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Introduction

Diarrhoea is one of the leading causes of 
children (≤ 5 years old of age) morbidity and 
mortality in developing countries (1) while 

the second leading cause of death globally (2). 
The diarrhoeagenic Escherichia coli (E. coli) 
virulent factors cause diarrhoea due to six major 
pathotypes (1). In Malaysia, acute diarrhoea is 
still a significant public health concern (3). 
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Abstract
Background: Diarrhoeagenic verotoxin producing non-O157 Escherichia coli (VTEC) are 

associated with endemic infantile diarrhoea-causing morbidity and mortality worldwide. VTEC 
can also cause severe illness and has an impact on outbreaks, especially in developing countries. 
This study aims to investigate the prevalence and characterisation of VTEC and their association in 
causing infectious diarrhoea among Malaysian children.

Methods: Standard microbiological techniques identified a total of 137 non-repeated, 
clinically significant E. coli isolates. Serological assays discerned non-O157 E. coli serogroup, 
subjected to virulence screen (VT1 and VT2) by a polymerase chain reaction (PCR).

Results: Different PCR sets characterised the 49 clinical isolates of sorbitol positive 
non-O157 E. coli. Twenty-nine isolates harboured verotoxin genes associated with diarrhoea 
among children (≤ 5 years old). Among the 29 (59.18%) strains of verotoxin producing E. coli¸ 
genotypes VT1 and VT2 were detected in 21 (42.85%) and 5 (10.20%) isolates respectively, while 
both VT1 and VT2 genes were confirmed in 3 (6.12%) isolates. 

Conclusion: This study evaluates on the prevalence, serological characteristics and 
antimicrobial susceptibility patterns of VTEC diarrhoea affected children (≤ 5 years old). Besides, 
the prevalence of verotoxin gene was determined as a root cause of diarrhoea among Malaysian 
children. 
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There is a scarcity of data on non-O157 
E. coli serotype prevalence and virulence gene 
distribution, which is critical for the development 
of public health protection monitoring and 
control activities. The present study aimed to 
determine the prevalence of VTEC strains and 
to assess their virulence patterns as sources 
of infection among children ≤ 5 years old in 
Kuantan, Malaysia.

Methods

Bacterial Isolates 

This study included 137 infants and young 
children (≤ 5 years old) infected by diarrhoea 
at Hospital Tengku Ampuan Afzan, Kuantan, 
Malaysia, from September 2018 to April 2019. 
This cross-sectional demographic information 
was obtained from patients, including age, 
sex, the onset of diarrhoea, antibiotic intake, 
relevant clinical and laboratory results. Children 
were enrolled if they had three or more liquid, 
semiliquid or bloody stools excretion per day. 
Most of the children with acute diarrhoea 
showed abdominal pain, followed by fever and 
vomiting. Our barring criteria were > 5 years 
old, no diarrhea, partial data, attributed to 
Salmonella, Shigella, or other types of bacteria 
and contaminated samples. Moreover, data 
collection was performed for comparison with 
these results. 

Microbiological Study

In this prospective study, 137 stool 
specimens were collected in clear, transparent, 
wide-mouthed sterile bottles and immediately 
transported to the microbiology laboratory. 
Consistency, colour, and mucous, blood and 
parasites of the specimens were examined. All 
the stool specimens were plated on MacConkey 
agar (Oxoid, Basingstoke, United Kingdom) and 
incubated (Thermo Scientific, USA) aerobically 
24 h at 37 °C. Suspected colonies were plated 
on brain-heart infusion (BHI) agar (Oxoid, 
UK) and performed standard biochemical 
(oxidase, urease, citrate, indole and hydrogen 
sulfide production) assay to confirms suspected 
colonies as E. coli according to El-Hadedy and  
Abu El-Nour (19). All the biochemically 
confirmed E. coli isolates were additionally 
screened on cefixime tellurite sorbitol 
MacConkey agar (CT-SMAC) (Merck, Germany). 
E. coli O157: H7 serotypes appeared colorless 
(non-sorbitol fermenters), while non-O157: 

