Quasi-anisotropic benefits in electrospun nickel— cobalt—manganese oxide nano-octahedron as anode for lithium-ion batteries

Jinkiong Ling,^{ab} Chelladurai Karuppiah,^c Santanu Das,^d Vivek Kumar Singh,^d Izan Izwan Misnon,^{ab} Mohd Hasbi Ab Rahim,^{ab} Shengjie Peng,^{*e} Chun-Chen Yang^{*cfg} and Rajan Jose^{*ab}

^aCenter of Advanced Intelligent Materials, Universiti Malaysia Pahang, 26300 Kuantan,
Pahang Darul Makmur, Malaysia

E-mail: rjose@ump.edu.my

^bFaculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang Darul Makmur, Malaysia

^cBattery Research Centre of Green Energy (BRCGE), Ming Chi University of Technology, New Taipei City, Taiwan, Republic of China

^dDepartment of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India

^eCollege of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

E-mail: pengshengjie@nuaa.edu.cn, ccyang@mail.mcut.edu.tw

fDepartment of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan, Republic of China

^gDepartment of Chemical and Materials Engineering, Chang Gung University, Kwei-shan, Taoyuan 333, Taiwan, Republic of China

ABSTRACT

Despite having a significantly higher capacity (>1000 mA h g⁻¹) as compared to the conventional graphite anode, the adoption of the conversion-type transition metal oxide (TMO) anodes is restricted due to their inferior cycling stability, sluggish ion transport behavior, high potential plateau vs. Li/Li⁺, etc. Subsequent developments nanostructuring and chemical composition engineering have improved the electrochemical performance of TMO anodes. Herein, a quasi-anisotropic nano-octahedron quaternary metal oxide composite is designed and synthesized using pilot-scale electrospinning by manipulating the conductivity of the polymeric solution. This morphology is first reported via electrospinning, which routinely produces nanofiber morphology. The fabricated nano-octahedron exhibited slightly higher gravimetry specific capacity (~1184 mA h g^{-1} at 100 mA g^{-1}) as compared to the nanofiber counterpart (1075 mA h g^{-1} at 100 mA g^{-1}), with an initial capacity loss of 37.4% and 38.7%, respectively. Owing to the isotropic volume expansion, the nano-octahedron was capable of retaining 78.9% (or 291.2 mA h g⁻¹) capacity after 500 charge/discharge cycles at 1000 mA g⁻¹, compared to the inferior 24.1% (or 71.1 mA h g⁻¹) for its nanofiber counterpart. Overall, the results discussed here provide valuable information on morphology design for future high-performance TMO anodes.

KEYWORDS: Quasi-anisotropic, Rechargeable lithium-ion batteries (LIB), nickel–cobalt–manganese oxide

DOI: https://doi.org/10.1039/D2NJ01462A

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Higher Education [Fundamental Research Grant Scheme (FRGS) No. FRGS/1/2019/ STG07/UMP/01/1] (University reference RDU1901165) and Universiti Malaysia Pahang [UMP.05.02/26.10/03/03/PGRS2003123]. The authors would like to express gratitude to the Taiwan Education Ministry for the funding through the Taiwan Experience Education Program (TEEP@AsiaPlus) and Battery Research Centre for Green Energy (BRCGE) of Ming Chi University of Technology (https://www.mcut.edu.my) for the laboratory facilities. The authors would also like to thank the Universiti Malaysia Pahang (https://www.ump.edu.my) for laboratory facilities.