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ABSTRACT 

 

 

 This research work deals with the machining characteristics of  Hastelloy C-

2000 in the end milling operations. The mathematical model was developed through the 

response surface method (RSM) which basically focuses on machining characteristics 

such as surface roughness, tool life and cutting force using coated and uncoated carbide 

cutting inserts in wet conditions. The accuracy of this aforementioned technique and 

model was verified by ANOVA. The minimum and maximum of machining 

performance was presented followed by the confirmation test to validate the design 

variables. It is found that the models are able to predict the longitudinal component of 

the surface roughness, cutting force, and tool life close to those readings recorded 

experimentally with a 95% confident level.  Artificial Neural network (ANN) prediction 

model was developed with back propagation algorithm with the use of multilayer 

perceptron and activation function of hyperbolic tangent. Feed rate is the most 

influential factor, followed by axial depth and cutting speed for surface roughness, tool 

life and cutting force. The mean absolute relative error for surface roughness of RSM 

models (first, second order) and ANN is 4.386 %, 2.324 % and 0.1790% for coated 

carbide inserts and 9.878 %, 6.681 % and 0.136 % for uncoated carbide inserts 

respectively. In addition, for tool life model, 8.3130 %, 4.8760 %, 0.2% for coated 

carbide inserts, 9.7880%, 7.6270 %, and 0.1580% for uncoated carbide inserts. 

Furthermore, for cutting force model 4.386 %, 2.324 % and 0.4181 % for coated carbide 

and 9.878 %, 6.681 % and 0.5% for uncoated carbide. The PVD coated-carbide cutting 

tools perform better than the uncoated-carbide in terms of the surface roughness, cutting 

force, and tool life. Surfaces finish and wear surfaces were characterized using an 

optical video measurement system, scanning electron microscope (SEM) and electron 

dispersive X-ray (EDX). The tool failures found in this research was flank wear, 

notching, and chipping. Adhesion and plastic lowering at cutting edge were the main 

tool wear mechanisms seen in the present work, which is clearly demonstrated by the 

adhered workpiece material and the formation of a built-up edge (BUE) on the tool 

flank. There have been a few chips found in this research and broadly they can be 

divided into two types. Type 1: unstable and type 2: critical. Due to the research done 

on the earlier models, RSM established prediction and optimization models. However, 

ANN serves more efficiency and accuracy because its error is very less compared to 

RSM. ANN has characteristics of predicting machining and they work far better when 

compares to mathematical modelling.  
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ABSTRAK 

 

 

 Laporan ini membentangkan proses pemesinan ciri Hastelloy C-2000 dalam 

prosess hujung penggilingan. Model matematik dibangunkan melalui kaedah 

tindakbalas permukaan oleh persamaan pertama dan kedua berdasarkan kekasaran 

permukaan, jangka hayat, dan daya pemotongan menggunakan mata alat bersalut dan 

tidak bersalut karbid dalam keaadan basah. Ketepatan model dianalisa oleh ANOVA. 

Peminimuman dan pengaksimunan pemesinan dibentangkan diikuti ujian pengesahan 

untuk kesahihan rekabentuk pembolehubah. Model rangkaian saraf buatan di formulasi  

dengan penyebaran belakang dengan penggunaan  persepsi pelbagai lapisan dan fungsi 

pengaktifan garis lengkung. Kadar pemotongan adalah pengaruh faktor utama, diikuti 

kedalaman pemotongan dan kelajuan pemotongan untuk kekasaran permukaan, jangka 

hayat dan daya pemotongan. Purata mutlak relatif kesilapan untuk kekasaran permukaan 

bagi model pertama, kedua dan rangkaian saraf buatan adalah 4.386 %, 2.324 % dan 

0.1790% untuk mata alat bersalut karbid dan 9.878 %, 6.681 % dan  0.136%  untuk 

mata alat tidak bersalut karbid. Seterusnya, jangka hayat,  8.3130 %, 4.8760 %, 0.2% 

untuk mata alat bersalut karbid, 9.7880%, 7.6270 %, dan  0.1595 %  untuk mata alat 

