and precise. Hence, the use of ANN model was 

suggested to be significant if the selection between both models need to be made in 

order to develop the monitoring system in future. 

In summary, the results from this study evidently show the need for an extensive 

study of the signal processing algorithm for the case of PW laser welding. Despite a 

higher signal-to-noise ratio (SNR) sound emitted from the PW laser welding, the results 

from this study also prove that the influence of noise remains a major challenge. The 

signal processing algorithm developed in this study was found significant to address 

this issue. Moreover, it might also play a role in extending the options for analyzing the 
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sound signals acquired from the variation in laser welding process. On the other hand, 

the estimation models developed from this work prove the possibility of using the 

acoustic methods to quantitatively monitor weld penetration during PW laser welding 

on an online basis. This could promote the advancement of the feedback control system 

in the future. 
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Introduction 

One of the objectives in this study was to investigate the characteristic of the 

acquired sound signal from the PW process. The results showed that transient-type 

signal occurred, and weak amplitude increment was recorded as the laser peak power 

increased. Consequently, most of the statistical features used in this study failed to 

characterize the signal based on the penetration condition. Besides that, the dominant 

frequency of the acquired signal spectrum was recorded between 5960 Hz and 6440 Hz 

without a distinguishable trend with respect to the change in weld parameters. This 

finding suggests the need to develop new algorithm for extracting sound features that 

sensitively respond to the change in weld penetration, as well as suppressing the noise. 

The second objective of study was to develop an algorithm for extracting the 

sound features and simultaneously eliminating noise. In this study, the feature 

extraction algorithm was developed by adopting the recently introduced MLPS method. 

Modification on the MLPS method was done by embedding new thresholding technique 

into its original algorithm. The results showed that this modification significantly 

optimized the value of MLPS. Furthermore, the feature selection analysis revealed that 

this feature was give significant correlation with the weld penetration. This finding 

contributes to the options for analyzing the sound signal acquired from the wide 

variation in laser welding process. This is important to enhance the capability of the 

acoustic method as an online monitoring technique. 

The last aim of this study was to develop the prediction model that capable of 

estimating the weld penetration during PW process. Two models were developed in this 

study using MLR and ANN methods. Validation experiment showed that both models 

were significantly able to estimate the weld depth with less than 8% of error. 

Comparing both models, the ANN prediction model recorded the lowest average of 

estimation error and SD error. These findings show that it is possible to quantitatively 
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characterize the weld penetration from PW laser welding with a suitable feature 

extraction algorithm and model development approaches.  

Overall, the results in this study suggest that in the case of PW welding, the 

sound was emitted with different behaviors which give a different challenge to analyze 

the signal and develop the prediction model. With an appropriate algorithm for signal 

processing, the capability of the acoustic methods to monitor the weld penetration could 

be extended into the PW process. Aligned with the criteria of Industry 4.0, which also 

emphasize the importance of a monitoring system, this study gives an alternative 

solution for developing a system that is not limited to the monitoring process only, but 

also makes a quantitative assessment on the weld penetration condition. 

5.2 Recommendation 

Since this study was limited to the scope set initially, it is essential to extend this 

study on several angles. It is vital to improve the capability and flexibility of the 

acoustic methods in monitoring the laser welding process, covering wide variation in 

laser machine and process. Basically, in this study, future work recommendations were 

made based on two significant angles, namely process variation and system expansion.  

Looking into the angle of process variation,  

a) It was learned that the process could vary based on the types of material. As 

previously explained, boron steel grade 22MnB5 was used in this study. Earlier 

studies suggest that the variation in the types of steel does not produce any 

significant difference in sound behavior because sound is mainly influenced by 

the plasma plume and molten metal density, which is closely related to the 

major chemical element (iron (Fe)). However, other types of material, such as 

magnesium, aluminum, titanium, and so forth may give different responses as 

the major element in the chemical composition is different. Moreover, other 

studies revealed that some of the materials could not reach the stability of 

process easily due to several factors. This might influence the dynamic behavior 

of the emerged sound, which is vital to look into. 

