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Graphene-Based Material for Microstrip Bandpass Filter
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Abstract—Graphene has become one of the most essential materials in recent years due to its numerous
advantages and benefits. Because of its features, graphene is becoming more widespread in a variety of
applications, particularly in electrical devices. In this research, graphene thick film paste (GTP) has
been used to fabricate a microstrip bandpass filter (BPF). To obtain graphene nanoparticle powder,
graphene oxide (GO) was synthesized from nanoparticle graphite using the Improved Hummers Method
(IHM). The graphene oxide (GO) was chemically reduced to reduced graphene oxide or graphene
(rGO) using ascorbic acid as the reducing agent. The structural and morphological properties of three
nanoparticle powders, G, GO, and rGO, were investigated. An X-ray Diffractometer (XRD) (Rigaku
Miniflex) with a diffraction angle of 10◦ to 60◦ was used to differentiate and determine the structure of
crystalline materials. Thermal stability of the samples was identified using thermogravimetric analysis
(TGA). The synthesized rGO has been used to fabricate BPF circuit. The obtained nanoparticle rGO
was mixed with an organic carrier composed of linseed oil, m-xylene, and α-terpineol to form GTP. The
GTP was screen printed on RT duroid 5880 substrates to form BPF circuit. The BPF circuit that was
created was tested for paste-to-substrate adhesion. Then, the fabricated BPF circuit was tested using
vector network analyzer (VNA) and compared with conventional BPF to obtain scattering parameter
results which include return loss, insertion loss, and bandwidth. The graphene BPF circuit demonstrated
a good performance with return loss and insertion loss at −27.481 dB and −0.725 dB, respectively, and
a bandwidth of 1.5916GHz while conventional return loss was −26.750 dB and insertion loss value
the same as graphene which is −0.725 dB and bandwidth 0.7077GHz. From the result graphene BPF
showed better result than conventional BPF.

1. INTRODUCTION

The increase of various technologies rapidly requires a lot of electronic devices that capable to fulfill the
technology requirement such as communication technology. The demand for a range of communication
services, as well as the development of technology that supports high-speed data transfer and heavier
capacity, is growing as the number of communication service users increases [1]. The development of a
microwave bandpass filter that has broad-bandwidth and low loss is a hot topic in research for selecting
good quality signals in microwave communication systems and radio frequency (RF). A band pass filter
is a device that enables frequencies within a specified frequency range to pass through while rejecting
(attenuating) frequencies outside that range. Filtering of transmitted and received signals at a given
centre frequency and bandwidth is required.

In microwave circuits and wireless communication systems, a microwave bandpass filter is used to
achieve a unique and accurate radiation frequency [2]. Several publications have been on microwave
circuits with high performance and low cost, such as antennas, filters, phase shifters, multiplexers,
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couplers, and delay lines [3]. For microwave broadcasting, bandpass filters with a wide bandwidth,
small size, low power consumption, and cheap cost are desired [4]. The materials to fabricate the
bandpass filter also play an important rule in the performance of the circuit. Many bandpass filters
have been fabricated using different types of material such as copper [1], superconductor [5], silver [6, 7],
and graphene [8].

Graphene has attracted the attention of researchers because of its excellent and surprising
properties. Graphene is the thinnest two-dimensional layer of carbon atoms in which the carbon atoms
are arranged in a honeycomb lattice [9]. Graphene is included in carbon allotrope that contains an
atomically thin two-dimensional (2D) hexagonal lattice, whereas graphene also acts as an essential
part in a building block for other carbon allotropes such as zero-dimensional (0D) carbon fullerenes,
one dimensional (1D) carbon nanotubes, and three-dimensional (3D) graphite [10]. There are various
applications that have been developed using graphene as their main material. Graphene application
has been used in technological fields, such as supercapacitor, field-effect transistors (FETs), organic
photovoltaics (OPVs), light-emitting diodes (LEDs), thermal conduction, stretchable transistors, and
sensor [11].

In recent years, the preparation of large-scale graphene with various advances has been made, which
make graphene useful in the application of low terahertz range and microwave. Due to tunable resistivity
characteristic of graphene, graphene has been utilized in RF graphene field effect transistor, graphene
antenna, and graphene microstrip attenuator [8]. For instance, two tunable microstrip filters [12, 13],
attenuators [14–16], and antenna [17] are proposed. Besides, a study has been proposed [18] using
graphene combined with microstrip line by locating graphene in the middle of microstrip line and
implementing a microwave low-pass filter by replacing metal plates with graphene [18]. Decreasing size
and improves the devices performances.