tidak bersalut karbid. Tambahan lagi, untuk model daya pemotongan 4.386 %, 2.324 % 

dan 0.4181% untuk mata alat bersalut karbid dan 9.878 %, 6.681 % dan 0.5% untuk 

mata alat tidak bersalut karbid. Mata alat bersalut PVD karbid berprestasi lebih baik 

berbanding mata alat tidak bersalut karbid dalam konteks kekasaran permukaan, jangka 

hayat dan daya pemotongan. Permukaan akhir dan kehausan permukaan dikategorikan 

menggunakan sistem pengukuran video optik, mikroskop penelitian elektron dan 

penyebaran elektron sinar X. Kegagalan mata alat yang ditemui dalam penyelidikan ini 

ialah kehausan rusuk, takik dan serpihan. Kelekatan dan kerendahan plastik pada hujung 

mata alat adalah kehausan utama dimana jelas di demonstrasikan oleh kelekatan bahan 

kerja dan pembentukan pembinaan hujung pada rusuk mata alat. Beberapa jenis 

serpihan telah dijumpai dan dibahagikan kepada jenis pertama: serpihan tidak stabil dan 

serpihan kedua: serpihan kritikal. Berdasarkan penyelidikan yang dibuat pada model-

model, penganggaran dan peminimuman serta pengaksimuman telah didirikan melalui 

kaedah tindak balas permukaan. Walaubagaimanapun, rangkaian saraf buatan lebih 

efisien dan tepat kerana kesilapannya sangat sedikit dan berfungsi jauh lebih baik dari 

kaedah tindak balas permukaan.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

Given the advantages of nickel-based alloys, these are highly recommended in 

the industry over titanium-based alloys, aluminium and composites. According to 

M'Saoubi et al. (2008) and Wu (2007), nickel-based alloys are heat resistant which 

allows them to maintain their chemical and mechanical properties at high temperatures, 

high resistance corrosion, and high melting temperatures, resistance to shock, erosion, 

creep and thermal fatigue. According to Arunachalam et al. (2004), nickel-based alloys 

such as IN-718 are used in more than half of the materials made for aerospace industry 

and aeroengines. A typical Aerogas turbine’s nickel-alloy weight percentage is given in 

Figure 1.1. According to Miller (1996), it can be observed that by the end of 20th 

century, the use of titanium and nickel-based alloys were used in the aerospace engines. 

UDIMET 720LI is a super alloy used in the aerospace industry which with the addition 

of Co-Ti can be made more useful for this industry as its strength and surface quality 

increases (Cui et al., 2005). Marine equipment, petrochemical plants, nuclear reactors, 

food processing equipment and other such applications undergo constant improvement 

in order to improve their surface integrity and strength. At high temperatures, they have 

better strength, wear resistance and chemical degradation. However, due to its poor 

thermal characteristics, good surface results are not obtained at high temperatures 

because of the friction and deformation induced heat and changes in micro structure 

((Ezugwu et al., 2003). 
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Figure 1.1: Evaluation of materials use in Aerogas turbines 

 

Source: Miller (1996). 

 

The main issue faced in the research is that heat-resistant nickel-based alloys 

have a low thermal conductivity as well as a high characteristic of adhesion which 

during the machining increases the effects of thermal and tool face parameters. The 

alloy can also contain carbides and abrasive particles that can create high tool wear. 

Thus, according to Axinte et al. (2006) the quality of the final products is low. 

Furthermore, the alloy has an austenitic matrix which makes the work hard during the 

process of machining. Besides this, the abrasive saw-toothed edges are produced 

because of localised shear in the chip making the handling of swarf difficult. In 

addition, the alloy can weld with the material of the tool during high temperature as a 

result of machining. This tendency to create built-up edge (BUE) during the process of 

machining and the abrasive carbides prevents any machinability. This is because of, 

according to Ezugwu et al. (1991), the high temperature (>1000°C) and stress (>3450 

MPa) which accelerates the create ring, flank wear and notching.  

