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The wide area monitoring system (WAMS) records and monitors every fault
or disturbance that occurs in a power system network using phasor
measuring units (PMUs). Extensive monitoring of the condition of the
electrical power system can ensure the sustainability of reliable energy. The
accuracy of the PMUs placement can be determined using the least square
support vector regression (LS-SVR) technique. The primary goal of this
study is to assess the level of accuracy of the PMUs placement using mean
square error (MSE). First, the IEEE-14 bus system equipped with PMUs was
built in Matlab software using Simulink. The MSE of the PMUs was then
calculated using the LS-SVR. The results revealed that the lower the MSE,
the better the PMUs placement. It was also observed that placing the PMUs
on bus 2, bus 6, and bus 9 produced the lowest value of MSE.
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1. INTRODUCTION
The power grid is a technology that comprises of a transmission line network, control devices, and

energy monitoring. The first electricity grid system was installed in great barrington, Massachusetts, in 1886.
It was a one-way interaction or unidirectional system at the time, with a modest need for power. With the
growth of technology and industry, the need for power is growing. As a result, the grid is outfitted with two-
way communication, allowing the grid to adapt to the ever-changing power system. The supervisory control
and data acquisition system (SCADA) and energy management system (EMS) manage this smart grid
technology [1]. However, SCADA and EMS have poor data upload rates and cannot provide the greatest
level of smart grid efficiency.

Ree et al. [2] the invention of the synchronized global positioning system, also known as global
positioning system (GPS), aided the synchronized-measurement technology in the establishment of a wide-
area monitoring system (WAMS). The understanding of WAMS in reference [3]–[9] can summarize as a
network technology that uses modern and digital measuring devices, a control system, and a communication
device to operate a power system. WAMS consists of three dependent substations, namely management,
measurement, and communication. Despite the fact that the functioning is different, the architecture of such

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Wide area monitoring system control management of the IEEE-14 bus system … (Lilik Jamilatul Awalin)

781

substations is nearly similar. This technology is used to monitor smart grid parameters like voltage and
phasor and to speed up network calculations. The operation of the power system is continually monitored by
this technology, and real-time data of high quality is provided to detect unusual activities or interruptions.
When the problem or fault occur on the WAMS appear as a one of the solutions to manage the reliable
energy. In the recent years, focusing on fault location method have been improved by some researcher which
mention in papers [10]–[13]. Awalin et al. [10] was contribute fault detection on the distribution network
based on voltage and current measurement by using matching approach combine with impedance-based
method. Based on this research, the result shows that this paper was obtained the acceptable accuracy. By
using matching approach, Awalin et al. [11] was compare the accuracy by using different simulation tools
namely, digilent and power system computer aided design (PSCAD) simulation program. From this study it
is found that digsilent has a higher level of accuracy compared to PSCAD if the location of the disturbance
using a matching approach. However, the authors mention that this may not be the case if applied using other
interference location methods. While the paper Idris et al. [12] has also examined the location of interference
by using data from two different terms to detect interference in the transmission system. Awalin et al. [13]
focuses on how to detect the types of disturbances that occur in electrical power distribution systems.

Wang et al. [14] mention that the hierarchical structure of WAMS is consist of main network with
multiple of another network. Gore and Kande [4], the data that collected from phasor measuring unit (PMU)
will be send through every network of communication, then the collected data is send to phasor data
concentrators (PDC). Similar paper Fesharaki [15] mention that PDC process the data from PMU for
operation of WAMS with time-stamp provided by GPS. Most of the latest data is lost due to PDC or
communication failure. Based on paper [16], the resynchronize data that measured from PMU and process
the phasor difference result which are used in real time control is the main function of PDC. The minimizing
of bandwidth between control site and PDC, need higher input information than output. Other purposes of
PDC are additional monitoring from system, commands of operation and commands of maintenance to data
packet. The phasor data that receive from PMU are saved. The first PMU is installed at Scherer, Georgia in
1992. This test involves 500 kV lines of opening at Klondike and closing at Bonaire. Kamwa et al. [17] the
PMUs is located at plant Scherer and five other places in Tennessee, Georgia, and Florida.