In this paper, microstrip bandpass filter-based graphene is proposed to improve the performance
of the circuit. The characteristics of graphene such as high conductivity because of its great charge of
mobility [19], very high sensitivity and thermoelectric current effect, light weight, environmentally
friendly, corrosion-resistant, mechanically stable [20], ultimate thinness [10], excellent mechanical
strength, low density, thermal expansion coefficient [21], and high tensile strength which is 200 times
stronger than steel [22] make graphene one of the best based materials for the fabrication of BPF.

2. MATERIALS

Graphite (C, MW = 12.011 g/mol), (potassium permanganate (KMnO4), MW = 158.034 g/mol),
sulfuric acid (H2SO4, MW = 98.079 g/mol), phosphoric acid (H3PO4, MW = 97.994 g/mol), potassium
permanganate (KMnO4), MW= 158.034 g/mol), 35% hydrogen peroxide (H2O2, MW= 34.0147 g/mol),
ascorbic acid (HC6H7O6, MW = 176.12 g/mol), m-xylene (C6H4(CH3)2, MW = 106.16 g/mol) and α-
terpineol (C10H18O, MW = 154.25 g/mol) and linseed oil.

3. SAMPLE PREPARATION

Graphene oxide (GO) was prepared using the Improved Hummer method (IHM). A mixture of 30ml
sulfuric acid (H2SO4), 3.3ml phosphoric acid (H3PO4), 1 g of graphite (G), and 6 g of potassium
permanganate (KMnO4) in a 500ml conical flask was stirred in an ice bath. The mixture was heated
at 40◦C and stirred for 12 hours. Then, 100ml of distilled water and 2ml of 35% hydrogen peroxide
(H2O2) were added to the mixture to form GO solution. The solutionwas then centrifuged at 10000 rpm
for 15 minutes. The slurry was settled down at the bottom of the centrifuged bottle. The supernatant
was removed, and the remaining solid was added with 100ml of distilled water. This procedure was
repeated until pH 5 was achieved. After achieving pH 5, the final solid as a slurry was dried in oven
for 24 hours at 40◦C to obtain solid GO. As shown in Figure 1, the reduction of GO to rGO was done
using ascorbic acid.

The GO solution from previous synthesis was added with 0.1M of ascorbic acid with a volume ratio
of 1 : 1. The mixture was heated at 70◦C on the hot plate for 30 minutes. The product was centrifuged
at 12000 rpm for 10 minutes. The supernatant from the reaction decayed away, which produces solid
rGO or graphene. The remaining solid rGO was washed with ethanol and water three times. The solid
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Figure 1. Graphical representation of GO and rGO synthesis.

rGO was dried at 40◦C in the oven for 24 hours. The rGO was ground for 2 hours to form an rGO
powder.

4. CIRCUIT FABRICATION

Figure 2 shows the fabrication process of graphene BPF circuit. Firstly, the binder was prepared
by combining linseed oil, m-xylene, and α-terpineol with weight percentage of 85wt%, 12.5wt%, and
2.5wt%, respectively. The mixture was stirred for 2 hours at 40◦C. The binder was mixed with rGO
powder by powder and binder ratio, 30 : 70. The paste was shaken for 1 hour by using vortex mixer
to form homogeneous paste. The produced graphene thick film paste was screen printing on top of RT
duroid 5880 substrates (εr = 2.2, thickness h = 1.57mm) to form a BPF circuit. Then, the circuit was
dried for 30 minutes at 80◦C and then sintered at 300◦C for 3 hours in an oven. The BPF circuit was
leave at room temperature for 24 hours. The graphene BPF circuit was installed with SMA connector
to measure the performance of the circuit.

5. STRUCTURAL AND MORPHOLOGICAL CHARACTERIZATION

The lattice parameter, crystalline size, phase, and d-spacing of the sample were determined by X-Ray
diffractometer (XRD). Then, FTIR was utilized to classify the existence of every functional group in a
molecule of sample, thermal stability of the graphite (G), graphene oxide (GO), and reduced graphene
oxide or graphene (rGO) was determined by using thermogravimetric analysis (TGA). Field Emission
Scanning Electron Microscope (FESEM) was used to obtain a high magnification picture of the material
and to analyze its morphology.
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Figure 2. Graphical representation of graphene BPF circuit fabrication.

6. CIRCUIT TESTING

The adhesion between the paste and substrate was justified by using a peel-off test as shown in Figure 3.
The performance of the graphene BPF circuit was measured using a Vector Network Analyzer (VNA),
and the results were compared with conventional BPF circuit in terms of insertion loss, return loss, and
bandwidth.

Figure 3. Graphical representation of adhesion test of graphene paste on RT5880 substrate.

