MATHEMATICAL MODEL FOR WAVE IMPACT ON VERTICAL WALL WITH MULTIPLE BOTTOM-MOUNTED BAFFLES

FADHLYYA ARAWANEY BINTI ABDUL GHANI

Master of Science

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science

Aida 3 (Supervisor's Signature) : DR. NOR AIDA ZURAIMI MD NOAR Full Name Position : SENIOR LECTURER Date : 1 AUGUST 2021

(Co-supervisor's Signature)Full Name: DR. ABDUL RAHMAN MOHD KASIMPosition: ASSOCIATE PROFESSORDate: 1 AUGUST 2021

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

HILL

(Student's Signature) Full Name : FADHLYYA ARAWANEY BINTI ABDUL GHANI ID Number : MSE15002 Date : 1 AUGUST 2021

MATHEMATICAL MODEL FOR WAVE IMPACT ON VERTICAL WALL WITH MULTIPLE BOTTOM-MOUNTED BAFFLES

FADHLYYA ARAWANEY BINTI ABDUL GHANI

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science

Centre for Mathematical Sciences

UNIVERSITI MALAYSIA PAHANG

AUGUST 2021

ACKNOWLEDGEMENTS

Alhamdulillah, praise be to Allah for His blessings. My research journey would not be possible without help and support from a number of persons. First and most of all I would like to give my deepest gratitude and thanks to my supervisor Dr. Nor Aida Zuraimi Md Noar for her invaluable guidance and limitless support during my study. This thesis would not have been possible without her help, unwavering support, reading materials and patience. I am humbled and grateful for her guidance, concern and advice throughout the years. I am honoured and glad to have her as my main supervisor. Thank you for everything. I would also like to give my sincere thanks to my co-supervisor, Dr. Abdul Rahman Bin Mohd Kasim for his constant support and concern.

Special thanks must be given to Mr Mohd Shahridwan Bin Ramli for his support and help throughout my master journey academically and personally as my research partner. Congratulations on your graduation. Also thanks to my closest friends especially Siti Nurul Amirah Bt Ishak for her unconditional love and support when things went south on my health and study matters.

Last but not least, my deepest appreciation to my beloved family for their incredible, unconditional and continuous care, concern and support along my journey. Their prayers tremendously soothed me mentally and physically in during my struggling times and bad health condition. It would be really tough to survive without their encouragements and devotions. Thank you for everything.

Apart from parties mentioned above, I am also highly grateful to Universiti Malaysia Pahang (UMP) Malaysia for funding this work under the research grant RDU140108 during the early years of my study.

ABSTRAK

Kesan hentaman gelombang air ke atas struktur dianggap penting oleh kebanyakan penyelidik lapangan yang melibatkan masalah kesan hentaman cecair terutamanya dengan keadaan gelombang sangat kuat yang muncul untuk waktu sangat singkat. Masalah hentaman cecair yang umumnya dikaitkan dengan kesan masa sangat singkat, tekanan puncak yang tinggi dan daya hentaman yang besar dapat menterbalikkan kenderaan berisi cecair apabila momen terbalik besar terhasil. Kajian ini mengkaji secara teori berkenaan hentaman cecair dalam bekas berbentuk segi empat berisi sebahagian cecair yang dihentam gelombang pada dinding menegak dengan pelbagai konfigurasi penghadang dipasang pada dasar permukaan. Kajian ini mencadangkan model matematik berkenaan dua penghadang yang dipasang pada dasar permukaan di hadapan dinding menegak yang diubahsuai bagi memperluas hasil kajian pengkaji lepas dalam mengkaji kesan satu penghadang pada dasar permukaan terhadap tekanan impuls pada dinding menegak di belakang penghadang tersebut. Kajian ini mencadangkan teori tekanan impuls (pengamiran masa bagi tekanan) diaplikasi untuk memudahkan persamaan bendalir ideal yang tidak dapat dimampat dan model matematik dua dimensi. Pengembangan fungsi eigen yang diperoleh bagi setiap kawasan segi empat tepat melalui kaedah pemisahan pemboleh ubah memenuhi syarat sempadan kecuali pada kawasan hentaman dan pada garis padanan masing-masing bagi dua kawasan cecair yang kemudiannya dikamirkan secara analitik dengan mengaplikasikan fungsi asas untuk membentuk satu sistem matriks bagi pekali yang tidak diketahui. Masalah formulasi matematik tersebut dikodkan menggunakan perisian MATLAB dan hasilnya dianalisis dengan menukar saiz kawasan hentaman, tinggi penghadang dan jarak penghadang dari dinding. Model matematik yang dicadangkan ini disahkan menggunakan model Cooker bagi mengaplikasikan idea teori tekanan impuls . Kajian ini mendapati tekanan impuls meningkat dengan pemasangan penghadang pada dasar permukaan di hadapan dinding menegak dan bersetuju dengan hasil kajian pengkaji terdahulu walaupun bercanggah dengan fungsi penghadang yang seharusnya mengurangkan hentaman gelombang pada dinding tersebut. Keputusan ini mencadangkan agar beberapa faktor dan parameter lain seperti tekanan impuls yang terperangkap dan lebihan air tersesar diambil kira.