Verotoxin producing non-O157 E. coli 
(VTEC) is progressively well-known as an 
essential enteric foodborne pathogen. VTEC 
is one of the most frequent causes of diarrhoea. 
However, the potentially life-threating 
complications of VTEC infections is highlighted 
as a public health problem (4). The production 
of verotoxin related virulence properties causes 
mild diarrhoea, haemorrhagic colitis (HC) 
and fatal haemolytic uremic syndrome (HUS) 
across the worldwide (5). Generally, E. coli 
O157: H7 serotypes associated with foodborne 
illness and non-O157 serotypes have been 
accused of gastroenteritis and HUS outbreaks 
(5). Furthermore, VTEC allied with severe 
foodborne illness, resulting in bloody diarrhoea 
with hemorrhagic colitis and the hemolytic 
uremic syndrome (6–7). To date, no outbreaks 
were reported due to VTEC in Malaysia (8). The 
pathogenic virulence properties of some VTEC 
serogroups; O26, O121, O103, O111, O145 and 
O45, signified as the ‘big 6’ VTEC serogroups  
(9–10). However, a total of 380 different 
serotypes of VTEC strains frequently associated 
with human infections (11). In recent times, 
several outbreaks occurred due to VTEC 
serotypes, including O26: H11, O103: H2, O104: 
H4, O111: NM and O145: NM (12). VTEC O26 
strains of non-O157 are the most prevalent cause 
allied with HUS and bloody diarrhoea in several 
European countries (5, 13).

The apparent rise in VTEC illness may 
be a consequence of improvements in testing 
for VTEC, which increases awareness among 
clinicians and diagnosticians. Recent studies 
estimated that 20%–60% of VTEC infections 
due to non-O157 strains were associated 
with numerous disease (14). Geographically 
in Europe, the disease caused by non-O157 
serotypes is more prevalent compared to O157: 
H7 (5). In Malaysia, non-O157 E. coli exhibits 
significantly while the global incidence of VTEC 
infections exceeds O157 VTEC and the ratios 
between 2:1 to 7:1 have been reported (5, 8). 
VTEC serotypes are more prevalent compared 
to other virulence agents, and humans get 
easily infected by the virulence factors of 
VTEC through interaction with animals or 
consumption of contaminated meat, milk, 
vegetables, fruit and water by animal faeces 
(15). VTEC infection requires ingestion, with 
the bacterium potentially transmitted through 
contaminated food, water or person-to-person 
(16–18).
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of Cebula et al. (25–26). DNA templates were 
prepared by the boiling method (27). Three to 
five colonies of E. coli were mixed in 50 µL of 
deionised water. The suspension was boiled for 
10 min at 95 °C and centrifuged (Eppendorf, 
USA) for 10 min at 10,000 rpm. The formation 
of concentrated supernatant containing DNA 
was assessed by NanoDrop spectrophotometer 
(Thermo Scientific, USA). This obtained DNA 
template was subjected to PCR (Eppendorf 
Mastercycler gradient, USA). Determination 
of targeting virulence properties genes was 
examined using PCR with the specific primers 
and conditions (Table 1) as described previously 
(25–26). All the commercially manufactured 
oligonucleotide primers were obtained from 
Apical Scientific Sdn Bhd, Malaysia. The 
amplified DNA templates were separated 
by 1.5% agarose gel electrophoresis stained 
with 0.5 μg/mL GelRed (Biotium, USA) and 
examined for DNA under ultraviolet light using 
gel documentation system (Amersham Imager 
680, USA). All the PCR products were purified by 
QIAquick PCR purification kit (QIAGEN, USA) 
according to the manufacture’s guidelines. After 
purification, the molecular weight of the DNA 
was determined and compared with the standard 
DNA molecular weight (1 kb DNA ladder) marker 
(QIAGEN, USA). This obtained purified DNA 
was sent for sequencing at Apical Scientific 
Sdn Bhd Malaysia. Sequences were analysed 
using the BLAST programme for the nucleotide 
database (https://blast.ncbi.nlm.nih.gov/Blast.
cgi) and aligned with the sequence of the VT1 and 
VT2 gene. 