7. STRUCTURAL AND MORPHOLOGICAL ANALYSIS

Figure 4 shows that the interlayer distances of graphite (G), graphene oxide (GO), and reduced graphene
oxide (rGO) were confirmed using X-ray diffraction (XRD) patterns. The XRD patterns of the G, GO,
and rGO are shown in the figure, and the distinct and sharp peaks are produced (JCPDS file no.
75-2078), which indicate the crystalline structure of all heat-treated materials.



Progress In Electromagnetics Research M, Vol. 111, 2022 137

The 2-theta peak of graphite powder was at 26.74 deg, indicating that the interlayer distance of
graphite powder was 3.36 Å. With chemical oxidation, the 2-theta peak shifted to 9.42 deg, which
indicates that the graphite was fully oxidized into GO with an interlayer distance of 8.33 Å. In contrast
to the XRD pattern of the rGO powder sample, the XRD pattern of the rGO yielded only a new narrow
peak at 26.70 deg, indicating that the rGO was fully reduced. The interlayer distance of rGO is 3.70 Å.
The narrower interlayer distance in rGO was due to the well-ordered two-dimensional structure of rGO
sheets [23, 24].

The FTIR spectra of G, GO, and rGO are shown in Figure 5. A broad band is at 3351.90 cm−1,
3435.92 cm−1, and 3455.56 cm−1 which belongs to a strong stretching mode of OH group, and an
absorption peak is at 1638.40 cm−1, 1633.13 cm−1, and 1640.96 cm−1 due to C = C stretching mode. In
GO, the peaks are at 1739.80 cm−1, 1385.8 cm−1, 1079.49 cm−1, and 542.0 cm−1 which correspond to the
stretching modes of C = O, C-H, C-OH, and C-O, respectively. However, for rGO and G, the absorption
peaks at 1739.80 cm−1, 1385.80 cm−1, and 1079.49 cm−1 were reduced. These results indicate that the
partial functional groups in GO had been effectively eliminated during reduction [25, 26], and these
peaks did not appear in the spectrum of graphite indicating that the oxidation steps have introduced
strong oxygen containing functional groups in GO [27]. rGO is similar to the graphite, which indicates
the restoration of electronic conjugation within the graphene sheets [28]. When the intensity of these
peaks in GO decreases in rGO, it shows the removal of oxygen containing functional groups to a certain
degree [29].

Thermal degradation or stability of the graphite (G), graphene oxide (GO), and reduced graphene
oxide (rGO) was investigated by thermogravimetric analysis (TGA). The reaction progress during the
thermal reduction of the graphite, GO, and rGO was monitored by TGA in the range 30◦C to 600◦C
under nitrogen atmosphere at 10◦Cmin−1 heating rates. Figure 6 presents three different graphs for
G, GO, and rGO. It clearly shows that graphite (G) has a slight weight loss and is thermally stable
at 600◦C, while GO is thermally decomposed into three steps. A huge weight loss happened at 100◦C
because of the hydrophilic nature of GO which removed the adsorbed water molecules. At 200◦C, there
was a significant weight loss, because oxygen accommodate functional groups present on the GO surface
were decomposed. Next, at 300◦C there was a notable weight loss because more stable oxygen held in
functional groups to CO and CO2 was decomposed [24]. From Figure 6, the rGO graph indicates a very
small weight loss (28%) compared to GO (87%) along the temperature range (30◦C to 600◦C), and in
spite of that, rGO shows bigger weight loss than graphite which is 12%, illustrating that graphite has

Figure 4. XRD patterns of graphite (G),
graphene oxide (GO) and graphene (rGO).

Figure 5. FTIR spectra of G, GO and rGO
powder.
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Figure 6. TGA result for G, GO and rGO powder.

lower oxygenated functional groups than rGO. However, the fraction of oxygen containing functional
groups in GO is bigger than rGO [23].

The morphologies of graphite (G), graphene oxide (GO), and reduced graphene oxide (rGO) were
presented in Figures 7(a)–(c). It can be clearly seen that the morphology of GO is more loose than G
and rGO because surface modification treatment has resulted in tiny wrinkles over the graphene sheets
of graphene oxide. Because of reduction by using ascorbic acid, rGO agglomeration is formed as a
result of the oxygenic groups on the GO surface being removed leading to a decrease in the distance
between layers of the GO [30]. Besides, the exfoliation process resulted in rGO with wrinkled and fluffy
morphology [31].

(a) (b) (c)

Figure 7. FESEM of (a) graphite, (b) graphene oxide and (c) reduced graphene oxide at 2000x
magnification.

8. CIRCUIT TESTING AND PERFORMANCE

The observation for the adhesion test showed that the scotch tape was completely clean after peeling
off from the circuit which showed strong adhesion between the paste and substrate resulting in good
preparation and fabrication of the circuit.