ABSTRACT

Impacts of water wave onto structures have always been considered crucial to most researchers in fields that involve liquid impact problems especially when the wave is extremely brief and violent. Among the problems is liquid sloshing which is generally associated with an extremely brief impact with high peak pressure and large sloshing forces that may capsize any liquid-tanked vehicle when large overturning moments are generated. In this study, liquid sloshing in a partially filled rectangular container with liquid is considered and the wave impact on vertical wall with multiple bottom mounted baffles configurations is theoretically investigated. This study proposes a modified mathematical model of two bottom-mounted baffles in front of a vertical wall problem by extending the work of previous researchers in studying the single bottom-mounted baffle effect on the pressure impulse exerted onto the wall behind the baffle. Pressure impulse theory (time integral of pressure) is applied to simplify the equations of an ideal incompressible fluid notion and a two-dimensional mathematical model is proposed. Eigenfunction expansions obtained for each rectangular region via separation of variables satisfy the boundary conditions except on the impact region and at the matching line of each of the two-liquid regions which are then analytically integrated by applying basis function which creates a matrix system for the unknown coefficients. The formulated problems are coded using MATLAB software and the results are analysed by varying the size of the impact region, height of the baffles and distance of the baffles from the wall. The modified model has been first validated with Cooker's model in order to apply the idea of pressure impulse theory. This study found out that the pressure impulse is increasing with the presence of the baffles in front of a vertical wall which agreed with the theoretical work done by the previous researchers though contradicts with the function of a baffle in reducing the sloshing wave slammed onto the wall. These results suggest that more factors and parameters such as 'trapped' pressure impulse and overtopping might need to be taken into consideration.

TABLE OF CONTENT

DEC	CLARATION			
TITI	LE PAGE			
ACK	KNOWLEDGEMENTS	ii		
ABS	STRAK	iii		
ABS	BSTRAK iii BSTRACT iv ABLE OF CONTENT v IST OF CONTENT v IST OF TABLES viii IST OF FIGURES ix IST OF SYMBOLS xi IST OF ABBREVIATIONS xi CHAPTER 1 INTRODUCTION 1 .1 Research Background .1 Research Questions .3 Research Questions .4 Research Objectives .5 Research Scope and Limitation .7 Thesis Outline	STRACT		
TAB	BLE OF CONTENT	v		
LIST	T OF TABLES	viii		
LIST	T OF FIGURES	ix		
LIST	T OF SYMBOLS	xi		
LIST	T OF ABBREVIATIONS	xii		
СПА	ADTED 1 INTRODUCTION	1		
1.2				
1.3				
1.4	Research Objectives	6		
1.5	Research Scope and Limitation	7		
1.6	Research Significance	7		
1.7	Thesis Outline	8		
CHA	APTER 2 LITERATURE REVIEW	9		
2.1	Introduction	9		
2.2	Experimental Work	9		
2.3	Theoretical Approach	13		
	2.3.1 Theoretical Work	13		

