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Teaching learning-based optimization is one of the widely accepted metaheuristic algorithms inspired by teaching and learning
within classrooms. It has successfully addressed several real-world optimization problems, but it may still be trapped in local optima
and may suffer from the problem of premature convergence in the case of solving some challenging optimization problems. To
overcome these drawbacks and to achieve an appropriate percentage of exploitation and exploration, this study presents a new
modified teaching learning-based optimization algorithm called the fuzzy adaptive teaching learning-based optimization algorithm.
The proposed fuzzy adaptive teaching learning-based optimization algorithm uses three measures from the search space, namely,
quality measure, diversification measure, and intensification measure. As the 50-50 probabilities for exploitation and exploration in
the basic teaching learning-based optimization algorithm may be counterproductive, the Mamdani-type fuzzy inference system of the
new algorithm takes these measures as a crisp inputs and generates selection as crisp output to choose either exploitation or
exploration based on the current search requirement. This fuzzy-based adaptive selection helps to adequately balance global search or
exploration and local search or exploitation operations during the search process as these operations are intrinsically dynamic. The
performance of the fuzzy adaptive teaching learning-based optimization is evaluated against other metaheuristic algorithms in-
cluding basic teaching learning-based optimization on 23 unconstrained global test functions. Moreover, adaptive teaching learning-
based optimization is used to search for near-optimal values for the four parameters of the COCOMO II model, which are then tested
for validity on a software project of NASA. Analysis and comparison of the obtained results indicate the efficiency and com-
petitiveness of the proposed algorithm in addressing unconstrained continuous optimization tasks.

1. Introduction specific goals generally known as objective functions, a feasible
search region with all valid solutions, and a search procedure
Optimization is a process of searching and comparing ac- as an optimization method [1]. A solution can be termed best

ceptable solutions until finding the final best solution among  or poor based on the objective function. The set of values for
the available solutions. The optimization process encompasses  design variables in the objective function constitutes the search
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space. Finally, the optimization algorithm attempts to locate
optimal solution(s) within the feasible search region.

Among other optimization methods, metaheuristic al-
gorithms have emerged as promising optimization methods
which solve different optimization problems by simulating a
range of natural phenomena. Genetic algorithm (GA) [2],
particle swarm optimization (PSO) [3], differential evalua-
tion (DE) [4], and harmony search (HS) [5] are some widely
adopted early metaheuristic algorithms. The success of
metaheuristic algorithms lies in their problem and model-
independent nature, as well as their flexibility and efficiency.
Moreover, robustness to dynamic changes, broad applica-
bility, hybridization with other approaches, and the ability to
solve problems with no solutions are other essential char-
acteristics of metaheuristic algorithms. As is evident from
the “No Free-Lunch” theorem [6], two search algorithms
have the same average performance when compared on a set
of optimization problems. However, the statement does not
imply that certain algorithms will not be able to produce
better solutions for some objective functions. Hence, re-
search on metaheuristic algorithms is very active and is
continually extending the scientific literature with new and
enhanced versions of the earlier metaheuristic algorithms.
Recently, many strategies have been developed to improve
the performance of the Mamdani fuzzy logic and have been
deployed in many areas for different purposes. Similarly,
different methods have been proposed to improve the
performance of hierarchical Mamdani fuzzy inference sys-
tems and have been used for assessment and prediction
purposes in various fields [7-9], such as underground risk
assessment and energy consumption optimization in smart
homes, along with different other techniques. Moreover,
fuzzy systems are instrumental in areas where decision-
making involves high uncertainties [10, 11].

Teaching learning-based optimization (TLBO) [12] is
one of the recent metaheuristic algorithms proposed by Rao
et al. for optimization of different hard problems. TLBO is
inspired by human behavior (i.e., the teaching-learning
process) to search for optimal solutions. As TLBO is a
population-based algorithm, it employs a group of learners
for optimization. Initially, the learners undergo the teaching
phase, where their learning capabilities are improved
through teaching by a teacher (the best learner). Afterward,
the learners interact with each other in the learning phase for
improvement of their knowledge. In TLBO, exploration or
global search is simulated using the teaching phase, whereas
exploitation or local search is achieved via the learning
phase. Both these search operations are carried out se-
quentially in each iteration. This preplanned division of the
searching process may be counter-productive and may result
in a suboptimal solution. To address this issue, a new TLBO
variant called adaptive TLBO (ATLBO) [13] has been in-
troduced. ATLBO combines the Mamdani-type fuzzy in-
ference system with the basic TLBO to adaptively select
either exploitation or exploration based on current search
requirements in each round of the search process. ATLBO
successfully addressed discrete optimization problems, i.e.,
the t-way test suite generation problem [14-16]. Building on
and complementing our earlier work, the main motivation
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in this work is to demonstrate the generality of ATLBO via
its adoption for continuous optimization problems. To this
end, the three measures of ATLBO, namely, quality measure,
intensification measure, and diversification measure, are
reformulated and the developed fuzzy rules are further tuned
to avoid local optima and to balance exploration and ex-
ploitation. To investigate its performance on continuous
optimization problems, ATLBO is evaluated on 23 different
global test functions, and the results are compared against
some preselected metaheuristic algorithms including TLBO
and its other fuzzy variant named fuzzy adaptive TLBO
(FATLBO) [17]. Moreover, ATLBO has successfully opti-
mized the four coefficients, namely, A, B, C, and D, in the
formulation of the COCOMO II model. As ATLBO can now
best decide whether to go for global search or local search, it
can not only balance the two searches but can also avoid
trapping in local optima. Experimental results also dem-
onstrate that ATLBO has outperformed all existing algo-
rithms owing to its effective search procedure with an
appropriate percentage of exploration and exploitation.
The contributions of this study are as follows:

(i) Design and development of ATLBO for optimiza-
tion of continuous problems

(ii) Investigating the performance of ATLBO against
some existing metaheuristic algorithms on test
functions as benchmarks

(iii) Adopting ATLBO for optimization of parameters
for the COCOMO II model

The paper layout is as follows: Section 2 presents an
overview of basic TLBO along with its variants and their
applications. Section 3 presents a detailed description of the
ATLBO for solving numerical optimization problems.
Section 4 discusses the software cost estimation model
(COCOMO 1II). Section 5 elaborates on the validation of
ATLBO based on experimental results. Section 6 of the paper
concludes the presented work.

The notations with their corresponding descriptions are
listed in Table 1.

2. Classical Teaching Learning-Based
Optimization (TLBO) Algorithm

Teaching learning-based optimization (TLBO) [12] algorithm
is a novel nature-inspired metaheuristic algorithm for un-
constrained and constrained optimization problems. In TLBO,
the entire optimization process is equated with the teaching
and learning methodology inside a classroom. Students or
learners are simulated as solutions, whereas their subjects are
represented as dimensions of the solutions (Figure 1). The
result of a learner is regarded as the objective function value.
TLBO exhibits competitive performance owing to its prom-
ising characteristics such as no algorithm-specific parameters,
ease of implementation, computationally lightweight, and ef-
fective ability to search for near-optimal solutions [18].