Various PMU placement methods was observed in papers [18]–[23] in order to optimize the number
of PMU placement and the power electrical delivery. The PMU used to monitor the post ever in early
manufacturer because of the communication channel is very expensive. Another research about PMU in
paper [24] mention the PMU data can undergo the transferring 10 to 100 Hz by implementation of additional
control of damping. The PMU is used to divide the fundamental frequency and obtain the phasor
representation. Pahasa and Ngamroo [25], by using the non-recursive update type discrete fourier transform
(DFT) on the sample data, the phasor representation can be determined. The antialiasing filter is injected that
can limit the bandwidth and resulting less data sample. The DFT can eliminate harmonic of the sample signal.
Somehow, the error of estimation of phasor is present by nonharmonic signal and noise. WAMS was used to
improve the protection and control of smart grids. Phadke and Thorp [26], prior to the introduction of
WAMS, a system known as the power system frequency monitoring network (FNET) was developed in 2004
as a pioneer WAMS.

On the other hand, support vector machine (SVM) is the way to solve the quadratic programing
problem. The support vector can be used to solve the estimation problem by employing Vapnik’s epsilon
insensitive loss function and Huber’s loss function was discussed in paper [27]. Suykens et al. [28], the
interdisciplinary topic of least squares support vector machines (LS-SVM) are include neural network, data
mining, pattern recognision, machine learning, optimization, system control, signal processing, statistics,
mathematics and linear algebra

Suykens et al. [29], the support vector can be used to solve the estimation problem by employing
Vapnik’s epsilon insensitive loss function and Huber’s loss function. Suykens et al. [30], WAMS is also
known as a sensor network because there are many sensors involved, such as PMUs and current sensors.
These sensors transmit real-time dynamic data, which is usually protected from malicious attacks by
encryption algorithms, over wide-area networks (WANs) to power system control centres, allowing
monitoring and control of the entire system.

Some publications have been reviewed, which employ least square support vector regression (LS-
SVR) method to tackle the research problem. Gangil and Narvey [31], the support vector regression (SVR)
algorithm is based on the SVM and can handle nonlinear regression problems. Based on the findings reported
in [32], SVR can obtain a hyperplane that can assist in forecasting the distribution of information properly.
SVM, on the other hand, is used as a strong mathematical foundation. SVM determines the plane used to
categorise the data. SVR can represent non-linear relationships, give a unique and global solution, and
provide a more generic answer while avoiding forced training.

On the other hand, SVR can efficiently process input vectors with large dimensionality to produce a
global solution as mention in paper [33]. When dealing with high-dimensional input vectors, the weight
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numbers of an artificial neural network (ANN) are greater. Under the identical testing conditions, SVR
technique outperforms ANN. The weights are tuned, and the process is repeated with various primary or
initial values, which may result in a non-global solution. To solve the regression problem, SVR employs
quadratic programming (QP).

According to publication papers [34], [35] introduces the least square support vector regression (LS-
SVR) as one of the regression tools. LSSVR has been widely applied to solve various problems, such as to
detect water temperature discussed in the paper [34]. The WAMS receives signals in the form of electric
energy from various areas based on the function that has been determined at the WAMS. The LS-SVR is a
reformed version of SVR that uses a set of linear equations to determine the regression. When compared to
quadratic programming, linear equations are easier to solve. This demonstrates that LS-SVR requires less
processing time than SVR. As indicated in publication [30], the karush-kuhn-tucker (KKT) is used in LS-
SVR. LS-SVR is also based on the determination of parameter γ and σ2 values. Inequality constraints are
employed in place of inequality constraints. Gordon and Tibshirani [36], the general solution of LS-SVR is
derived from the square loss function of N data and the function of quadratic penalty.