	2.3.2	Numerical Method	15
	2.3.3	Analytical and Semi-Analytical Methods	17
2.4	Summ	ary	20
CHAI	PTER 3	PRESSURE IMPULSE THEORY	22
3.1	Introdu	iction	22
3.2	Pressu	re Impulse Theory	22
3.3	Cooke	r's Model	24
3.4	Metho	dology Flow Chart	33
3.5	Summ	ary	33
		MATHEMATICAL MODELLING FORMULATION AND	
THE)RETI(CAL SOLUTION	34
4.1	Introdu	action	34
4.2		matical Model of Bottom-Mounted Multiple Baffles in Front of a	
	Vertica	al Wall (MB Model)	34
4.3	Mathe	matical Formulation	37
4.4	Valida	tion of MB Model	44
4.5	Summ	ary	48
CHAI	PTER 5	RESULTS AND DISCUSSION	49
5.1	Introdu	action	49
5.2	Effect	of Varying Impact Zone with Two Baffles Instalment of Fix Height	
	and Ba	ffles Distances from the Wall	49
5.3		of Varying the Heights of the Baffles with Fixed Impact Zone and	
	Baffles	s Distances from the Wall	53
	5.3.1	Same Baffles' Height Increment, $Hb_1 = Hb_2$	54

vi

	5.3.2 Different Baffles' Height, $Hb_1 < Hb_2$, $Hb_1 > Hb_2$	58
5.4	Effect of Varying the Distances of the Baffles from the Wall with Fixed Impact Zone and Baffles' Heights	63
5.5	Comparison with the Theoretical Work of Previous Researcher	69
5.6	Summary	72
CHAI	PTER 6 CONCLUSION	73
6.1	Introduction	73
6.2	Conclusion	74
6.3	Recommendations for Future Research	75
REFE	RENCES	76
APPE	NDICES	81
APPE	NDIX A	81
APPE	NDIX B	82
APPE	NDIX C	87

LIST OF TABLES

Table 4.1	Comparison of Cooker's Model and MB Model	48
Table 5.1	Maximum pressure impulse for different μ with fixed baffle heights and distances from the wall	52
Table 5.2	Maximum pressure impulse for the increment of $Hb_1 = Hb_2$ with fixed μ and baffles' distances from the wall	57
Table 5.3	Maximum pressure impulse for different baffles' height Hb_1, Hb_2 with fixed μ and baffles' distances from the wall	62
Table 5.4	Maximum pressure impulse of varying baffles' distances from the wall b_1 , b_2 with fixed μ and baffles' height	68

LIST OF FIGURES

Figure 2.1	The schematic diagram of experimental setup by Panigrahy et al. (2009)	12
Figure 3.1	Sketch of pressure as a function of time, at a point on a vertical wall	23
Figure 3.2	Resketch of a realistic wave impact by Cooker (1991)	25
Figure 3.3	Cooker's model with the governing equation and boundary conditions	26
Figure 3.4	Boundary value problem for the impact of a rectangle of fluid on a vertical wall at $x = 0$	29
Figure 3.5	Standard result for non-dimensional pressure impulse Cooker's model for varying μ with $B = 2, H = 1, N = 50$.	30
Figure 3.6	Pressure impulse at the wall for $b = \infty$ and each curve is for different μ	32
Figure 3.7	The methoology flow chart of the study	33
Figure 4.1	Boundary conditions for the mathematical model for wave impact on the wall with multiple baffles of free surface at the distant boundary $x = b_3$	35
Figure 4.2	3-D surface plot comparison for pressure impulse for different μ between Cooker's model and MB model	46
Figure 5.1	Pressure impulse for different size of impact region of (a) $\mu = 0.1$ (b) $\mu = 0.5$ (c) $\mu = 0.8$ and (d) $\mu = 1.0$ for fixed height baffles and distances at $Hb_1 = 0.2$, $Hb_2 = 0.2$ and $b_1 = 0.3$, $b_2 = 1$, $b_3 = 2$ respectively	50
Figure 5.2	Graph plot of the maximum pressure, P against the impact fraction for fixed height baffles and distances at $Hb_1 = Hb_2 = 0.2$ and $b_1 = 0.3$, $b_2 = 1$, $b_3 = 2$ respectively.	53
Figure 5.3	Pressure impulse for different baffles' height of (a) $Hb_1 = Hb_2 = 0.1$, (c) $Hb_1 = Hb_2 = 0.3$ (d) $Hb_1 = Hb_2 = 0.6$ (e) $Hb_1 = 0.7$, $Hb_2 = 0.7$ and (f) $Hb_1 = Hb_2 = 0.8$ at fix $\mu = 0.5$ and $b_1 = 0.3$, $b_2 = 1$, $b_3 = 2$	54
Figure 5.4	Graph plot of maximum pressure, <i>P</i> against baffles' height $Hb_1 = Hb_2$ for fixed $\mu = 0.5$ and $b_1 = 0.3$, $b_2 = 1$, $b_3 = 2$.	57
Figure 5.5	Pressure impulse for different baffles' height of (a) $Hb_1 = 0.1$, $Hb_2 = 0.6$, (b) $Hb_1 = 0.2$, $Hb_2 = 0.6$, (c) $Hb_1 = 0.3$, $Hb_2 = 0.6$,	
	(d) $Hb_1 = 0.7$,	59