 

Hastelloy C-2000 is the nickel-chromium-molybdenum (Ni-Cr-Mo) C-type alloy 

which is used in the aerospace, marine and food processing, chemical process 

industries. According to Shokrani et al. (2012), difficulties as well as high costs are 

expected in machining of this alloy because it is designed retain its strength at elevated 

temperatures. Thus, great efforts are being made to find an economical method of 
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machining these alloys to enhance its performance. As a result, the use of mathematical 

modelling is done to develop empirical equations for relating the cutting parameters to 

the tool life, surface roughness, tool wear and cutting force. A statistical method used to 

optimise the surface response is called response surface method (RSM). The RSM 

quantifies the relationship between response surfaces and input parameters 

(Montgomery, 1997; Kwak, 2005). The use of Artificial Neural Network (ANN) is done 

in modelling of different operations including drilling, turning and milling. The main 

characteristic of this network depends on three factors namely the dataset distribution, 

selection of the input/output system parameters and presentation format of the dataset 

for the network. In order to acquire the best results, activation function, hidden layers, 

training algorithms and neuron number are important.  

 

In addition to being used as a mathematical model generator by RSM, the use of 

ANN is also taken in predicting the machining optimal conditions because it is 

considered as a powerful modelling method for performance characteristics prediction. 

The advantage of using ANN is that it can help solve processing issues which require 

interpretation and real-time encoding of variables and their relationship having high-

dimensional space. According to Kartalopoulos (1996), ANN is a structure consisting of 

various interconnected elements. Each of these elements has the characteristics as an 

input/output which implements the local computation. The I/O characteristic determines 

the output of each element which is the interconnection to various other elements. This 

interconnected network creates an overall functionality by training forms. According to 

Skapura (1996), the unit of ANN is known as neuron which has an input set of Xi 

weighed before it reaches the main part of the processor. Furthermore, because of its 

bias terms, it has a threshold value which needs to be maintained in order to produce a 

signal by the neuron, which is non-linearity function (fi) acting upon the signal 

produced (Ri) as well as output (Oi). This model is presented in Figure 1.2. According 

to Azlan et al. (2010), the sigmod activation function combined with the algorithm of 

feed forward back propagation is used in the end milling machining for predicting the 

roughness of the surface. Hao et al. (2006) has introduced a cutting force model using 

the artificial neural networks for the force prediction of self-propelled rotary tool 

(SPRT). In this present study focuses on best usage of machining Hastelloy C-2000 in 
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respect to the cutting force, tool life and surface roughness using the ANN approaches 

in the CNC milling machine.  

 

 

 

 

 

 

 

Figure 1.2: Basic model of artificial neural network 

 

1.2  PROBLEM STATEMENT 

 

A great challenge is presented to the manufacturers in the competitive 

marketplace because of the manufacturing environment, low costs, goals of high rates of 

production, and high quality. The accuracy of workpiece dimension, tool wear, surface 

finish, and tool life on the material removal rate and cutting tool have increased for 

enhancing the product performance in relation to the impact of the environment (Ulutan 

and Ozel, 2011).  According to Li et al. (2006), Hastelloy C-2000 is considered because 

of its design to withstand high temperatures making the machining operations and 

cutting temperatures high. Furthermore, according to Ashtakhov (2006), the contact 

length of tool is short which produces high stress level at the tool-chip interface of the 

alloy. According to Kadirgama et al. (2011), the dominant features of tool failure are 

flank wear, cracking, catastrophic, notching, chipping, plastic lowering and the cutting 

edge and so on. The hardening of work is another issue which leads to high wear of tool 

at the flank face. It was reported by Outeiro et al. (2008) that the mechanical and 

thermal loads affect the tool’s residual stress for instance the thermal load creates tensile 

stress for austenitic structure while it is suppressed by mechanical load. According to 

M’Saoubi et al. (2008), these loads are more dominant in high-temperature alloy 

machining that cause undesired tensile stress.  According to Yahya (2007), it is 

important in manufacturing that the machining finishing process be of specified 

dimensions, surface finish, tolerances, type of surface generations and other behaviours. 