8.1. Return Loss

Return loss occurs because of mismatches between the transmission line and feeding points. It displays
the value of feeding power reflected back at the microstrip filter’s port. Reflections at the port reflect
back towards the source when the microstrip and transmission line are not exactly matched, resulting in
a standing wave. The BPF radiates optimally at the specified resonance frequency of 5GHz. Figure 8
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Figure 8. Return loss (S11) and insertion loss (S12) of graphene and conventional BPF circuit.

shows a return loss of graphene BPF and conventional BPF circuit at frequencies of 3GHz and 7GHz.
It can be clearly seen that the highest return loss of graphene BPF is −27.481 dB at operating frequency
of 4.680GHz, and the highest return loss of conventional BPF is −26.750 dB at operating frequency of
4.750GHz. Both circuits show a good performance which have return loss value greater than −20 dB
as the typical filter should have a high amount of return loss for better performance [2].

8.2. Insertion Loss

The insertion losses of graphene and conventional BPF are shown in Figure 8. It can be clearly seen
that the minimum insertion losses of graphene and conventional BPF are −0.093 dB (4.756GHz) and
−0.824 dB (4.738GHz), respectively, found at operating frequency of 5GHz. From Figure 8 it can
be observed that S12 for graphene and conventional BPFs at frequency 5GHz are −0.725 dB which
is almost close to zero insertion losses. The operation frequency of graphene BPF is 4.373–5.382GHz
while conventional BPF is 4.373–5.329GHz. As mentioned by [2], a typical filter should have a high
amount of lower insertion indicating a good result of insertion loss for graphene BPF.

8.3. Bandwidth

The bandwidth of a microstrip bandpass filter is the range of frequencies over which it can function
properly. The number of frequencies (GHz) for which the standing wave ratio is less than 2 : 1 is the
filter’s bandwidth [32]. The center frequency and 6 dB fractional bandwidth (FBW) were calculated
for both circuits. It was found that the graphene BPF showed a higher center frequency at 4.9855GHz
than the conventional BPF at 4.8865GHz. Meanwhile, the 6 dB FBW of graphene BPF is also
higher as 46.11% was calculated for graphene BPF and 18.81% for conventional BPF. From the value
obtained, the center frequency for graphene is higher than the conventional one, and the frequency
bandwidth for graphene also shows a bigger value than conventional one. Besides, the graph return loss
against frequency at point −10 dB can be used to determine the value of bandwidth. The bandwidths
of graphene and conventional BPF were 1.5916GHz and 0.7077GHz, respectively. From the value,
graphene has bigger bandwidth than conventional one which indicates better performance for graphene
BPF.

Figure 9(a) shows the 2D radiation pattern and gain results of graphene BPF. The simulation
radiation pattern of graphene-based bypass filter integrating at 5GHz in H-plane and E-plane is
illustrated in the figure. Figure 9(b) shows the 3D radiation pattern of fabricated bypass filter.
Figure 9(c) illustrates the surface current distribution of bandpass filter elements at 5GHz.
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(a) (b)

(c)

Figure 9. Electric and magnetic field distribution of the graphene BPF (a) 2D radiation pattern, (b)
3D radiation pattern, and (c) electromagnetic field distribution.

From the analysis result of circuit performances which include return loss, insertion loss, and
bandwidth, graphene-based bandpass filter has shown a great result compared to conventional bandpass
filter. The graphene BPF circuit demonstrated a good performance with return loss (−27.481 dB)
compared to conventional BPF (−26.750 dB). Next, the insertion loss shows the same value for graphene
BPF which was −0.725 dB and conventional BPF also −0.725 dB while the bandwidth for graphene BPF
was 1.5916GHz, and that of conventional BPF was 0.7077GHz. The different return loss and bandwidth
values for graphene and conventional BPF show that the proposed BPF, which is graphene, has good
performances and better result than conventional BPF.

9. CONCLUSIONS

This paper presents graphene oxide successfully synthesized using an improved hummer method. The
structural and morphological properties of G, GO, and rGO have been identified and observed. The great
purity and crystallinity of samples were confirmed using XRD. The functional group of the materials
was successfully obtained using FTIR. Thermal stability has been identified and determined, and the
morphology has been observed.

The graphene microstrip bandpass filter (BPF) has an operating frequency of 4.373–5.382GHz
with transmission frequencies in the range of 3–7GHz, 4.9855GHz of center frequency, return loss of
−27.481 dB, insertion loss of −0.725 dB, and bandwidth of ∼ 1.59GHz, showing a better result as than
conventional BPF.
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