- Figure 5.6 Contour plot for pressure impulse, P for varying baffles' distances from the wall at (a) $b_1 = 0.1$, $b_2 = 1$, (b) $b_1 = 0.2$, $b_2 = 1$, (c) $b_1 = 0.5$, $b_2 = 1$, (d) $b_1 = 0.7$, $b_2 = 1$, (e) $b_1 = 1$, $b_2 = 1.3$, (f) $b_1 = 1$, $b_2 = 1.5$, (g) $b_1 = 1.2$, $b_2 = 1.5$ and (h) $b_1 = 1.5$, $b_2 = 1.7$ for $\mu = 0.5$ and $Hb_1 = Hb_2 = 0.2$ 63
- Figure 5.7 Graph plot of the maximum pressure, P against the baffles' distances from the wall b_1 , b_2 of case (a)-(h) for fixed $\mu = 0.5$ and $Hb_1 = Hb_2 = 0.2$ 68
- Figure 5.8 Comparison between single baffle and two baffles instalment with two different baffle heights. 71

LIST OF SYMBOLS

Hb_1	Height of Baffle 1
Hb_2	Height of Baffle 2
<i>t</i> ₁	Time Before the Impact
<i>t</i> ₂	Time After the Impact
Н	Height of the Wall
${U}_0$	Speed of Impact
ρ	Water Density
μ	Fraction of Impact Zone
8	Gravity Acceleration
P_{peak}	Peak Pressure
Δt	Impact Duration
р	Pressure of the Incident Wave
Р	Pressure Impulse
<i>u</i> ₁	Wave Velocity before the Impact
<i>u</i> ₂	Wave velocity after the Impact
u _{nb}	Normal Component of Incoming Wave Velocity

LIST OF ABBREVIATIONS

LNG	Liquefied Natural Gas
MIROS	Malaysian Institute of Road Safety Research
RANSE	Reynolds Averaged Navier Stroke Equations
SWE	Shallow Water Equations
SPH	Smoothed Particle Hydrodynamics
MAC	Marker and Cell Method
FEM	Finite Difference Method
CIP	Constraint Interpolation Profile
VOF	Volume of Fluid
CG	Center of Rotation
RAO	Response Amplitude Operators
ALE	Arbitrary Lagrangian-Eulerian
CFD	Computational Fluid Dynamic
URANS	Unsteady Averaged Navier-Stokes