b) Besides that, the process can also be varied from the laser machine and weld 

configurations. In this study, the thickness of the material was 1.8 mm. To 

extend the robustness of the acoustic methods, it is essential to look into the 
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response of sound from a higher power PW laser when welding a thicker 

material because the empirical model developed in this study could only 

estimate weld penetration up to 1.8 mm. Moreover, the behavior of the plasma 

plume might be dynamically changed due to the deeper weld penetration.  

c) Moreover, it is important to investigate the formation of sound from a higher 

average power laser machine. Studies evidently show that a higher laser 

intensity tends to produce a fusion zone with a higher aspect ratio. However, the 

process stability is difficult to be achieved, and it is significant if the capability 

of the acoustic methods can be investigated under these circumstances.  

d) On the other hand, other weld configurations, such as lap joints can experience a 

different challenge. This will lead to different behaviors in molten metal and 

keyhole dynamics, which may introduce defects in different manners. Therefore, 

it is important to extend the study to all these variations to look into how the 

acquired sound responds to the penetration condition and other types of defects. 

e) In the preliminary experiment, it was explained that the experiment was 

designed to achieve weld joint with a minimal occurrence of defect. However, 

the effect of heat input is not within the scope of study because the main aim is 

to assess the penetration condition. Theoretically, heat input affects the 

mechanical properties of weld joint. Therefore, it is significant if the study can 

look into the characteristics of sound from different heat inputs in the future. 

 

Meanwhile, by looking into the potential of system expansion, several 

recommendations were made: 

a) As initially explained, this work focused on modifying the MLPS method by 

adding a simple and fast processing thresholding method. A comparison was 

made with commonly used thresholding methods in the wavelet analysis. It is 

significant to extend the comparison study by looking into another type of de-

noising method. This is to ensure the robustness of this framework for a wide 

variety of laser welding applications, which are not limited to the scope of 

experiment set in this study.  

b) On the other hand, it was explained that the selection of threshold limit for the 

proposed de-noising method was 2, which was twice the average signal energy. 
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Even though the stability of this threshold limit toward the small changes in the 

amplitude of the sound signal has been proven, it will be significant if the study 

can be extended to find the optimum value of this type of threshold. This part of 

extensive work is also important to ensure that this method is applicable under 

the circumstances outside the scope of this study. 

 

As previously explained, the framework developed in this study offers an 

alternative in developing a monitoring system on a real-time basis. Since manufacturing 

process automation is in high demand lately, it is essential to look into how this study 

can contribute to the development of a control system. This is important to address the 

future needs in the era of industrial revolution. 
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Appendix B: 

CHEMICAL COMPOSITIONS TEST REPORT 

Element 

% 
Burn 1 Burn 2 Burn 3  Burn 4 Burn 5 Average 

Fe 98 97.9 98 98 98 97.98 

C 0.215 0.252 0.249 0.271 0.26 0.2494 

Si 0.243 0.241 0.238 0.225 0.228 0.235 

Mn 1.17 1.17 1.12 1.16 1.15 1.154 

P 0.0089 0.0094 0.0082 0.0096 0.01 0.00922 

Si < 0.003 <  0.003 < 0.003 < 0.003 < 0.003 < 0.003 

Cr 0.146 0.149 0.149 0.147 0.146 0.1474 

Mo < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 

Ni < 0.005 0.0055 < 0.005 < 0.005 < 0.005 < 0.005 

Al 0.106 0.095 0.0595 0.0614 0.0606 0.0765 

Co <0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Cu 0.0052 0.0048 0.0039 0.0047 0.0049 0.0047 

Nb 0.0165 0.0164 0.0148 0.0157 0.015 0.01568 

Ti 0.0394 0.0401 0.0374 0.0394 0.0375 0.03876 

V <0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 

W <0.0150 < 0.0150 < 0.0150 < 0.0150 < 0.0150 < 0.0150 

Pb <0.0250 < 0.0250 < 0.0250 < 0.0250 < 0.0250 < 0.0250 

Sn < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 

B 0.0026 0.0027 0.0026 0.003 0.0029 0.00276 

Ca > 0.001 > 0.001 > 0.001 > 0.001 > 0.001 > 0.001 

Zr 0.0033 0.0045 < 0.002 0.0029 0.0032 0.003475 

As < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 

Bi < 0.0300 < 0.0300 < 0.0300 < 0.0300 < 0.0300 < 0.0300 

 

 

 