Jung [37], there are two drawbacks of LS-SVR: the equality requirement causes the solution to
become sparse, and the solution is not robust to outliers. All parameters are required to generate a solution in
the absence of a sparse solution. A pruning approach is used to solve problems with sparse solutions.
Meanwhile, the weighted LS-SVR is then used to reduce the effect of the outliers. Synchrophasor measuring
units, also known as synchrophasors, are devices that give time-synchronized data on power system operating
states according to [38]. It was launched in the early 1980s and has evolved in tandem with the advancement
of technology throughout the world, as stated by [39].

This synchronised measurement can help to avoid significant blackouts and a lack of time-
synchronized high-resolution data. A blackout can occur as a result of a breakdown and increased demand
during peak hours, whereby the power generated by the facility is insufficient to meet the demand. This
might have an impact on a country's economy. Without GPS, synchrophasors can monitor and post data
analysis when data have been saved locally, but there is no wide-area connection. However, PMUs can
remotely monitor and operate applications. Centeno et al. [40], examples of applications include voltage
stability assessment, islanding detection, oscillation monitoring, and state estimation using GPS technology.
The system's functionality may be improved by employing PMUs since measurements are made in real time
and data can be retrieved online.

WAMS was employed as the control management of the institute of electrical and electronics
engineers (IEEE)-14 bus system. In this study, based on least square support vector regression. In general,
WAMS controls, monitors, and operates the power system in conjunction with the communication system
and metering devices such as PMUs. The signal from a limited region may be sent to the control panel using
this technique.

Meanwhile, the LS-SVM regression technique is known as LS-SVR. In this study, the LS-SVR is
employed to determine the level of accuracy of PMUs placement in the IEEE-14 bus system based on mean
square error (MSE). This paper has been organized as follows. In the following section, a methodology is
presented by explain LS-SVR the model of tested network. The results of the proposed method are presented
and discussed in section 3. Finally, conclusions are drawn in section 4.

2. METHOD
Figure 1 depicts the technique used in this study. It shows the process flowchart for controlling the

IEEE-14 bus system's WAMS using LS-SVR. To begin, the IEEE-14 bus system was designed with
Simulink in Matlab software. This IEEE-14 bus system is made up of two alternating current (AC) generators,
three synchronous compensators, and five transformers. The IEEE-14 bus system parameters were added into
the circuit. Qian et al. [16], the PMU is located at bus 2, bus 6, and bus 9. The amplitude of Vabc, phase of
Vabc, and frequency of Vabc were then selected as the outputs of the PMU. However, the PMU output, which
is the magnitude of Vabc at buses 2, 6, and 9, is inserted in LS-SVR. The MATLAB software created the LS-
SVR parameters, namely gamma and sigma. PMU 1 is the PMU at bus 2, bus 6, and bus 9. Next, the value of
MSE for PMU 1 was acquired. The PMU was then assigned to bus 1, bus 3, bus 4, bus 5, bus 7, bus 8, bus 10,
bus 11, bus 12, bus 13, and bus 14. The MSE values from PMU 2 to PMU 34 were recorded. The MSE value
of each PMU placement were then compared to PMU 1's MSE.
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Figure 1. The flowchart

2.1. LS-SVR
The least square support vector regression method is based on least square support vector machine

for regression with the KKT conditions for optimality. This is the solution for non-linear programming to be
optimal by providing the satisfied of some regularity conditions. Estimation dataset,

{��, ��} � = 1� (1)

������ ����� = �� ∈ ℝ��
������������� ������� = �� ∈ ℝ

for non-linear case,

�(��) = ��� (��) + � (2)

where,
�(.)∶ ℝ��→ℝ� is nonlinear map into a higher dimensional feature space and dimensionality d might be
infinite (∞).
� ∈ ℝ� is parameter vector.
� ∈ ℝ is bias term.
Subjected to the equality constraints:

�� = ���(��) + � + �� (3)

the output of LS-SVR.
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�(�) = ���(�) + � + �� (4)

where, �∈ℝ� ,�∈ℝ, �(.): ℝ�⟶ℝ��.
The LS-SVM is formulated in primal weight space as (5).