REFERENCES

- Abramson, H. N. (1966). The dynamic behavior of liquids in moving containers, with applications to space vehicle technology.
- Akyildiz, H. (2012). A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank. *Journal of Sound and Vibration*, 331(1), 41-52.
- Akyildiz, H., & Ünal, E. (2005). Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing. *Ocean Engineering*, 32(11-12), 1503-1516.
- Akyıldız, H., Ünal, N. E., & Aksoy, H. (2013). An experimental investigation of the effects of the ring baffles on liquid sloshing in a rigid cylindrical tank. *Ocean Engineering*, 59, 190-197.
- Ali, S., Kamran, M. A., & Khan, S. (2017). Effect of baffle size and orientation on lateral sloshing of partially filled containers: a numerical study. *European Journal of Computational Mechanics*, 26(5-6), 584-608.
- Bagnold, R. (1939). INTERIM REPORT ON WAVE-PRESSURE RESEARCH.(INCLUDES PLATES AND PHOTOGRAPHS). Journal of the Institution of Civil Engineers, 12(7), 202-226.
- Belakroum, R., Kadja, M., Mai, T., & Maalouf, C. (2010). An efficient passive technique for reducing sloshing in rectangular tanks partially filled with liquid. *Mechanics Research Communications*, 37(3), 341-346.
- Case, K., & Parkinson, W. (1957). Damping of surface waves in an incompressible liquid. *Journal of Fluid Mechanics*, 2(2), 172-184.
- Celebi, M. S., & Akyildiz, H. (2002). Nonlinear modeling of liquid sloshing in a moving rectangular tank. *Ocean Engineering*, 29(12), 1527-1553.
- Chang, J. I., & Lin, C.-C. (2006). A study of storage tank accidents. *Journal of loss prevention in the process industries*, 19(1), 51-59.
- Chatjigeorgiou, I. K., Korobkin, A. A., Cooker, M. J., & Ave, P. (2016). Threedimensional steep wave impact onto a vertical plate of finite width. *Proceedings* of the 31st IWWWFB, 3-6.
- Cho, J., & Lee, H. (2004). Numerical study on liquid sloshing in baffled tank by nonlinear finite element method. *Computer methods in applied mechanics and engineering*, 193(23-26), 2581-2598.
- Chu, C.-R., Wu, Y.-R., Wu, T.-R., & Wang, C.-Y. (2018). Slosh-induced hydrodynamic force in a water tank with multiple baffles. *Ocean Engineering*, *167*, 282-292.

- Cole, H. A. (1966). *Baffle thickness effects in fuel sloshing experiments*: National Aeronautics and Space Administration.
- Cooker, M., & Peregrine, D. (1991). A model for breaking wave impact pressures *Coastal Engineering 1990* (pp. 1473-1486).
- Cooker, M. J., & Peregrine, D. (1995). Pressure-impulse theory for liquid impact problems. *Journal of Fluid Mechanics*, 297, 193-214.
- Cox, P., Bowles, E., & Bass, R. (1980). Evaluation of liquid dynamic loads in slack LNG cargo tanks: SOUTHWEST RESEARCH INST SAN ANTONIO TX.
- de Almeida, E., Hofland, B., & Jonkman, S. (2019). *Wave Impact Pressure-Impulse on Vertical Structures with Overhangs*. Paper presented at the Proc. Coastal Structures Conference 2019, Hannover, Germany.
- Demirel, E., & Aral, M. M. (2018). Liquid sloshing damping in an accelerated tank using a novel slot-baffle design. *Water*, 10(11), 1565.
- Eswaran, M., Saha, U., & Maity, D. (2009). Effect of baffles on a partially filled cubic tank: Numerical simulation and experimental validation. *Computers & Structures*, 87(3-4), 198-205.
- Faltinsen, O., & Timokha, A. (2011). Natural sloshing frequencies and modes in a rectangular tank with a slat-type screen. *Journal of Sound and Vibration, 330*(7), 1490-1503.
- Ghadirian, A., & Bredmose, H. (2019). Pressure impulse theory for a slamming wave on a vertical circular cylinder. *Journal of Fluid Mechanics*, 867.
- Gopalakrishnan, U., Prasad, S. V., Nair, V. S., & Suryan, A. (2019). *Investigation on the effect of baffle position on sloshing in tanks*. Paper presented at the AIP Conference Proceedings.
- Goudarzi, M., Sabbagh-Yazdi, S., & Marx, W. (2010). Investigation of sloshing damping in baffled rectangular tanks subjected to the dynamic excitation. *Bulletin of Earthquake Engineering*, 8(4), 1055-1072.
- Goudarzi, M. A., & Danesh, P. N. (2016). Numerical investigation of a vertically baffled rectangular tank under seismic excitation. *Journal of Fluids and Structures*, 61, 450-460.
- Hosseini, M., Vosoughifar, H., & Farshadmanesh, P. (2013). Simplified dynamic analysis of sloshing in rectangular tanks with multiple vertical baffles.
- Hosseinzadeh, N., Sangsari, M. K., & Ferdosiyeh, H. T. (2014). Shake table study of annular baffles in steel storage tanks as sloshing dependent variable dampers. *Journal of Loss Prevention in the Process Industries*, *32*, 299-310.