A learner learns either from a teacher or a peer learner to
improve his knowledge. TLBO utilizes this concept for
optimization. As a more knowledgeable person in a class, the
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TaBLE 1: Notations with descriptions.

Notation Description
> Summation
II Product
Tp Teaching factor
X Population of learners
Xt i th learner at time ¢
X mean Mean of the population X
X' Updated population
Q,, Quality measure
I, Intensification measure
D,, Diversification measure
Max;,, Maximum intensification
X Current best solution
Xop Global best solution
Maxp;, Maximum diversification
A(Q,,)  Trapezoidal membership function of quality measure
A(L) Trapezoidal membership function of intensification
measure
A(D.) Trapezoidal membership function of diversification
" measure
= Not equal to
u(A(x)) Membership function of output fuzzy set
EMi i th cost driver
SFi i th scale factor
REi i th relative error
X 0 0 0 1 0 Subject
X [0 0 0 1 0 1 | || Linear
X0 0 0 1 0 1
Xy 0 0 0 1 0 1 Population

Figure 1: Concepts of TLBO for optimization.

teacher attempts to enhance the knowledge of his students
called learners in TLBO. Similarly, a learner can learn from a
peer whose knowledge level is better than their own. TLBO
simulates these two steps of the learning process, one after
the other, for addressing optimization problems.

As shown in Figure 1, each learner X; within a pop-
ulation of X learners represents a potential solution to an
optimization problem. Specifically, X is a vector of D where
each vector element represents a subject enrolled by the
student or delivered by the teacher.

TLBO divides searching into two main phases, namely,
the teaching phase and the learning phase. To search op-
timal solutions, the population of learners is improved first
by the teaching phase and then by the learning phase se-
quentially during each iteration. Exploration (i.e., global
search operations) is the responsibility of the teacher phase.
In this phase, the best individual X; acts as the teacher
Xicacher Of all the learners. TLBO attempts to improve the
knowledge level or position of every individual X; via the
best individual X,., e in the population X. Mathemati-
cally, the definition of the teacher phase is given as follows:

t+1 t
Xvi+ = Xi + r(Xteacher - TFXmean)’ (1)

where X/*! is the new updated X!, r is assigned a value from
[0, 1] randomly, and Ty is a teaching factor meant for
emphasizing the quality of teaching. It is tested with various
values, but TLBO is more successful when it is either 1 or 2.
Finally, X,can is the mean of the population X computed for
the current iteration.

Exploitation (i.e., local search operation) is the re-
sponsibility of the learner phase in TLBO. Similar to the pear
learning procedure in a typical class, this phase randomly
selects a peer learner X’ and evaluates its position against the
current learner X!. The position of X", is shifted towards X},
if X! has better quality than X’ (refer to equation (2)),
otherwise X! is shifted towards X; (refer to equation (3)).

X=X+ r(X - XG). (2)

X=X+ r(X; - X)), (3)

where X!*! is the new form of X!, X" is the randomly se-
lected peer, and r is randomly given value from [0, 1].
Figure 2 summarizes the classical TLBO algorithm.

2.1. Types of TLBO Variants. Many TLBO variants have been
proposed in the literature to search for more optimal so-
lutions compared to the original TLBO algorithm. These
variants are grouped into three categories, namely, modi-
fied-based, hybrid-based, and cooperative-based TLBO
variants, as shown in Figure 3.

A fuzzy-based TLBO called the fuzzy adaptive teaching-
learning-based optimization (FATLBO) algorithm by Cheng
and Prayogo [17] addresses global numerical optimization.
The modifications introduced in FATLBO include status
monitor, fuzzy-based strategies, and remedial operator. A
status monitor observes the performance of each phase.
Fuzzy adaptive teaching-learning strategies are introduced
for the selection of appropriate search operations. Finally, a
remedial operator is included to avoid stagnation. With
these modifications, FATLBO favors one phase more than
the other, for example, the teacher phase than the learner
phase or vice versa. Most recently, Lei et al. [19] proposed a
teacher’s teaching-learning-based optimization (TTLBO)
algorithm for scheduling in a hybrid flow shop to minimize
energy consumption. The learner phase is replaced with self-
learning of teachers and a crossover operator for global
search. In Niu et al. [20], MTLBO (modified TLBO) for
global optimization is proposed. MTLBO divides the
learners into two groups based on the mean results in both
phases. The group of learners having the best mean results
increases their knowledge by interaction among themselves,
whereas the group of learners with average mean results
increases their knowledge by learning from their teacher.
MTLB has shown better solution quality as well as faster
convergence. Wang et al. [21] proposed an improved TLBO
(ITLBO) for constrained optimization problems that modify
both the phases of TLBO. Most recently, Shukla et al. [22]
modified TLBO for global optimization and gene selection
using inertia weight and topological order to improve
teacher and learner phases. Li et al. [23] introduced three
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Input: Solutions learners: X = X, X,, ..., Xy

Output:The best learner X, from the improved learners: X" = {X{, X/, ..., X}

1 Randomly generate population of learners Xand evaluate their objective functions

2 While (criteria for stopping not reached)

3 Select X, cner and calculate X,

4 For (i=1 last learner)

/* Teacher Phase...Global Search */

5 Ty =round (1+ r (0, 1))

6 X§+1 =Xtt' +r (Xteacher - TFXmean)

7 If (f (Xi*1) has better value than f(X}))

8 Xj=xj*!

9 For (i=1 to last learner)

/* Learner Phase...Local Search */
10 Select one peeer’ randomly from X such that i#j
11
If (f (X?) has better value than f (th))
12
X=Xl r (X - Xt
13 Else
14 Xf'=Xi+r (Xf-X0)
15 If (f (X*1) has better value than f(X%))
16 Xi= X[
17 Obtain the best result X,
F1GURE 2: Classical TLBO algorithm.
h mbines the chicken rm optimization 1-
L that combines the chicken swarm opt ation (CSO) a

Modified Hybrid

Cooperative

FiGure 3: TLBO variants.

modifications in their reformative TLBO (RTLBO) for
performance improvement of basic TLBO. The teaching
phase is improved, while self-learning and mutation phases
are proposed to have an appropriate ratio of exploitation and
exploration in RTLBO. The teacher phase is divided into
subpopulations to enhance diversity, whereas the learner
phase is enhanced for promoting convergence by utilizing a
ranking differential vector. All these variants are part of the
adaptive or modified category of TLBO variants.
Hybrid-based variants of TLBO are discussed further in
this study. Nenavath and Jatoth [24] recently proposed an
optimization algorithm that comprises TLBO and a sine
cosine algorithm (SCA) to solve different optimization
problems including global test functions and visual tracking.
Jiang and Zhou [25] attempted to combine TLBO with
differential evolution (DE) for solving the short-term
scheduling problem in a hydrothermal system. Tuo et al. [26]
improved the search capability of harmony search by in-
tegrating it with TLBO (HSTL) to achieve a balance between
population diversity and convergence speed and successfully
adopted the work for solving general optimization problems
with constraints. Deb et al. [27] proposed an ICSOTLBO

gorithm with TLBO to exploit the strengths of both the
algorithms. ICSOTLBO successfully solves synthetic as well
as real-world optimization problems. In the case of these
variants, researchers hybridized TLBO with other meta-
heuristic algorithms.