H7 seemed to be pink (sorbitol-fermenters) 
as described by previous researchers (20–23). 
Biochemically confirmed E. coli isolates were 
pre-enriched by BHI broth (Oxoid, UK) at a 
ratio of 1:10 and with 20% glycerol stored at  
–80 °C for further procedures.

Serotyping Assays

All the biochemically identified E. coli 
isolates (lactose positive and negative) were 
selected for serotyping. Determination of 
non-O157 E. coli serogroups was performed 
using the O157 latex agglutination test kit 
(Oxoid, Basingstoke, UK) and RemelTM slide 
agglutination test kit of polyvalent 2, 3 and 4  
E. coli agglutinating sera (Thermo Scientific, 
USA) according to the manufacturer instructions. 
In the O157 latex agglutination test kit, isolates 
negative for agglutination were measured as 
non-O157 E. coli (24). For testing, a drop of 
polyvalent antisera was placed on a sterile slide. 
Each isolate was added to the antiserum. After 
30 sec, samples were evaluated for agglutination. 
Moreover, agglutinated strains with polyvalent 
antisera were then tested with monovalent  
O antisera for the determination of non-O157 
serotypes (O26, O121, O145, O103, O111 and 
O45).

Determination of VT genes

E. coli isolates were inoculated in BHI broth 
(Oxoid, UK) at 37 °C aerobically and subjected to 
detect the presence of VT genes (VT1 and VT2) 
using polymerase chain reaction (PCR) protocol 

Table 1. Primers and PCR conditions

Target 
gene

Primer sequences PCR condition Size bp Reference

VT 1–F 5’-CAC CAG ACA ATG TAA CCG CTG-3’ 94 °C for 3 min for one 
cycle followed by 35 
cycles of 94 °C for  
1 min, 65 °C for 2 min, 
72 °C for 2 min and 
final extension 1 cycle 
of 72 °C for 10 min

348

(25–26, 28)

VT 1–R 5’-CAG TTA ATG TGG TGG CGA AGG- 3’

VT 2–F 5’-GCG TCA TCG TAT ACA CAG GAG C-3’
584

VT 2–R 5’-ATC CTA TTC CCG GGA GTT TAC G-3’

Antimicrobial Susceptibility Testing 

The standard method (disk diffusion 
method) was performed for the determination 
of antimicrobial drug susceptibility, referring to 
the Clinical and Laboratory Standard Institute 

(CLSI) (29). Ten different types of antibiotic 
discs were tested: i) tazobactam/piperacillin 
(TZP)-10 μg/75 μg; ii) ceftazidime (CAZ)-30 μg; 
iii) gentamicin (GM)-10 μg; iv) ampicillin (AMP)-
10 μg; v) imipenem (IPM)-10 μg; vi) cefuroxime 
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old (n = 11 [8 %]). Also, infection with non-O157 
E. coli strains was observed to increase with age. 
Among the non-O157 E. coli serogroups, O26 was 
most frequently isolated (8%), followed by O121 
(6.5%) and least O45 (4.3%). However, most of 
the non-O157 E. coli isolates were detected in 
watery stools (n = 25 [18.2%]), mucoid stools  
(n = 16 [11.6%]) and bloody stools (n = 8 [5.8%]), 
respectively. 

(CXM)-30 μg; vii) cefotaxime (CTX)-30 μg; 
viii) ciprofloxacin (CIP)-5 μg; ix) amoxicillin-
clavulanic acid (AMC)-30 μg and x) meropenem 
(MEM)-10 μg. Multi-drug resistance (MDR) 
was classified as acquired non-susceptibility 
to at least one (≥ 1) agent in three or more  
(≥ 3) antimicrobial categories (30). E. coli ATCC 
25922 was used as quality control to determine 
susceptibility patterns (31). The CLSI guidelines 
were strictly followed for measurement of zone 
inhibition around the discs and interpretation of 
susceptibility patterns (sensitive, intermediate or 
resistant) of verotoxin producing E. coli (29).

Statistical Analysis

Statistical analysis was obtained with Excel 
add-in Megastat, using the Pearson’s Chi-square 
test of independence and P-value (P ≤ 0.05) was 
considered significant.