Given such demands of the manufacturing, it is imperative to examine the features of 
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the machining, chip formation and surface integrity. As such, the focus of this research 

is on the optimization of the Hastelloy C-2000 machining characteristics in regards to 

surface roughness, tool life, tool wear, and cutting force for acquiring high 

machinability. For this purpose, an artificial intelligent model and mathematical model 

are presented for finding a combination of independent variables of the end milling 

process of CNC (feed rate, axial depth, and cutting speed) for achieving the best 

machining behaviours.  

 

1.3        OBJECTIVES OF STUDY  

 

The objectives of this study are as follows: 

 

1. To investigate the characteristics of the machining in the operation of end mill in 

terms of the surface roughness, surface integrity, tool life, and cutting force.  

2. To develop a model of process optimization using the response surface method. 

3. To establish a prediction model using artificial neural network based on the 

Hastelloy C-2000 machining characteristics.  

4. To evaluate the mechanism of tool wear as well as formation of chips of the 

cutting tools when the machining Hastelloy C-2000.  

 

1.4 SCOPES OF STUDY 

 

The CNC milling machine conducts the experiments for different feed rate, axial 

depth and cutting speed. The two flutes and slotting process by the end milling are 

supposed to be cutting tool and machining operation. Cutting tool’s diameter is 16 mm 

which is assumed to be constant while two cutting inserts are used namely uncoated 

carbide and coated carbide. The workpiece is machined in the wet cutting condition 

using fully synthetic lubricant type and experimental is conducted based on the 

Box-Behnken design. The characteristics of the machinability of the material are 

mentioned in respect of the surface roughness, surface integrity, tool life, tool wear, 

cutting force, and chip formation. The cutting force is measured online during the 

machining using dynamometer, where the surface roughness, tool life and tool wear is 

measured once the machining procedure has been completed. At the same time, the 
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integrity of the surface can be examine by using a scanning electron microscope (SEM), 

which helps in studying material and surface characteristics that may change because of 

work hardening of the Hastelloy C-2000 or elevated temperatures during the machining 

process. The chips are collected after machining process completed. The mathematical 

modelling based on first and second order of response surface methodology is 

developed as an aid in optimization of machining performance. The back propagation 

algorithm along with the artificial neural network can used to predict certain features of 

Hastelloy C-2000. 

 

1.5 ORGANIZATION OF THESIS  

 

The preparation of this thesis was made while aiming to provide adequate 

information regarding observations, facts, procedures and arguments which will help 

reach the determined goals. Other than the Introduction, four chapters were written in a 

way to show a logical progression of thought. The literature review discussed different 

theories relating to metal cutting, while in Chapter 2 discussed cutting force, tool wear 

and surface roughness. In addition, the artificial neural network and practical 

application of RSM were also discussed. In Chapter 3, the different tools and 

procedures used to analyze the data were discussed, along with information regarding 

data collection, evaluation of data and techniques used for analysis. Chapter 4 discusses 

the results obtained through meticulous analysis. Two sets of mathematical models 

based on response surface method were compared against the artificial neural network 

model. Other items in this chapter included how machining characteristics can be 

optimized. Chapter 5 contains the conclusions drawn along with recommendations. In 

addition, any areas of future research have been included in this chapter.  



 
 

 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1        INTRODUCTION 

 

This chapter provides the review from previous research efforts related to milling 

process, CNC milling machine, cutting parameters in milling machine, and cutting 

tools. This chapter also involves a review some research studies like the statistical 

method and artificial neural network which are related to the mathematical modelling 

the present study. Substantial literature has been studied on machinability nickel based 

alloys which is covers on surface roughness, surface integrity, tool life, tool wear 

cutting force and chip formation. This review has been well elaborate to cover different 

dimensions of this research such as a discussion about the current content of the 

literature, the scope and the direction of current research. The review follows a 

chronological order to highlight how the outcomes of the previous research served as 

the basis for more work in this field this research is one such effort. To carry out this 

research, which had to undergo a considerable amount of literature but not enough 

information was available. The review is fairly detailed so that the present research 

effort can be properly tailored to add to the current body of the literature as well as to 

justify the scope and direction of present. 