The review of variants in the cooperative-based category
is as follows: Biswas et al. [28] proposed a cooperative co-
evolutionary TLBO with an improved exploration strategy
to solve high-dimensional optimization problems. In a
similar attempt, Satapathy and Naik [29] introduced co-
operative TLBO (Co-TLBO) that exhibits cooperative be-
havior with the help of more than one population of learners.
Zou et al. [30] proposed a new TLBO variant for optimi-
zation of global functions called hierarchical multi-swarm
cooperative TLBO (HMCTLBO) that divides the population
hierarchically into two levels to maintain the population
diversity by improving the exploration characteristics of
learners. All these variants divide optimization problems
into k subproblems to be optimized concurrently before
collecting the results.

Although, these variants attempted to enhance the so-
lution diversity and convergence speed of original TLBO,
they still trap at local optimal in case of more challenging
optimization problems. Therefore, this research work at-
tempts to further enhance the search ability of the original
TLBO by proposing a modified type of variant that selects
the appropriate phase, i.e., search operation in each iteration
with the help of fuzzy logic.



Mathematical Problems in Engineering

2.2. TLBO for Software Effort Estimation. The role of soft-
ware effort estimation in software engineering is essential for
a successful software development project. More recently,
TLBO and many other algorithms have been investigated for
parameter optimization of different software effort estima-
tion models including the COCOMO II model.

Khuat and Le [31] also implemented classical TLBO to
generate optimal values for the four parameters of the
COCOMO II model. With these optimized values, the model
outperformed the original COCOMO II model by predicting
better time and effort estimates. Ibrahim [32] adopted the
bat algorithm to provide optimal cost estimation of a
software project. Singh used an enhanced version of dif-
ferential evolution for estimating software project costs.
Khuat and Le [33] proposed a hybrid method that adopted
artificial bee colony (ABC) and TLBO for parameter opti-
mization of the COCOMO II model. Experimental results
based on datasets from NASA software projects concluded
that the algorithm offered better estimates than the com-
peting COCOMO II model. Sehra et al. [34] proposed a
model based on TLBO to optimize different parameters of
the COCOMO model using a dataset from the software
industry called interactive voice response (IVR). The pro-
posed model estimated the effort more accurately than
several existing models including the original COCOMO II
model. Nandal and Sangwan [35] combined the bat algo-
rithm with a gravitational search algorithm to predict project
costs for software. Fadhil et al. [36] proposed two models for
cost estimation. The first model employed the dolphin al-
gorithm, whereas the second model hybridized the dolphin
algorithm with the bat algorithm to optimize the two pa-
rameters, namely, A and B of the COCOMO II model.
Recently, Rhmann et al. [37] adopted the firefly algorithm
and genetic algorithm from the MetaheuristicsOpt r pack-
ages for cost prediction. Their study concluded that the two
metaheuristic algorithms obtained optimal results when
compared with the algorithms based on machine learning.

3. The Proposed Fuzzy Adaptive TLBO
(ATLBO) Algorithm

Fuzzy logic has gained substantial acceptance in the industry
as well as in academia owing to its numerous successful
applications [38-40]. Integrating fuzzy inference systems
with metaheuristic algorithms is appealing as they have
successfully improved the performances of these algorithms
in various ways. For instance, adaptive parameter tuning of
metaheuristic algorithms using fuzzy inference systems
appeared effective. Similarly, fuzzy inference systems have
been used to hybridize metaheuristic algorithms for
obtaining better results [41]. Finally, adaptive selection of
appropriate search operations during the search with the
help of fuzzy inference systems has recently been introduced
in the literature.

The ATLBO’s Mamdani fuzzy rule-based system allows
it to adaptively select either local or global search and
therefore enables it to search for more high-quality solu-
tions. ATLBO uses three measures from the search space to
keep track of how the search progresses while exploring the

solution space. These measures are as follows: quality
measure (Q,,), intensification measure (I,,), and diversifi-
cation measure (D,,). As the name suggests, Q,, measures
the quality of the current solution after each iteration.
Equation (4) gives a formal definition of the normalized
value of this measure.

Q,, = [rangMin + [rangMax — rangMin] - r] - r,  (4)

where 7 is randomly selected within the interval [0 1]. If the
current solution is more optimal than previous solution,
rangeMin = 50 and rangeMax = 100, otherwise rangeMin = 0
and rangeMax = 50.

I,, measure computes the position of the current best
solution from global best. With this measure, ATLBO will be
able to perform a local search as per search requirements.
Equation (5) defines the intensification measure (I,,,).

l\/zgl (ch,i - ng,i)2
I, =

MaXint

, (5)

where X is the current best after completion of each it-
eration, Xy, is the global best solution, D is problem’s di-
mension, and Maxy,, is the maximum intensification which

is Max;,, = n- \/D. (ub — Ib)*, ub and Ib are problem’s upper
and lower bounds, respectively.

The diversification measure (D,,) computes the position
of the best solution obtained after an iteration from the
entire population. The ATLBO uses this measure to ade-
quately explore the search space. The diversification measure
is defined as follows:

~ \/Z?:l [zgl (ch,i - ng,i)z]

Maxp;,

D - 100, (6)

where 7 is the number of students (i.e., population size), and
Maxp,;, is maximum diversification which is defined as
Maxp;, = n- y/D. (ub - 1b)?.

The choice of selecting and using these three measures is
novel for improving the performance of a metaheuristic
algorithm. These measures capture all the necessary details
which guide the algorithm to proceed its search in the right
direction. Diversification and quality measures promote
solution diversity, whereas the intensification measure fa-
cilitates convergence in ATLBO.

3.1. ATLBO’s Mamdani Fuzzy Inference System. Fuzzy logic
is an efficient alternative to traditional logic for solving
decision-related problems [42, 43]. ATLBO integrates this
logic to make the optimal decision of whether to apply global
search or local search. To this end, ATLBO provides the
three computed measures as crisp inputs to the Mamdani-
type fuzzy inference system. The block diagram of the fuzzy
inference system is shown in Figure 4. The system has three
crisp inputs: Q,,;; I,,;; D,,, and one crisp output: Selection.