Results 

A total presumptive 137 E. coli isolates 
collected from children (≤ 5 years old) were 
examined for virulence genes association with 
diarrhoea. Forty-nine isolates (35.5%) appeared 
pink (sorbitol-fermenters) on CT-SMAC media 
(Merck, Germany) after the overnight incubation 
(Thermo Scientific, USA) at 37 °C (Figure 1). 
These isolates were selected for further 
confirmation and characterisation. 

Figure 1. Formation of non-O157 E. coli on CT-SMAC culture plate media

Of the 137 diarrhoeic samples, 49 (35.5%) 
were E. coli non-O157 serogroups comprising 
O26 (n = 11 [8%]); O121 (n = 9 [6.5%]); O111 
(n = 8 [5.8%]); O145 (n = 8 [5.8%]); O103  
(n = 7 [5.1%]); and O45 (n = 6 [4.3%]) (Table 2). 
The presence of non-O157 E. coli isolates 
among children ≤ 5 years old were statistically 
significant (P < 0.001). Interestingly, children  
> 2 years old were highly infected with non-O157 
(n = 38 [27.7 %]) E. coli compared to ≤ 2 years 

Table 2. Occurrence of target ‘big 6’ non-O157 serogroups from the clinical isolates of E. coli

Age (old months) No. of isolates O111 O121 O145 O26 O45 O103 P-value

0–12 53 1a 1c 0 0 0 1b

< 0.001

13–24 22 1b 1a 1b 3b 1c 0

25–36 22 3a 3a 2b 2a 1c 1c

37–48 25 2b 1b 2c 2b 3a 3b

49–60 15 1c 3a 3a 4a 1c 2a

Total 137 8 9 8 11 6 7

Notes: aWatery stools (n = 25 [18.2 %]); bMucoid stools (n = 16 [11.6 %]); cBloody stools (n = 8 [5.8 %])
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Among the 137 children associated with 
diarrhoea, n = 17 (12.40%) children were 0 old 
months–5 old months of age followed by n = 36 
(26.27%) children were 6 old months–12 months 
old, n = 22 (16.05%) were 13 old months– 
24 months old of age, n = 22 (16.05%) 
were 25 old months–36 months old of 
age, n = 25 (18.24%) were 37 old months– 
48 months old of age, and n = 15 (10.94%) 
were 49 old months–60 months old of 
age. The frequency of isolates among sex 
distribution was n = 71 (51.82%) male and  
n = 66 (48.18%) female, respectively. A total of 
29 (21.16%) isolates were found to produce the 
verotoxin (VT1 and VT2) gene. A combination 
of VT1 and VT2 was found in 3 (2.18%) strains, 
while VT1 only was found in n = 21 (15.32%) 
isolates and VT2 only in n = 5 (3.64%) strains. 
Interestingly, the presence of the verotoxin 
gene has decreased with age. However, the most 
frequent, n = 8 (5.83%) VTEC isolates were 
detected in the age group of 13 old months– 
24 months old. There were significant differences 

in the frequency of the VTEC among the infants 
and children (males and females) aged ≤ 5 years 
old with respect to various clinical symptoms. 
The occurrence frequency significantly related 
to the presence of multiple features/risk factors 
(clinical symptoms, temperature, feeding 
types, admission, diarrhoea type and duration). 
However, the frequency of the VTEC was most 
prominent in females’ patients (65.51%). This 
effect is the most significant subsequent infection 
of higher severity and persists in all age groups. 
Similarly, the hospitalised patients (admitted 
for 4 days–5 days) with a higher temperature 
(62.06%) along with other clinical symptoms of 
nausea and vomiting (34.48%) and watery stools 
(48.27%) are relatedly significant in the higher 
incidence of pathogenic VTEC. Surprisingly, 
infants and children on breast milk are less 
infected compared to those who are on breast 
milk plus formula milk (51.72%). Besides, all the 
features of infections were relatedly significant  
(P < 0.005) risk factor for VTEC infections 
(Table 3).