 

2.2         MILLING PROCESS 

 

Milling is an extremely important process of removing material. When 

compared to other non-traditional machining processes milling is not just less costly but 

it can be used with a wised array of applications (Tang et al., 2009). The milling process 
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is a multipurpose material removal process. Machining of shapes that have close 

tolerances and are complicated can be done with the milling operations. Hence it can 

define milling as a machining operation where a work piece is inserted into a rotating 

cylindrical tool that has numerous cutting edges (Rao and Pawar, 2010). The axis of 

rotation of the tool is set at right angles to the direction of insertion. The tool that does 

this is known as the milling cutter and its cutting edges are known as the teeth.  To 

perform the cutting action the work piece is inserted beside the rotating cutter. Only a 

proportionate arrangement of the process’s parameters can lead to effective outcomes 

and the essential parameters of this process include the spindle speed, the table feed, the 

depth of cut, and the rotating direction of the cutter (Imani et al., 2012). Frequent use of 

milling happens to be as a secondary process used to enhance features on parts that were 

contrived with a different process.  Since the milling process can provide surface 

finishes and high tolerances and surface finishes that is why it is deemed as the best way 

for adding precision features to a part whose basic shape has been formed previously 

(Dotcheva and Millward, 2005). There is multiple-axis of a milling machine used to 

machine byzantine surfaces. The example of milling process is illustrated in Figure 2.1. 

 

 
 

Figure 2.1: Typical example of milling process  

 

Kang et al. (2007) conducted a study on the cutting conditions in micro-end 

milling. Peripheral milling operations are carried out by End milling, the peripheral 
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milling operations comprise of profiling and slotting operations. Bao and Tansel (2000) 

performed a study to understand the cutting force in the application of micro-end 

milling and conventional milling machine. The peripheral or slot cuts are made with an 

end mill the step-over distance through the work piece determine them to machine a 

definite feature,  like a profile, slot, pocket, or even a complex surface contour. The type 

of end mill used most abundantly is 2- flute and 4-flute. A lot of aerospace components 

such as dies and moulds are commonly done by the machining processes of the flat end 

milling (Dang et al., 2001).  There are many different quality specifications and styles 

of end milling cutting tools. However, Fontaine et al. (2007) did the exploration about 

the impact of tool workpiece inclination on cutting force by ball-end milling with slot 

tests. This study revealed that the trouble at low speed when slot end-milling is used due 

to the cutting temperature increases and strain hardens (Liao and Wang, 2008).  

 

The machinery industry is ingested with the machine tools known as computer 

numerical control (CNC) milling (Yang and Lee, 2001). The higher productivity, 

integrity of workpiece machine and the maintenance of surface quality are all possible 

because of the CNC milling machine (Ertekin et al., 2003). Turning and drilling are the 

fundamental functions of CNC milling, the number of axes that they hold are used for 

their categorization. These axes are categorised as X and Y for horizontal movements, 

and Z for vertical movement. There are different ways of understanding the number of 

axes of a milling machine and it is often seen to be a casual "shop talk". The horizontal 

pivot serves as an extra axis for a five-axis CNC milling machine. It is used for milling 

head and leads to enhanced flexibility for machining with the end mill at an angle as per 

the given table (Shaw and Ou, 2008). There are a set of commands by the name of G-

codes that are usually used for programming the CNC milling machines. Specific CNC 

functions written in alphanumeric format are denoted by G-codes (Omirou and Barouni, 

2005). The selection of the size depends on the purpose, location of usage and the type 

of the material that ought to be cut the size of motor also changes the speed at which the 

materials are cut. The materials are difficult to cut and require more time and a stronger 

milling machine on the other hand materials such as plastic and wood are easy to cut. 