The fuzzy inference process begins with fuzzification that
utilizes membership functions for translating the crisp
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FIGURE 4: Structure of ATLB’s Mamdani fuzzy inference system.

inputs into fuzzy sets. Each crisp variable has a universe of
discourse that defines a range of acceptable values for it. The
membership functions used for the fuzzy sets of the three
input measures: Q,,, I,,, and D,, A(Q,,) = {Low, Medium,
High}; A(1,,) = {High, Medium, Low}; A(D,,) = {Low, Me-
dium, High}, respectively, are shown in Figure 5.

Similarly, the membership functions defined for the
fuzzy sets of the single output Selection, A(Selection)=
{Local_Search, Global_Search}, are shown in Figure 6. The
range of 0 to 100 is defined as the universe of discourse for
the input and output variables.

Owing to offering better performance than others [44],
trapezoidal membership functions are adopted for all the
linguistic terms of the input and output variables. Equation
(7) represents the description of this function.

o

—
N
IN
x
A
o

Trapezoidal (x; a,b, ¢, d) = 1 (7)

o

where x is a crisp value within the universe of discourse, and
a, b, ¢, and d are the four heads of trapezoid representing
coordinates of the x. Linguistic variables, linguistic terms
membership functions, and boundaries of membership
functions have been given in Table 2.

Decision-making logic is the next step after finalizing
membership functions for the inputs and outputs of the
inferencing system. The Mamdani-type fuzzy inference
system is the most common system for fuzzy decision
making, where the [F-THEN rules have fuzzy prepositions in
the antecedent as well as in the consequent parts [45]. Table 3
shows these four values for the membership functions of
linguistic terms of each linguistic variable as shown in
Figures 5 and 6. Fuzzy IF-THEN rule example is given as

follows: IF “Q,,” IS Low THEN “Selection” IS “Global
Search.” A fuzzy rule base encompasses system-related in-
formation. Table 3 presents the five rules of the fuzzy system
integrated with ATLBO.

The fuzzy inference system of ATLBO employs the max-
min inference method. This method takes the minimum
value of the antecedents in the case of the fuzzy AND op-
erator, whereas the maximum value is considered when
accumulating the antecedents.

Finally, the defuzzification step transforms the fuzzy
conclusions made by the inferencing section of the fuzzy
inference are transferred into the crisp output. As described
earlier, Selection is the only output linguistic variable that is
to be defuzzified. Eventually, the defuzzification process
completed using the center of gravity (COG) generates
results which dictate the actual selection of the appropriate
search operation. COG is the most commonly adopted
method in fuzzy systems owing to its accurate computation
of results on the basis of weighted values of many output
membership functions [46]. The result of defuzzification is
assigned to the Selection crisp variable after the evaluation of
the COG formula according to the following equation:

([ p(AGOxdx
w; if x is continous
M (A(x))dx

Selection = COG = -
> u(A(x)x
* . if xis discrete,

2o X u(Ax)

(8)

where p(A(x)) denotes the membership function value of the
output fuzzy set.

The fuzzy inference system of ATLBO could be imple-
mented with other possible design choices such as triangular
memberships and the number of linguistic terms. However,
the proposed fuzzy inference system is easy to understand,
tunctional, and sufficiently efficient owing to the adoption of
the basic design choices.

It is evident from the overview of the original TLBO that
both global search and local search operations get an equal
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opportunity (50%) in each iteration during the search
process. Therefore, when the defuzzification output of the
fuzzy system assigned to the Selection parameter is greater
than 50%, the proposed algorithm selects a global search or
teacher phase. Otherwise, it selects the local search or learner
phase. Figure 7 presents the fuzzy adaptive TLBO (ATLBO)
based on the proposed Mamdani fuzzy inference system for
addressing unconstrained global optimization problems.

3.2. Complexity. For time complexity of the proposed
ATLBO, big-O is used as given here.

(i) The ATLBO initializes the population of learners

in O (Populationg,. x Problem;.nsion)-

(ii) The time required to select X .ycher a0d X, can 1S
O (Population

size
(iii) The time required to update positions of learners in
the teacher  phase of  ATLBO is

O (Population,, x Problemgy; . cnsion)-

(iv) The time required to update positions of learners in
the learner phase of the algorithm is
O (Populationg,, x Problemg;, .nsion)-

(v) O(Populationg,.) is the time required to evaluate
objective function in the teacher phase of ATLBO.

size

(vi) O (Populationg,.) is the time required to evaluate
objective function in the learner phase of
ATLBO.

(vii) ATLBO takes O (Populationg,. x Problemg;cnsion)
as an additional time for computing the diversi-
fication measure.

(viii) Time O (Problem g non) is taken by ATLBO to
compute the intensification measure.

In essence, the total time complexity of ATLBO is
O (Populationg,, x Problem ;. nson X Matierations)- HenNce,
both ATLBO and original TLBO have similar computational
complexity. All other evaluations are considered constants
including the evaluation of the 5 fuzzy rules.
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TaBLE 2: Details of the fuzzy input/output variables.
Linguistic variables Linguistic terms Member functions Corners of trapezoid
Low .uLow(A(Qm)) a=b= 0, c= 20, d=40
1 Quality measure Medium Ptedium(A(Q,,)) a=20, b=40, c=60, d=80
High High(A(Q,,)) a=60, b=80, c=d=100
High Hrigh(A(T,,)) a=b=0, c=20, d=40
2 Intensification measure Medium UMedium(A(I,,)) a=20, b=40, c=60, d=80
Low Urow(A(L,,)) a=60, b=80, c=d=100
Low How(A(D,,)) a=b=-co, c=20, d=40
3 Diversification measure Medium Unedium(A(D,,)) a=20, b=40, c=60, d=80
High prign(A(D,,)) a=60, b=80, c=d=100
. Local search ULocal_search(A(Selection)) a=b=0, c=20, d=80
4 Selection Global search Uglobal_search(A (Selection)) a=20, b=80, c=d=100
TaBLE 3: Fuzzy rules.
R# Antecedent Consequent
1 IF Q,, == high Selection = global search
2 IF Q,, = medium Selection =local search
3 IF Q,, =high and D,, =high and I, == high Selection =local search
4 IF Q,, =high and D,, == high and I,, = high Selection = global search
5 IF Q,, =high and D,, =high and I,, = high Selection = local search

4. Overview of COCOMO II Model

The constructive cost model II (COCOMO II) [47] is an
effective model developed by Barry Boehm for estimating
future software project development cost, effort, and
schedule. The input of the model is qualitative, whereas it
produces quantitative output. Estimation of cost in the
COCOMO 1II model is predicted using person-months
(PMs) effort. The time spent by a person working on some
part of the software development project in one month is
equivalent to one person-month. The COCOMO II model
utilizes the formulation shown in equation (9) to predict the
software development effort [48].

17
PM = ASize" [ [EM,, 9)
i=1

where A represents a multiplicative constant and is equal to
2.94; project size computed as kilo line of code (KLOC) is
represented by Size; EM, represents a parameter from the set
known as cost drivers which are listed in Table 4.