- Ibrahim, R. A. (2005). *Liquid sloshing dynamics: theory and applications*: Cambridge University Press.
- Independent Statistic & Analysis, U. S. E. I. A. E. (2017). Country Analysis Brief: Malaysia.
- Jin, H., Liu, Y., & Li, H.-J. (2014). Experimental study on sloshing in a tank with an inner horizontal perforated plate. *Ocean Engineering*, 82, 75-84.
- Jung, J., Yoon, H., Lee, C., & Shin, S. (2012). Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank. *Ocean Engineering*, 44, 79-89.
- Kim, Y., Shin, Y.-S., & Lee, K. H. (2004). Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. *Applied Ocean Research*, 26(5), 213-226.
- Kishev, Z. R., Hu, C., & Kashiwagi, M. (2005). *Numerical Simulation of Violent Sloshing By CIP Method With Experimental Validation*. Paper presented at the The Fifteenth International Offshore and Polar Engineering Conference, Seoul, Korea.
- Kumar, A., & Sinhamahapatra, K. P. (2016). Dynamics of rectangular tank with perforated vertical baffle. *Ocean Engineering*, *126*, 384-401.
- Liang, G., & Mudawar, I. (2016). Review of mass and momentum interactions during drop impact on a liquid film. *International Journal of Heat and Mass Transfer*, 101, 577-599.
- Maleki, A., & Ziyaeifar, M. (2008). Sloshing damping in cylindrical liquid storage tanks with baffles. *Journal of Sound and Vibration*, *311*(1), 372-385.
- Mamak, M., & Guzel, H. (2013). Theoretical and Experimental Analysis of Wave Impact Pressures on Curved Seawalls. Arabian Journal for Science and Engineering, 38(4), 817-828.
- Marcotte, F., Michon, G.-J., Séon, T., & Josserand, C. (2019). Ejecta, Corolla, and Splashes from Drop Impacts on Viscous Fluids. *Physical Review Letters*, 122(1), 014501.
- Md Noar, N. (2012). Wave impacts on rectangular structures. (Doctoral dissertation, Brunel University, School of Information Systems, Computing and Mathematics).
- Md Noar, N. A. Z., Elliott-Sands, M., & Greenhow, M. (2019). Wave impacts on structures with rectangular geometries: Part 2 decks, baffles and seawalls with impermeable or porous surfaces. *Applied Ocean Research*, *90*, 101850.
- Md Noar, N. A. Z., & Greenhow, M. (2015). Wave impacts on structures with rectangular geometries: Part 1. Seawalls. *Applied Ocean Research*, *53*, 132-141.