The higher the rigidity of the mill the more accurately it drills and cuts. When put CNC 

mills against the conventional mills, it can be seen that CNC mills have higher rigidity 

usually because they have superior and tougher engines (Mecomber et al., 2005). 
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2.3 CUTTING PARAMETERS IN MILLING MACHINE 

 

The manufacturing engineers and researchers have now started to become 

conscious that efficient quantitative and predictive models that institute the relationship 

between a input independent parameters and output variables are required to enhance 

the economic performance of metal cutting operations for various manufacturing 

processes, cutting tools and engineering materials implied in the industry at the present 

point (Alberti et al., 2005).  In order to improve the characteristics of machining input 

of cutting parameters in milling machine, four parameters are of paramount importance 

namely, feed rate (mm/tooth), axial depth (mm),cutting speed (m/min) and radial depth 

of cut (mm) where the value is kept constant (Arezoo et al, 2000). All these parameters 

are detailed below:  

 

For machining cobalt based superalloy, the succeeding cutting parameters are 

used such as feed rate, axial depth and cutting speed (Aykut et al., 2007a). During the 

end milling of Inconel 718TM the authors had used different feed rates to improve the 

performance and life of the tool (Krain et al., 2007). The feed rate, axial depth and 

cutting speed were used as cutting parameters to describe and model for development of 

burr in micro-end milling (Lekkala et al., 2011). To inspect the chip load prediction of 

ball-end milling machine the feed rate is used as a fundamental parameter (Jung et al., 

2001). The feed rate scheduling model allows traverse rupture strength of a tool 3D ball 

end-milling (Ko and Cho, 2004). The classification of common sensory topographies 

for the control of CNC milling operations in changeable cutting conditions is done by 

cutting parameters like feed rate, axial depth and cutting speed (Ertekin et al., 2003). 

Baek et al., (2001) used the surface roughness model for the enhancement of feed rate 

during a face milling operation. The CNC milling machine uses the parameter of feed 

rate to examine data fusion neural network for tool condition monitoring (Chen and Jen, 

2000). 

 

In the investigation of surface roughness AL20 14-T6 a slot end milling that 

comprises of  cutting parameters such as axial depth, feed rate, cutting speed, concavity 

angle and axial relief angle (Wang and Chang, 2004). According to Lamikiz et 

al. (2004), the axial depth was used as a parameter in predicting the cutting force 
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sculptured surface milling. Axial depth was used as a variable for examining the 

influence of the cutting dynamics of small radial immersion milling operations on the 

machined surface roughness. When studied the hybrid adaptive control on the 

foundations of CNC end milling, the axial depth was used as a parameter (Yang and 

Lee, 2001). Kim et al., (2000) used Z-map in applying the axial depth for cutting input 

to study the cutting force in end-milling. When analysing the tool life and tool wear of 

Haynes-22HS by means of respond surface method the CNC milling machine 

parameters include axial depth, feed rate and cutting speed (Kadirgama et al., 2011).   

 

The input parameter was used in the simulation of cutting forces in ball-end 

milling (Milfelner and Cus, 2003). The cutting speed, axial depth, radial depth, feed rate 

all are cutting parameters used in CNC milling machine when studying cutting force 

(Dang et al., 2010). For hardened steel the parameter for study of end milling is the 

cutting speed (Kita et al., 2001). When exploring the mechanistic modelling of the 

milling process for multi-axis machining of free surfaces cutting speed is applicable 

(Zhu et al., 2001). Force torque established online tool wear system assessment with 

different ranges of cutting speed, feed rate and depth of cut cutting conditions for CNC 

milling machine of Inconel 718 by means of neural networks (Kaya et al., 2011). As for  

a lengthy control scheme of cutting forces that normalise the tool life in end milling 

process as an input parameter various ranges of cutting speed were used (Ibaraki and 

Shimizu, 2010). 

 

2.4  NICKEL BASED SUPERALLOYS 

 

When compare Nickel-based superalloys (Ni-Co-Cr, Ni-Fe-Cr or Ni-Co-Fe) 

against titanium-based alloys, it can be seen that they have a plenty of advantages that is 

why they are widely prevalent in the industry (Shokrani et al., 2012). Even after these 

Nickel based alloys are exposed to extremely high temperatures for extensive time 

periods they still  maintain most of their strength (Khidir and Mohamed, 2010) that is 

why when it comes to choose the material for turbine sections of the jet engines these 

Nickel based alloys are the ultimate choice.  The strengths of the nickel-based alloys 

include:  they have high melting temperatures,  are heat-resistant, are high corrosion 

resistance, can maintain their high mechanical and chemical properties at high 
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temperatures, and  are resistant to thermal fatigue, thermal shock, creep, and erosion 

(M'Saoubi et al., 2008; Wu, 2007). Nickel based alloys are normally use in the hot 

sections of mission critical apparatuses of  jet engines or gas turbine engines are the 

commonly available forms of these alloys are wrought, forged, cast and in sintered 

(powder metallurgy) ( Arunchalam et al., 2004). Cross section of a jet engine is shown 

in Figure 2.2. 