All these effort multipliers (EM) in postarchitecture (PA)
adjust the nominal effort in the COCOMO II model. Each
cost driver consists of six different rating levels, as shown in
Table 4. Each rating level also known as the multiplier is
assigned a value. These multipliers capture software devel-
opment features that influence the effort necessary for the
software project completion.

The exponent of Size (i.e., E) in equation (9) is computed
by using equation (10). This exponent is basically an aggre-
gated value of five scale factors (SFs) which excessively affect
the effort or productivity of a software development project.

5
E=B+0.01-) SF, (10)

i=1

where B represents a multiplicative constant and is equal to
0.91. There are again six different rating levels for each SF
with a predetermined weight, as shown in Table 5.

Besides effort, companies attempt to estimate the time
(TDEV) for software development projects. TDEV is derived
from the effort using the following equations:

TDEV = C - PM’, (11)

5
E=D+02-001-) SF, (12)
i=1

where C=3.67 and D=0.28, and these values have been
obtained by utilizing 161 projects’ actual schedule values
from the COCOMO II database.

Prediction level PRED (x) and mean of magnitude of
relative error (MMRE) are considered two accurate refer-
ence values in software effort estimation. The value of PRED
(30) often determines the performance of COCOMO
[49]. The relative error (RE) is used for calculating PRED
(30). RE represents the relative size and is given by the
following equation:

RE. — estimate; — actual,

1

13
actual; (13)
Summation of the absolute values of RE,; for each in-

dividual project divided by T projects in the dataset and
multiplied by 100 resultMMRE are as follows:
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Input: Solutions as learners: X = X, X,, ..., Xy
Output: The best learner X, from the improved learners: X" = {X{, X3, ..., X}
1 Randomly generate population of learners X and evaluate their objective functions
2 Define membership functions for Q,,, I,,,, D,,
3 Fuzzy rules definition for the inference system
4 Set Selection=100
5  While (criteria for stopping not reach)
6 If (Selection > 50)
7 Select X, e and calculate X,
8 For (i=1 to last learner)
/* Teacher Phase...Global Search */
9 Tr=round (1+ r (0, 1))
10 X§+1 :th + 1 Kieacher = TEX mean)
11 If (f (Xi*1) has better value than f(X}))
12 X=X
13 Else
14 For (i=1 to last learner)
/* Learner Phase...Local Search */
15 Select a learner th randomly such that i#j
16 If (f (XY) is better than f (Xj’))
17 X=Xt r (X - X))
18 Else
19 Xf=Xi+r (Xi- X))
20 If (f (Xi*1) has better value than f (X?))
21 Xi=xp
22 Display the best result X,
23 Compute Q,,, I,;,and D,
24 Fuzzify based on the three measures
25 Defuzzify and set Selection = crisp output
26 Display X,y
FiGure 7: Fuzzy adaptive TLBO (ATLBO).
TaBLE 4: Cost drivers in COCOMO 1I for the PA model.
Driver Symbol Very low Low Nominal High Very high Extra high
RELY EM1 0.82 0.92 1 1.1 1.26 —
DATA EM2 — 0.9 1 1.14 1.28 —
CPLX EM3 0.73 0.87 1 1.17 1.34 1.74
RUSE EM4 — 0.95 1 1.07 1.15 1.24
DOCU EMS5 0.81 0.91 1 1.11 1.23 —
TIME EMo6 — — 1 1.11 1.29 1.63
STOR EM7 — — 1 1.05 1.17 1.46
PVOL EMS8 — 0.87 1 1.15 1.3 —
ACAP EM9 1.42 1.19 1 0.85 0.71 —
PCAP EM10 1.34 1.15 1 0.88 0.76 —
PCON EM11 1.29 1.12 1 0.9 0.81 —
APEX EM12 1.22 1.1 1 0.88 0.81 —
PLEX EM13 1.19 1.09 1 0.91 0.85 —
LTEX EM14 1.2 1.09 1 0.91 0.84 —
TOOL EM15 1.17 1.09 1 0.9 0.78 —
SITE EM16 1.22 1.09 1 0.93 0.86 0.8
SCED EM17 1.43 1.14 1 1 1 —
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TaBLE 5: Scale factors with their respective values for the COCOMO II model.

Six levels
Scale factors . . . )
Extra high Very high High Nominal Low Very low
SF; =PREC 0 1.24 2.48 3.72 4.96 6.2
SF,=FLEX 0 1.01 2.03 3.04 4.05 5.07
SF;=RESL 0 1.41 2.83 4.24 5.65 7.07
SF, = TEAM 0 11 219 3.29 438 5.48
SFs=PMAT 0 1.56 3.12 4.68 6.24 0
MRE, = [REj]. (14)  global optimal, and are presented to algorithms to test their
exploitation efficiency. Multimodal functions can be used to
100 I evaluate the local optimal avoidance capability of a meta-
MMRE = - Z MRE,. (15) heuristic algorithm. Finally, 16 of the 23 functions are

i=1

The average percentage of the estimated values reported
by PRED (N) were within N% of the real effort values of the
projects from the adopted test dataset (equation (16)).

. N
1, lf MREI S T

100
PRED (N) =~ 100 (16)

™Mo

I
—

1
0, otherwise.

In this study, ATLBO attempts to obtain optimal values
for the parameters: A, B, C, and D of the COCOMO 1I
model, which in turn will minimize MMRE and maximize
PRED (N).

5. ATLBO Validation

This section presents two experiments conducted to validate
the performance of the proposed ATLBO algorithm.

(i) Experiment 1 presents a wide range of test
functions as optimization problems to be evalu-
ated and provides a comparison of the obtained
results for these functions by the proposed
ATLBO with other swarm-based metaheuristic
algorithms.

(ii) Experiment 2 adopts ATLBO for parameter op-
timization of the COCOMO II model. It is es-
sential to search for optimal values for the four
parameters of the COCOMO II model, namely A,
B, C, and D, as the values of these parameters
determine the minimal effort and cost for a soft-
ware project.

5.1. Experiment 1. Here, the performance of ATLBO is
compared on 23 different global test functions against
TLBO, FATLBO, GA, DE, PSO, BA, and PBA. Out of these
functions, functions f1-f11 (total 11) are two-dimensional,
function f12 is four-dimensional, function f13 is 10-di-
mensional, and functions f14-f23 (total 10) are 30-dimen-
sional. The scalability of the proposed algorithm can be
determined by using different dimensions. Moreover, 11
functions are unimodal, whereas 12 are multimodal. Uni-
modal functions have only one optimum known as the

nonseparable, whereas seven are separable. Table 6 describes
all the included test functions in detail.