Table 3. Clinical features and risk factors among children infected with diarrhoeagenic E. coli pathotypes

Features/risk factors No. of 
isolates

Positive 
isolates

No. of diarrhoeagenic  
VTEC pathotypes P-value 

VT1 VT2 VT1 and VT2

Age (months old) 0–5 17 7 6 0 1

0.04

6–12 36 5 3 0 2

13–24 22 8 6 2 0

25–36 22 5 4 1 0

37–48 25 2 1 1 0

49–60 15 2 1 1

Sex Male 71 10 5 3 2
0.03

Female 66 19 16 2 1

Symptoms Vomiting 25 10 7 2 1
0.01Abdominal pain 32 7 4 2 1

Nausea 45 10 8 1 1

None 35 2 8 0 0

Temperature > 38 °C 56 18 13 3 2 0.008

< 38 °C 81 11 8 2 1

Feeding type Breast milk 76 2 1 1 0
< 0.001Breast milk + 

formula milk
32 15 13 1 1

Solid food 29 12 7 3 2

(continued on next page)
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sizes of 348 bp and 584 bp, respectively. For 
positive control E. coli O157: H7 was used at  
lane 1, which harbours both VT1 and VT2 
gene while deionised water was used instead 
of template DNA as a negative control. PCR 
amplification specified that O26 and O45 
were the leading serogroups carried verotoxin 
genes (18.36%; 9/49) and (10.20%; 5/49), 
respectively. A high proportion (P < 0.001) of 
the six serogroups non-O157 E. coli (O111, O121, 
O145, O26, O45 and O103) were significantly 
associated with variants genes (VT1, VT2 and, 
VT1 and VT2) (Table 4). 

Table 3. (continued)

Features/risk factors No. of 
isolates

Positive 
isolates

No. of diarrhoeagenic  
VTEC pathotypes P-value 

VT1 VT2 VT1 and VT2

Diarrhoea type Watery 84 14 9 3 2

0.05
Mucoid 33 12 11 1 0

Bloody 13 3 1 1 1

Loose 7 0 0 0 0

Duration of  
diarrhoea

1 day 22 7 5 1 1

0.04

2–3 days 50 5 3 1 1

4–5 days 50 15 11 3 1

> 6 days 7 0 0 0 0

No information 8 2 2 0 0

Admission type Admitted 35 18 14 3 1

< 0.001Outpatients 90 8 5 1 2

No information 12 3 2 1 0

All the 49 non-O157 E. coli were subjected 
to PCR using primers  (VT1 and VT2). VT1 and 
VT2 gene were amplified, with amplicon sizes 
of 348 bp and 584 bp, respectively. A total of 
29 (59.18%) isolates were found to produce 
the verotoxin (VT1 and VT2) gene. Twenty-one 
(42.85%) isolates were positive for the VT1 gene, 
followed by n = 5 (10.20%) VT2 gene, and n = 
3 (6.12%) isolates were found to carry both VT1 
and VT2 gene. Figure 2 represents the confirmed 
VT1 gene with amplicon sizes of 348 bp at lane 
2, 3, 4, 6, 8 and 9 while VT2 gene of 584 bp were 
amplified at lane 5, respectively. At lane 7, both 
VT1 and VT2 gene were confirmed with amplicon 

Table 4. Distribution of verotoxin gene (VT1 and VT2) in non-O157 E. coli isolates

Virulence genes
Six serogroups of non-O157 E. coli (n = 49)

P-value
O111 O121 O145 O26 O45 O103

None 4 5 5 2 1 3

< 0.001
VT1 3 3 3 6 4 2

VT2 1 1 0 2 0 1

VT1 and VT2 0 0 0 1 1 1
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(20%) to MEM (Figure 3). Consequently, the 
antibiotic susceptibility patterns of the VTEC 
revealed that all the isolates were significantly 
resistant to at least three antibiotics belonging 
to different classes: AMC, CEX, CTX, ATM, TZP, 
CAZ, CIP, MEM, IMP and FEP. Of the total,  
24 (80%) strains of the VTEC were multidrug-
resistant (MDR) and statistically significant  
(P < 0.001). The highest frequency of MDR 
isolates obtained from female patients (n = 16 
[55%]), while 8 (27%) in males (Table 5).