(���)�, �, �ℐ(�, �) = 12��� + �2���2�� = 1 (5)

The polynomial of Lagrange duality problem is (6).

�(�, �, �, �) = ℐ(�, �)
− �=1

� ����� [���(��) + � + �� − ��] (6)

By this theory, the ϕ(.) is not calculated because the matrix from the quadratic programming problem cannot
be define. The Mercer’s condition only depended on parameter value of K and θ. The Lagrange functions:

���−���=�(�,�,�,�)= 12(���)+�
2 �=1

� ��
2� − �=1

� ��� [���(��)+�+��−��] (7)

where b_i is Lagrange multipliers. The conditions for optimality are,

��

��
= 0, � = �=1

� ���(��)�
��

��
= 0, � = �=1

� �� = 0�

By utilizing mercer condition, Ω��=( �(��))� �(��)= �(�� ,��), �,�=1,2…�. The resulting LV-SVR model for
this project as the function estimation is (8).

�� � = �=1
� �� �� �, �� + ��� (8)

The radial basis function (RBF) kernel is used to define K (x,Xi).

� �, �� = � �−��
2�2 (9)

LS-SVR model is (10).

�(�) = �=1
� ��� �, �� + �� (10)

2.2. Model of test system
This circuit is made up of two AC generators, three synchronous compensators, five transformers,

and fourteen PMUs. Figure 2 depicts the IEEE-14 bus system test network. According to publication [8], the
PMUs are chosen to be installed at bus 2, bus 6, and bus 9. The lowest and highest magnitudes of voltage
for phases a, b, and c are recorded. These values are then sent into the LS-SVR. Figure 3 is an example of a
PMU placement at bus 2. PLL PMU is used as the PMU model while Vabc at the bus is the PMU's input. The
PMU input data is given by the values of magnitude, phase angle, and frequency of Vabc. The PMU is
installed on the IEEE-14 bus system, located at bus 1 to bus 14. The PMU output consisting of the amplitude
of Vabc at the bus is recorded and sent into the LS-SVR software. The LS-SVR then produces MSE at each
PMU placement. Figure 2 shown the design circuit of IEEE 14 bussystem. The PMU are placed at bus 2, bus
6 and bus 9 according to paper [9]. The minimum and maximum magnitude of voltage phase a, b, c are
recorded. These values are used as the input of LS-SVR.

Figure 3 shown the example of one PMU placement at bus 2. The PLL PMU is used as the PMU
model. The Vabc at bus is the input of PMU. The output of PMU given as magnitude of Vabc, phase angle
and frequency. The overall PMU placed at IEEE 14 bus system which are at bus 1 until bus 14 is illustrated
in Figure 4. The output of PMU is recorded. The magnitude of Vabc at bus is recorded and became the input
of LSSVR program. The LS-SVR gave output of MSE at all PMU placements.
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Figure 2. The IEEE 14 bus with PMU placement atbus 2, bus 6 and bus 9

Figure 3. The PMU placement at bus 2
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Figure 4. The IEEE 14 bus system with PMU placement at all bus

3. RESULT AND DISCUSSION
The locations of the PMU at all buses were adopted from paper [8]. It was compared to the ideal

placement of the PMU. The LSSVR was developed using the MATLAB programming language. The MSE
was computed using the developed code for LSSVR. The MSE data were then compared to the location of
other set of PMU.