For each of the functions listed in Table 6, experiments
on all selected algorithms have been previously conducted by
Cheng and Lien [50]. The maximum number of fitness
function evaluations for ATLBO is set at 500,000. Results of
less than 1E — 12 were considered 0. This study adopts these
similar conditions for the purpose of maintaining consis-
tency and to confirm the superior performance of the
proposed metaheuristic algorithm. Parameter settings for all
competing algorithms as well as ATLBO are shown in Ta-
ble 7. By virtue of being parameter-free, TLBO, ATLBO, and
FTLBO require only one parameter (i.e., population size).
Here, like all other algorithms, the population size for the
TLBO and its variants is n = 50.

Table 8 presents the results of ATLBO and other ref-
erenced metaheuristic algorithms. All these results except for
ATLBO are adopted from Cheng and Lien [50] and Cheng
and Prayogo [17]. The mean and standard deviation values
reported against ATLBO were obtained after running
ATLBO 30 times to maintain similarity with the earlier
work. All the numbers in italic represent the best values in
Table 8. ATLBO obtained the global optimum for 21 of the
total 23 test functions. In the case of the most challenging
function f20 (Rosenbrok), ATLBO outperformed all other
algorithms by producing the overall best value. Similarly,
ATLBO outperformed TLBO and FATLBO twice (i.e., for
function 17 (Quartic) and function20 (Rosenbrok)). As far
as total best solutions are concerned, ATLBO outperformed
its competitors by obtaining 22 best results. TLBO and
FATLBO obtained 21 best results. DE is third with 20 best
results. PSO and PBA obtained 17 best results. BA is second
last with 15 best results, whereas GA is last with only 9 best
results. Table 8 also shows the statistical outcomes (S.O)
which are recorded by employing the Wilcoxon rank-sum
test with a 5% significance level. Here, the symbols +/=/-
indicate better, equal, and worse performance of the pro-
posed algorithm against its competitor. These outcomes
determine that the performance of ATLBO is comparable to
existing state-of-the-art metaheuristic algorithms.

5.2. Experiment 2. 'The values of the parameters (A, B, C,
and D) in the COCOMO II model are constants and have
been less efficiently tuned based on the real effort and
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FiGure 8: Convergence of the parameters.

TaBLE 9: MRE values obtained by the three models.

Protect ID MRE of effort MRE of time

roject TLBO COCOMO TI ATLBO TLBO COCOMO 1I ATLBO
3 0.0085 0.2008 0.0003 0.0722 0.0367 0.0813
13 0.3432 0.4597 0.3355 0.2285 0.2885 0.2193
15 0.1744 0.3000 0.1604 0.2029 0.2869 0.1952
16 0.0009 0.0774 0.0308 0.0010 0.2244 0.0016
2 0.1593 0.2403 0.1358 0.1449 0.0940 0.1436
23 0.0481 0.1760 0.0285 0.1121 0.0768 0.1148
28 0.1446 0.0172 0.1734 0.1588 0.0934 0.1555
29 0.1552 0.0310 0.1727 0.1197 0.0659 0.1219
31 0.0935 0.0485 0.1170 0.1450 0.0830 0.1437
32 0.0519 0.0806 0.0753 0.1449 0.0876 0.1432
34 0.1712 0.3212 0.1621 0.0805 0.0462 0.0882
35 0.0778 0.2327 0.0652 0.0893 0.0551 0.0956
36 0.2082 0.3675 0.2029 0.0622 0.1650 0.0553
37 0.0005 0.1716 0.0125 0.0468 0.1798 0.0421
39 0.1163 0.2862 0.1087 0.0610 0.1682 0.0543
40 0.2831 0.3993 0.2724 0.0315 0.1835 0.0284
44 0.0446 0.0675 0.0049 0.0362 0.2409 0.0292
47 0.2810 0.3131 0.2538 0.1502 0.3256 0.1494
56 0.2171 0.2449 0.1862 0.1656 0.1488 0.1570
58 0.5435 0.6716 0.5485 0.0006 0.0187 0.0175
61 0.3127 0.3772 0.2931 0.0488 0.2595 0.0514
69 0.0635 0.1184 0.0305 0.1592 0.1244 0.1541
70 0.0842 0.1357 0.0516 0.1304 0.1248 0.1284
72 0.1108 0.0246 0.1459 0.1359 0.1151 0.1338
73 0.0371 0.1184 0.0079 0.1305 0.1117 0.1292
76 0.0279 0.0262 0.0652 0.1865 0.1269 0.1783
77 0.4396 0.4210 0.5023 0.2201 0.1450 0.2071
93 0.1757 0.3679 0.1759 0.0835 0.1904 0.0787
MMRE 15.62% 22.49% 15.43% 11.25% 14.53% 11.07%

The number in italics represents the best values.
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TaBLE 10: PRED(30) values obtained using the three models.

Approach Time (%) Effort (%)
ATLBO 100 89.29
TLBO 100 85.71
COCOMO II 96.43 67.87

The number in italics represents the best values.

time necessary for new projects. Hence, project devel-
opment activities can be predicted with low accuracy. In
this work, ATLBO is adopted to optimize these coeffi-
cients by utilizing historical software projects with actual
effort and time.

In the real practice of software development, estimation
of the required effort and time for projects is common. An
ideal estimation would offer 0% of MRE for both effort and
time. Moreover, parameter effort MMRE and time MMRE
are added together to constitute the fitness function (f)
(equation (17)) for each learner in the population [31].

f = MMRE (effort) + MMRE (time). (17)

Experimentation attempts to increase the accuracy of the
multiplicative constants (A, B, C, and D) of the COCOMO II
model by using ATLBO to obtain the best (i.e., near-to-
actual) effort estimation. The “NASA 93” [51] dataset was
used for conducting the experiments. The proposed algo-
rithm was trained with 65 projects from this dataset to
optimize the values of the four coefficients, whereas its
performance was tested on the other 28 projects after op-
timization. The obtained results of ATLBO are evaluated
against the results of TLBO reported in [31]. Unlike TLBO,
ATLBO optimizes the coefficients for the COCOM II model
with only 50 learners (i.e., population size) and 1000
iterations.

The optimized values for the parameters of the
COCOMO II model obtained by using ATLBO are as fol-
lows: A=4.023, B=0.866, C=3.04 and D=0.349. The
convergence of A, B, C, and D after each iteration is shown in
Figure 8.

Table 9 presents the comparison of MRE time and effort
values optimized by ATLBO with TLBO and the original
model for the 28 projects from the test dataset. Considering
these results, it can be stated that the ATLBO-based model
improves the accuracy further by reducing the MRE com-
pared to the TLBO and the original models. Moreover,
MMRE values for both effort and time have also been re-
duced owing to the optimized parameters. Therefore, it is
concluded that ATLBO for the optimization of the
COCOMO I coefficients is effective. PRED (N) is another
useful criterion for assessing the effectiveness of the pro-
posed ATLBO-based model.

Table 10 presents the values of PRED (30) generated by
ATLBO via equation (16). As compared to the other two
models, ATLBO’s results show high improvement in the
accuracy of software cost estimation for both time and effort.