The antibiogram pattern of the 29 VTEC 
isolates indicates that antibiotic resistance is 
common among most of the VTEC isolates. The 
results demonstrated that 90% (n = 26) of the 
isolates were resistant to CTX, followed by 87% 
(n = 25) resistant to CXM and 80% (n = 23) to 
CAZ. In addition, 100% (n = 29) resistant to 
AMP. However, the results showed that less 
common resistance to CIP (52%) followed by 
GM (42%) and IPM (28%). Moreover, all the 
VTEC isolates were found to be the least resistant 

Figure 2. Confirmation of VTEC

Figure 3. Antibiogram patterns of VTEC
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severe life-threatening complications (39). 
Our result showed that 8% of O26 serogroup 
was the most prevalent virulent factor. Similar 
results of O26 serogroup have been reported 
from Malaysia (25%), Asia-Pacific (7.2%) (40), 
Europe (3.5%) (41), Africa (7%) (42) and America 
(17%), (43) which are in agreement with our 
findings. However, a higher frequency of O26 
serotype was observed in Iran (43.75%) (44), 
Malaysia (18.4%) (12) and Canada (62.6%) (45). 
Epidemiological surveillance indicates that the 
persistence of non-O157 serotypes, E. coli O26 
is the one of the major serotypes of concern. 
Moreover, the O121 serotype was the second 
most prevalent in our findings. Studies showed 
that O121 had been widely associated with severe 
disease outbreaks (46). Additionally, serotype 
O26 E. coli caused a recent outbreaks in the USA 
and Mexico (47), which draws our attention as 
O26 E. coli serotype are also the most prevalent 
in our current findings.

Many different incidences of VTEC strains 
associated with severe diarrhoea. Also, virulence 
gene (VT2) are associated with high prevalence 
of VTEC and with HC or HUS (48). In the 
current study, the most commonly observed 
VTEC virulence profile included 29 (59.1%) 
VT1, followed by 5 (17.2%) VT2 and 3 (10.3%) 
strains harboured both genes (VT1 and VT2) 
among 49 isolates of non-O157 diarrhoeagenic 
E. coli affected children (≤ 5 years old) (Table 2). 
However, a recent study shows that VT2 play a 
significant role as a source of human infections 
than VT1 (49–50). Molecular detection of VT1 
virulence genes is more prominent than VT2 
in VTEC strains. These findings (59.1%, VT1) 

AMC-30 μg, CEX-30 μg, ATM-30 μg, CIP-
10 μg, CTX-30 μg, FEP-30 μg, CAZ-30 μg, IMP-
10 μg, MEM-5 μg and TZP-10 μg/75 μg.

Discussion

Diarrhoeagenic E. coli has become a health 
risk for children, particularly in developing 
countries (32). Various virulence factors such 
as verotoxin genes are attributed to non-O157  
E. coli pathogenicity, causes illness, which ranges 
from mild watery diarrhoea to life-threatening 
complications (33). Non-O157 E. coli affects 
younger children more often compared to O157 
E. coli (34). Also, VTEC has potential cytotoxic 
assays to cause severe illness that can lead to 
outbreaks, and these situations can transcend 
beyond the country’s boundary. 

This present study showed that the VTEC 
have a relatively high potential for causing life-
threatening complications such as diarrhoea and 
it is an agreement with several similar studies, 
specifically in Brazil (78.3%) (35), Canada 
(93.8%) (36), Iran (50%) and Malaysia (33%) 
(37), whereas low prevalence was reported in 
Iran (17.47%) (38). The pathogenic virulence 
properties of several VTEC serogroups, O26, 
O103, O111, O121, O145 and O45 serotypes were 
detected from 49 non-O157 E. coli isolates. 
However, these serogroups are commonly 
associated with severe disease outbreaks, and 
in some countries, are isolated from clinical 
samples more often than O157. In addition 
to the non-O157 serogroups, viz., O26, O145, 
O111 and O103 are more often associated with 

Table 5. MDR profile of VTEC isolates

Resistance Types of antibiotics

VTEC isolates

P-valueMale (n = 10) Female (n = 19) Total (n = 29)