- Molin, B., & Remy, F. (2013). Experimental and numerical study of the sloshing motion in a rectangular tank with a perforated screen. *Journal of Fluids and Structures*, 43, 463-480.
- Nasar, T., & Sannasiraj, S. A. (2019). *Experimental Investigation on Effect of Submerged* Solid Baffle in a Barge Carrying Liquid Sloshing Tank, Singapore.
- NST, N. (2017). 25,000 litres of acid spilled in fatal tanker lorry accident; Plus closes highway.
- Panigrahy, P. K., Saha, U. K., & Maity, D. (2009). Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks. *Ocean Engineering*, 36(3), 213-222.
- Rakheja, S., Sankar, S., & Ranganathan, R. (1989). Influence of tank design factors on the rollover threshold of partially filled tank vehicles. *SAE transactions*, 536-547.
- Salih Kirkgöz, M., & Mamak, M. (2004). Impulse modelling of wave impact pressures on vertical wall. *Ocean Engineering*, *31*(3), 343-352.
- Sanapala, V. S., M, R., Velusamy, K., & Patnaik, B. S. V. (2018). Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container. *Journal of Fluids and Structures*, *76*, 229-250.
- Shen, X., Yan, Y., Li, X., Xie, C., & Wang, L. (2014). Analysis on Tank Truck Accidents Involved in Road Hazardous Materials Transportation in China. *Traffic Injury Prevention*, 15(7), 762-768.
- Silveira, M. A., Stephens, D. G., & Leonard, H. W. (1961). An Experimental Investigation of the Damping of Liquid Oscillations in Cylindrical Tanks with Various Baffles: National Aeronautics and Space Administration.
- TheStar. (2020). Palm-oil tanker overturns along Pan Borneo Highway. from <u>https://www.thestar.com.my/news/nation/2020/04/29/palm-oil-tanker-overturns-along-pan-borneo-highway#cxrecs_s</u>
- Wang, J., Wang, C., & Liu, J. (2019). Sloshing reduction in a pitching circular cylindrical container by multiple rigid annular baffles. *Ocean Engineering*, 171, 241-249.
- Wang, J. D., Lo, S. H., & Zhou, D. (2012). Liquid sloshing in rigid cylindrical container with multiple rigid annular baffles: Free vibration. *Journal of Fluids and Structures*, 34, 138-156.
- Wang, J. D., Lo, S. H., & Zhou, D. (2013). Sloshing of liquid in rigid cylindrical container with multiple rigid annular baffles: Lateral excitations. *Journal of Fluids and Structures*, 42, 421-436.

- Wang, W., Peng, Y., Zhou, Y., & Zhang, Q. (2016). Liquid sloshing in partly-filled laterally-excited cylindrical tanks equipped with multi baffles. *Applied Ocean Research*, 59, 543-563.
- Wang, W., Zhang, Q., Ma, Q., & Ren, L. (2018). Sloshing Effects under Longitudinal Excitation in Horizontal Elliptical Cylindrical Containers with Complex Baffles. *Journal of Waterway, Port, Coastal, and Ocean Engineering, 144*(2), 04017044.
- Wood, D. J., Peregrine, D. H., & Bruce, T. (2000). Wave impact on a wall using pressureimpulse theory. I: trapped air. *Journal of waterway, port, coastal, and ocean engineering, 126*(4), 182-190.
- Wu, C.-H., & Chen, B.-F. (2009). Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method. *Ocean Engineering*, 36(6), 500-510.
- Xue, M.-A., Zheng, J., & Lin, P. (2012). Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles. *Journal of Applied Mathematics*, 2012, 1-21.
- Xue, M.-A., Zheng, J., Lin, P., & Xiao, Z. (2017). Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank. *Journal of Ocean University of China*, 16(4), 661-673.
- Xue, M.-A., Zheng, J., Lin, P., & Yuan, X. (2017). Experimental study on vertical baffles of different configurations in suppressing sloshing pressure. *Ocean Engineering*, 136, 178-189.
- Yang, Y., Tang, Z., & Wan, D. . (2015). Numerical simulation of 3D sloshing flows in a rectangular tank by MPS method. *Proceedings of the 9th International Workshop on Ship and Marine Hydrodynamics. Glasgow, UK.*
- Younes, M. F., Younes, Y. K., El-Madah, M., Ibrahim, I. M., & El-Dannahh, E. H. . (2007). An experimental investigation of hydrodynamic damping due to vertical baffle arrangements in a rectangular tank. . Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 221(3), 115-123.
- Zhang, C., Su, P., & Ning, D. (2019). Hydrodynamic study of an anti-sloshing technique using floating foams. *Ocean Engineering*, *175*, 62-70.