Despite its performance, ATLBO is not without limi-
tations. Often, the developed fuzzy membership functions
and rules are problem dependent. More precisely, there is a
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need to do tuning and calibration to ensure successful ap-
plications. On the positive note, tuning is desirable to ensure
more control over the ATLBO’s exploration and exploitation
behavior depending on the problem at hand. In turn, better
search performance can be obtained.

6. Conclusion

This paper presents a fuzzy-based variant of the teaching
learning-based optimization (TLBO) algorithm called
adaptive TLBO (ATLBO) for global optimization. ATLBO
adaptively selects, based on the current search requirement,
either the teacher phase (exploration) or learner phase
(exploitation) by employing Mamdani-type fuzzy inference
system. The high-quality solutions generated by ATLBO
from the sample problems demonstrated its improved
searching ability compared to other metaheuristic algo-
rithms including the original TLBO and its variant (i.e.,
FATLBO). The ATLBO has generated optimum global re-
sults for 21 out of 23 benchmark test functions. Moreover,
ATLBO was also adopted for the optimization of parameters
in the COCOM 1II model. Results showed the superior
performance of ATLBO with fewer learners and iterations
than TLBO and the original model. The three measures,
namely, quality measure, diversification measure, and in-
tensification measure, utilized in ATLBO are simple to
compute from search spaces. Therefore, it can be concluded
that ATLBO, being efficient and easy to implement, is ef-
fective for addressing different numerical optimization
problems.

Finally, the applicability of ATLBO with its powerful
search ability will be investigated for other related optimi-
zation problems. Some of these problems include wireless
sensor network localization and the generation of substi-
tution boxes (S-boxes) in contemporary symmetric ciphers.
Similarly, ATLBO will be used for solving search-based
optimization problems in software engineering such as
software effort estimation models and software redundancy
reduction.

Data Availability

All the relevant data are available in this manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This work was supported by the “Regional Innovation
Strategy (RIS)” through the National Research Foundation
of Korea (NRF), funded by the Ministry of Education (MOE)
(2021RIS-001(1345341783)).

References

[1] R. V. Rao, Teaching Learning Based Optimization Algorithm
and its Engineering Applications, Springer, Berlin, Germany, 1
edition, 2016.



16

(2]
(3]

(6]

(7]

(8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

J. H. Holland, “Genetic algorithms,” Scientific American,
vol. 267, no. 1, pp. 66-72, 1992.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942-1948, Perth, WA, Australia, December
1995.

R. Storn and K. Price, “Differential evolution - a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341-359, 1997.

Z. W. Zong Woo Geem, J. H. Joong Hoon Kim, and
G. V. Loganathan, “A new heuristic optimization algorithm:
harmony search,” SIMULATION, vol. 76, no. 2, pp. 60-68,
2001.

D. H. Wolpert and W. G. Macready, “No free lunch theorems
for optimization,” IEEE Transactions on Evolutionary Com-
putation, vol. 1, no. 1, pp. 67-82, 1997.

M. Fayaz, Q. B. Pham, N. T. T. Linh et al.,, “A water supply
pipeline risk analysis methodology based on diy and hier-
archical fuzzy inference,” Symmetry, vol. 12, no. 1, p. 44, 2020.
M. Fayaz, L. Ullah, and D. Kim, “An optimized fuzzy logic
control model based on a strategy for the learning of
membership functions in an indoor environment,” Elec-
tronics, vol. 8, no. 2, p. 132, 2019.

S. Habib and M. Akram, “Decision-making system for
washing machine using aifnn,” Mathematical Sciences Letters,
vol. 4, no. 3, p. 303, 2015.

C.Jana, G. Muhiuddin, and M. Pal, “Some Dombi aggregation
of Q -rung orthopair fuzzy numbers in multiple-attribute
decision making,” International Journal of Intelligent Systems,
vol. 34, no. 12, pp. 3220-3240, 2019.

C. Jana, G. Muhiuddin, and M. Pal, “Multiple-attribute de-
cision making problems based on svtnh methods,” Journal of
Ambient Intelligence and Humanized Computing, vol. 11,
no. 9, pp. 3717-3733, 2020.

R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-
learning-based optimization: a novel method for constrained
mechanical design optimization problems,” Computer-Aided
Design, vol. 43, no. 3, pp. 303-315, 2011.

K. Z. Zamli, F. Din, S. Baharom, and B. S. Ahmed, “Fuzzy
adaptive teaching learning-based optimization strategy for the
problem of generating mixed strength t-way test suites,”
Engineering Applications of Artificial Intelligence, vol. 59,
pp. 35-50, 2017.

F. Din, A. R. A. Alsewari, and K. Z. Zamli, “A parameter free
choice function based hyper-heuristic strategy for pairwise
test generation,” in Proceedings of the IEEE International
Conference on Software Quality, Reliability and Security
Companion Prague, Czech Republic, pp. 85-91, Prague, Czech
Republic, July 2017.

F. Din and K. Z. Zamli, “Fuzzy adaptive teaching learning-
based optimization strategy for pairwise testing,” in Pro-
ceedings of the Seventh IEEE International Conference on
System Engineering and Technology, pp. 17-22, Shah Alam,
Malaysia, October 2017.

F. Din and K. Z. Zamli, “Pairwise test suite generation using
adaptive teaching learning-based optimization algorithm with
remedial operator,” in Proceedings of the International Con-
ference of Reliable Information and Communication Tech-
nology, pp. 187-195, Kuala Lumpur, Malaysia, June 2018.
M.-Y. Cheng and D. Prayogo, “A novel fuzzy adaptive
teaching-learning-based optimization (FATLBO) for solving
structural optimization problems,” Engineering with Com-
puters, vol. 33, no. 1, pp. 55-69, 2017.

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

Mathematical Problems in Engineering

A. H. Gandomi and A. R. Kashani, “Construction cost
minimization of shallow foundation using recent swarm in-
telligence techniques,” IEEE Transactions on Industrial In-
formatics, vol. 14, no. 3, pp. 1099-1106, 2018.

D. Lei, L. Gao, and Y. Zheng, “A novel teaching-learning-
based optimization algorithm for energy-efficient scheduling
in hybrid flow shop,” IEEE Transactions on Engineering
Management, vol. 65, no. 2, pp. 330-340, 2018.

P. Niu, Y. Ma, and S. Yan, “A modified teaching-learning-
based optimization algorithm for numerical function opti-
mization,” International Journal of Machine Learning and
Cybernetics, vol. 10, no. 6, pp. 1357-1371, 2019.

B.-C. Wang, H.-X. Li, and Y. Feng, “An improved teaching-
learning-based optimization for constrained evolutionary
optimization,” Information Sciences, vol. 456, pp. 131-144,
2018.

A. K. Shukla, P. Singh, and M. Vardhan, “An adaptive inertia
weight teaching-learning-based optimization algorithm and
its applications,” Applied Mathematical Modelling, vol. 77,
pp. 309-326, 2020.