No % No % No %

Resistance to 3 
agents IMP, TZP, CTX 4 13 9 31 13 44

< 0.001

Resistance to 4 
agents ATM, MEM, CIP, CTX 3 10 3 10 6 20

Resistance to 5 
agents

FEP, ATM, CEX, 
MEM, AMC 1 3 2 6 3 10

Resistance to 6 
agents

CIP, CEX, AMC, CTX, 
ATM, IMP - - 1 3 1 3

Resistance to 10 
agents

AMC, CEX, CTX, 
ATM, TZP, CAZ, CIP, 
MEM, IMP, FEP

- - 1 3 1 3
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Environmental contaminants, waste 
materials, non-developed sanitary and hygienic 
systems are a potential source of VTEC infectious 
pathogen prolongs illness, disability and death. 
However, there is no global policy statement on 
outbreaks control. Besides, a general overview 
of clinical documentation is absent on the most 
significant diarrhoeagenic E. coli, global VTEC 
outbreaks and diarrhoea episodes (5). The 
related available epidemiological information 
still needs to be investigated, and this will 
require an interactive initiative among infection 
control management, professionals at the clinic, 
public health and research level. 

Conclusion

Virulence genes and pathogenic forms 
of E. coli cause a variety of diarrheal diseases 
in humans, especially among children. A high 
frequency of VTEC serotypes associated with 
pediatric diarrhoea in Kuantan, Malaysia. 
Besides, most of the isolates were resistant 
to different types of antibiotics, with a higher 
incidence of MDR. This study suggests that 
health priorities could prevent VTEC strains 
associate diarrhoea among children. Therefore, 
proper hygienic practices, consumption of 
well-cooked food, avoid raw milk or meat and 
drinking recreational water could be the best 
preventive pathways. Also, surveillance systems 
monitoring need to be extended to incorporate 
antibiotic use, development, and dissemination 
of antimicrobial-resistant within clinical and 
ecological samples. 
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are reliable with a recent study performed by 
Shridhar et al. (51) and in contrast with Neher  
et al. (52) who stated that the VT2 gene was most 
frequent among VTEC isolates. However, VTEC 
isolates are associated with severe diarrhoea 
involving pathogenicity of VTEC virulent factors 
which agree with several previous studies (53–
56). The high frequency of VT1 genes of VTEC 
strains attributes to E. coli infections (36). The 
wide variations in the prevalence of VTEC can 
be attributed to epidemiological determinants 
(57). These observations draw very significant 
attention viz., the prevalence of VTEC in this 
geographical area and these virulence genes 
belong to non-O157 E. coli. Hygienic practices, 
consumption of contaminated food, and 
consequent faecal-oral transmission make a 
substantial different scenario between developed 
and developing countries. Surprisingly, VTEC 
other than O157: H7 serotype is not actively 
reported in epidemiological settings, while 
non-O157 infections are increasingly recognised 
as significant causes of diseases, including 
outbreaks (5). VTEC, a substantial cause of 
dysentery, has also been reported in America, 
Europe, Asia and Africa (58–59).

Globally, microbial resistance properties 
among bacteria are at high risk and its 
susceptibility patterns depend on variation in 
population and environments (17, 60–61). In 
this present study, VTEC exhibited the highest 
level of resistance to AMP (100%), CTX 90%, 
CXM (87%) and CAZ (80%). Also, the resistance 
level (20% to 100%) against various classes 
of antibiotics was high in VTEC strains. The 
findings of the multidrug-resistant level (80%) 
were consistent with a recent study in Japan by 
Kusumoto et al. (62). However, 62% of the E. coli 
strains exhibited MDR in Malaysia (63). These 
highlights the rising trend of broad-spectrum 
MDR in VTEC strains. MDR strains of VTEC 
poses serious health hazards to human health by 
resisting various classes of antibiotics. Moreover, 
MDR interrupts or delays the treatment efficacy 
against it. Besides, the use of inappropriate drugs 
in animals and humans, and their release into 
the ecosystem affect antimicrobial resistance 
patterns. These resistant bacteria may transfer 
the resistance properties to other related 
bacterial species, which forms to multidrug-
resistant strains (64). Finally, antibiotic becomes 
less effective, which led to infection persist 
in patients and increase the risk of spread 
worldwide.
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