3.1. Simulation result of PMU
The simulation results from each PMU's measurement are detailed in this section. Following the

lead of paper [8], one of many PMU designs was installed at bus 2, bus 6, and bus 9. The simulation data
when the PMU was installed at all buses was acquired by utilizing the MATLAB software. The simulation
data may be acquired using the MATLAB software, as shown in Figures 5, 6, and 7. Figures 5, 6, and 7
depict the magnitude of voltage at phases a, b, and c, which were recorded at buses 2, 6, and 9, respectively.

Figure 5. The magnitude of Vabc at bus 2 Figure 6. The magnitude of Vabc at bus 6
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Figure 7. The magnitude of Vabc at bus 9

As an example, Figure 5 depicts the amplitude of Vabc at bus 2. This magnitude is achieved by
positioning the PMU at bus 2. The output of the PMU was voltage, frequency, and phase of Vabc. However,
only the magnitude of voltage at phases a, b, and c was employed in this study. In MATLAB programming,
the maximum and minimum magnitudes of Vabc at bus 2 were utilised as inputs to LS-SVR. The maximum
and minimum value of the magnitude of Vabc are 1.512e+05V and 1.000e+00V respectively.

The amplitude of Vabc at bus 6 is seen in Figure 6. This magnitude is obtained by positioning the
PMU on bus 6. The output of the PMU was voltage, frequency, and phase of Vabc. However, only the
magnitude of voltage at phases a, b, and c is employed in this study. In MATLAB programming, the
maximum and minimum magnitudes of Vabc at bus 6 were utilised as inputs to LS-SVR. The magnitude of
Vabc has maximum and minimum values of 1.000e+00 and 2.894e-01, respectively.

Figure 7 depicts the amplitude of Vabc at bus 9. This magnitude was acquired by connecting the
PMU to bus 6. The PMU output was voltage, frequency, and phase of Vabc. However, the magnitude of
voltage at phases a, b, and c is solely employed in this study. In MATLAB programming, the maximum and
lowest magnitudes of Vabc at bus 9 were used as the input of LS-SVR. The highest and lowest magnitudes of
Vabc are 1.186e+05 and 1.000e+00, respectively. Table 1 displays the values for the lowest and maximum
voltages on phases a, b, and c simulated at bus 2, bus 6, and bus 9. Table 1 displays the data derived from
measurements taken at several buses. The first column is the PMU placement, which is categorized
depending on PMU placement. The minimum and maximum values of Vabc's magnitude are critical for
calculating the MSE of PMU placement. In addition, Table 1 is utilized to present for further computation.
Column 2 contains information on the minimum voltage values of phases a, b, and c. Since bus 6 is
interconnected, the minimum voltage value is 2.894e-01. Column 3 contains information on the maximum
voltage of phases a, b, and c. Table 2 shows a predetermined number of PMUs with various buses. PMU 1
sets, for example, were installed at buses 2, 6, and 9. PMU 17 refers to the PMUs installed at buses 2, 7,
and 9. Bus 30 refers to the PMU installation at buses 2, 6, and 10.

Table 1. The minimum and maximum magnitude ofVabc at different buses
PMU placement Minimum value Maximum value

Bus 1 1.000e+00 1.191e+05
Bus 2 2.894e-01 1.512e+05
Bus 3 1.000e+00 1.136e+05
Bus 4 1.000e+00 1.144e+05
Bus 5 1.000e+00 1.148e+05
Bus 6 2.894e-01 1.000e+00
Bus 7 1.000e+00 1.193e+05
Bus 8 1.000e+00 1.225e+05
Bus 9 1.000e+00. 1.186e+05
Bus 10 1.000e+00 1.180e+05
Bus 11 1.000e+00 1.189e+05
Bus 12 1.000e+00 1.187e+05
Bus 13 1.000e+00 1.181e+05
Bus 14 1.000e+00 1.162e+05
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Table 2. The set of PMU placement
Set of PMU PMU placement Set of PMU PMU placement