Z. Li, X. Zhang, J. Qin, and J. He, “A reformative teach-
ing-learning-based optimization algorithm for solving nu-
merical and engineering design optimization problems,” Soft
Computing, vol. 24, 2020.

H. Nenavath and R. K. Jatoth, “Hybrid SCA-TLBO: a novel
optimization algorithm for global optimization and visual
tracking,” Neural Computing & Applications, vol. 31, no. 9,
pp. 5497-5526, 2019.

X. Jiang and J. Zhou, “Hybrid de-tlbo algorithm for solving
short term hydro-thermal optimal scheduling with incom-
mensurable objectives,” in Proceedings of the Control Con-
ference (CCC), pp. 2474-2479, Xi’an, China, July 2013.

S. Tuo, L. Yong, and T. Zhou, “An improved harmony search
based on teaching-learning strategy for unconstrained opti-
mization problems,” Mathematical Problems in Engineering,
vol. 2013, Article ID 413565, 29 pages, 2013.

S. Deb, X.-Z. Gao, K. Tammi, K. Kalita, and P. Mahanta, “A
new teaching-learning-based chicken swarm optimization
algorithm,” Soft Computing, vol. 24, no. 7, pp. 5313-5331,
2020.

S. Biswas, S. Kundu, D. Bose, and S. Das, “Cooperative Co-
evolutionary teaching-learning based algorithm with a
modified exploration strategy for large scale global optimi-
zation,” in Proceedings of the International Conference on
Swarm, Evolutionary, and Memetic Computing, pp. 467-475,
Maribor, Slovenia, July 2012.

S. C. Satapathy and A. Naik, “Cooperative teaching-learning
based optimisation for global function optimisation,” Inter-
national Journal of Applied Research on Information Tech-
nology and Computing, vol. 4, no. 1, pp. 1-17, 2013.

E. Zou, D. Chen, R. Lu, and P. Wang, “Hierarchical multi-
swarm cooperative teaching-learning-based optimization for
global optimization,” Soft Computing, vol. 21, no. 23,
pp. 6983-7004, 2017.

T. T. Khuat and M. H. Le, “A novel technique of optimization
for the cocomo ii model parameters using teaching-learning-
based optimization algorithm,” Journal of Telecommunica-
tions and Information Technology, vol. 2016, 2016.

M. Ibrahim, “A new model for software cost estimation using
bat algorithm,” International Journal of Academic Research in
Computer Engineering, vol. 1, no. 1, pp. 53-60, 2016.

T. T. Khuat and M. H. Le, “Applying teaching-learning to
artificial bee colony for parameter optimization of software



Mathematical Problems in Engineering

[34

(35

(36

(37]

[38

(39]

(40

[41]

(42

(43

(44]

(45]

(46]

(47]

[48

[49

(50]

(51]

effort estimation model,” Journal of Engineering Science &
Technology, vol. 12, no. 5, pp. 1178-1190, 2017.

S.K. Sehra, Y. S. Brar, N. Kaur, and G. Kaur, “Optimization of
cocomo parameters using tlbo algorithm,” International
Journal of Computational Intelligence Research, vol. 13, no. 4,
pp. 525-535, 2017.

D. Nandal and O. P. Sangwan, “Software cost estimation by
optimizing cocomo model using hybrid batgsa algorithm,”
International Journal of Intelligent Engineering and Systems,
vol. 11, no. 4, pp. 250-263, 2018.

A. A. Fadhil, R. G. H. Alsarraj, and A. M. Altaie, “Software
cost estimation based on dolphin algorithm,” IEEE Access,
vol. 8, Article ID 75279, 2020.

W. Rhmann, B. Pandey, and G. A. Ansari, “Software effort
estimation using ensemble of hybrid search-based algorithms
based on metaheuristic algorithms,” Innovations in Systems
and Software Engineering, pp. 1-11, 2021.

S. Habib and M. Akram, “Neuro-fuzzy control for heater fans
using anfis and nefcon,” Journal of Advanced Research in
Scientific Computing, vol. 6, no. 2, pp. 6-16, 2014.

M. A. Butt and M. Akram, “A novel fuzzy decision-making
system for cpu scheduling algorithm,” Neural Computing ¢
Applications, vol. 27, no. 7, pp. 1927-1939, 2016.

S. Habib, M. Akram, and A. Ashraf, “Fuzzy climate decision
support systems for tomatoes in high tunnels,” International
Journal of Fuzzy Systems, vol. 19, no. 3, pp. 751-775, 2017.
K. Z. Zamli, F. Din, G. Kendall, and B. S. Ahmed, “An ex-
perimental study of hyper-heuristic selection and acceptance
mechanism for combinatorial t-way test suite generation,”
Information Sciences, vol. 399, pp. 121-153, 2017.

G. Shahzadi, G. Muhiuddin, M. Arif Butt, and A. Ashraf,
“Hamacher interactive hybrid weighted averaging operators
under fermatean fuzzy numbers,” Journal of Mathematics,
vol. 2021, Article ID 5556017, 17 pages, 2021.

S. Habib and M. Akram, “Diagnostic methods and risk analysis
based on fuzzy soft information,” International Journal of
Biomathematics, vol. 11, no. 8, Article ID 1850096, 2018.

F. Camastra, A. Ciaramella, V. Giovannelli et al.,, “A fuzzy
decision system for genetically modified plant environmental
risk assessment using mamdani inference,” Expert Systems
with Applications, vol. 42, no. 3, pp. 1710-1716, 2015.

I. Tancu, “A mamdani-type fuzzy logic controller,” in Fuzzy
Logic-Controls, Concepts, Theories and ApplicationsInTech,
London, UK, 2012.

C. P. Pappis and C. 1. Siettos, “Fuzzy reasoning,” Search
Methodologies, Springer, Berlin, Germany, pp. 519-556, 2014.
B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy,
and R. Selby, “Cost models for future software life cycle
processes: cocomo 2.0,” Annals of Software Engineering, vol. 1,
no. 1, pp. 57-94, 1995.

C. Abts, B. Clark, S. Devnani-Chulani et al., Cocomo Ii Model
Definition Manual, Rose-Hulman, Terre Haute, IN, USA,
1998.

Z. Chen, T. Menzies, D. Port, and B. Boehm, “Feature subset
selection can improve software cost estimation accuracy,”
ACM SIGSOFT - Software Engineering Notes, vol. 30, no. 4,
pp. 1-6, 2005.

M.-Y. Cheng and L.-C. Lien, “Hybrid artificial intelligence-
based PBA for benchmark functions and facility layout design
optimization,” Journal of Computing in Civil Engineering,
vol. 26, no. 5, pp. 612-624, 2012.

T. Menzies, “The tera-promise repository for cocomo 93,”
2015, http://promise.site.uottawa.ca/SERepository/datasets/
cocomonasa_2.arff.

17


http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_2.arff
http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_2.arff