1 B2, B6, B9 18 B2, B8, B9
2 B1, B6, B9 19 B2, B10, B9
3 B3, B6, B9 20 B2, B11, B9
4 B4, B6, B9 21 B2, B12, B9
5 B5, B6, B9 22 B2, B13, B9
6 B7, B6, B9 23 B2, B14, B9
7 B8, B6, B9 24 B2, B6, B1
8 B10, B6, B9 25 B2, B6, B3
9 B11, B6, B9 26 B2, B6, B4
10 B12, B6, B9 27 B2, B6, B5
11 B13, B6, B9 28 B2, B6, B7
12 B14, B6, B9 29 B2, B6, B8
13 B2, B1, B9 30 B2, B6, B10
14 B2, B3, B9 31 B2, B6, B11
15 B2, B4, B9 32 B2, B6, B12
16 B2, B5, B9 33 B2, B6, B13
17 B2, B7, B9 34 B2, B6, B14

3.1. Simulation result of LS-SVR
First, the input from table 1 for PMU 1 was entered into the MATLAB software. The random

number generator was set to 50. The software yielded hyper-parameters gamma and sigma. The LS-SVR
estimate was then obtained using MATLAB software. Figure 7 shows the gamma and sigma values.
Estimation of function plotting is based on X and Y values.

Figure 8. Regression estimation using LSSVR at PMU 1

3.2. MSE
MSE is highlighted as a critical metric that represents the accuracy of PMU placement. Figures 5, 6,

and 7 depict the MSE of PMU placement. The MSE is calculated as (11).

��� = (��−�)2

��
� (11)

By considering equation (11), the value of MSE is summarized in Figures 8 to 10.
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Figure 9. MSE of PMU placement at PMU 1 until PMU 11

The objective of LS-SVR in this study is to determine the accuracy of PMU placement based on
MSE. The optimum PMU placement, according to paper [14], is based on the lowest MSE value. The results
of this MSE calculation may be summarised using the results of the MSE calculations that have been
performed, as shown in Figures 9 to 11. Figure 9 shows how the location of PMUs 1 to 11 resulted in
different MSE calculation values, starting with the smallest number, PMU 1 of 0.0093, and progressing to the
greatest value, PMU 11 of 0.0152. Figure 10 shows a bar chart displaying the MSE value from PMU 12 to
PMU 23. The figure clearly shows that the lowest MSE value was derived from calculations at PMU 23
(0.0095), followed by a larger MSE value, specifically PMU 21 (0.0098), and so on until the MSE value is
the greatest at PMU 13 (0.0171).

Figure 10. MSE of PMU placement at PMU 12 until PMU 23

Figure 11 depicts the computed MSE values from PMU positions 24 to 34. It can be seen that PMU
30 has the lowest MSE value of 0.0097. The MSE calculation results yielded varied values, as seen in the
histogram of Figure 10. Figure 7 depicts the highest MSE value for PMU 29 is 0.0157. In general, the lowest
value of each figure may be compared again to make it simpler to draw conclusions in choosing the optimum
placement for PMUs. The following equation compares the three lowest values from Figures 5 to 7: PMU 1
(0.0093) < PMU 23 (0.0095) < PMU 30 (0.0097) (12). According to the comparison of the lowest MSE value
based on equation 12, the least value of the overall MSE calculation is PMU 1of 0.0093. As a result, PMU 1
was selected as the optimal location in the IEEE-14 bus system.
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Figure 11. MSE of PMU placement at PMU 24 until PMU 34

4. CONCLUSION
In conclusion, this study proposes control management of a WAMS on the IEEE-14 bus system

utilising LS-SVR. PMU 1 recorded the lowest MSE value of 0.0093 when compared to the other set of PMUs.
Meanwhile, PMU 13 achieved the highest MSE score of 0.0171. Based on the results obtained, the accuracy
of the PMU's placement demonstrated significant improvement when the MSE value was reduced. Based on
the lowest value of MSE, it can be concluded that the best placement is at PMU 1.
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