 

 
 

Figure 2.2: Cross section of a jet engine (courtesy of Pratt and Whitney). 

 

The Ni-Fe-Cr alloy (Inconel-718 (IN-718)) is an alloy with properties like high 

strength and high temperature resistance that is why fifty percentage (50%) weight of a 

jet engine is made up of this alloy (Miller, 1996). Nevertheless these properties are have 

many setbacks such as decrease in the productivity and surface quality of surface 

machine (Ezugwu et al., 2003) and they cause low tool life for the tools used to machine 

them that is why it is deemed difficult to machine such alloys (Wu, 2007). They are not 

just able to resist all acids mainly hydrochloric, sulphuric, and hydrofluoric at high 

temperature ranges, but also resist the insidious types of attack prompted by chlorides 

and other halide solutions specially pitting, crevice attack, and stress corrosion cracking 

(HI, 2011). This material is used in the chemical process industry reactors like heat 

exchangers, columns, and piping (Ezugwu, 2005).  On the contrary, the Inconel 100 

(IN-100), Ni-Co-Cr superalloy is frequently applied to parts operating at intermediate 

temperature regimes, for components like disks, spacers and seals. The turbine and 
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compression blades in hot sections of jet engines also use cast nickel-based alloys 

(Ulutan and Ozel, 2011).  

 

2.5 MACHINABILITY OF NICKEL BASED ALLOY 

 

Machinability can be defined as “ability of being machined” or more logically as 

“ease of machining”. However the word ‘machinability’ refers to the development of 

work materials machining characteristics. The machining conditions determine what 

type of machining characteristics of the work materials are required (Hamann et al., 

1996). The magnitude of the surface roughness, surface integrity, tool wear or tool life, 

cutting forces, and chip forms can all be used to evaluate the ease of machining of any 

tool-work pair (Ezugwu et al., 2003). Machinability is considered desirably high when 

cutting forces, temperature, surface roughness and tool wear are less, tool life is long 

and chips are ideally uniform and short enabling short chip-tool contact length and less 

friction (Trent, 1991).  It is an ingrained fact that preformed components are 

fundamentally machined to deliver dimensional accuracy and surface finish so that the 

product can perform as intended and has a long service life. The easy removal of 

superfluous material and rapidly with lower power consumption, tool wear and surface 

deterioration have all been the efforts rendered to  get machining done effectively, 

efficiently and economically (Aririola et al., 2011). Using the correct combination of 

cutting tools, cutting conditions and machine tool will considerably increase the 

machining productivity because it promotes high speed machining and does not 

compromise on the integrity and tolerance of the machined components. The economic 

machining of difficult-to-cut aero-engine alloys are the one in particular to benefit from 

it because their unusual characteristics usually damage machinability. Some properties 

of nickel-base super alloys generate poor machinability these properties are, an 

austenitic matrix that is why the work hardens quickly while machining those (Axinte et 

al., 2006). The nickel base alloys are deemed as difficult-to-machine materials because 

they possess high temperature strength, low thermal conductivity and high chemical 

affinity for tool materials which leads to lower machinability (Ezugwu et al., 2003). In 

addition, the abrasive saw-toothed edges which make swarf handling problematic are 

produced for the localization of shear in the chip (Aggrawal et al., 2008). The 

succeeding subtopic covers the machinability of nickel based alloy that depends on 
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surface roughness, surface integrity, tool life, tool wear, chip information, and cutting 

force. 

 

2.5.1 Surface Roughness 

 

The quality of a product is scrutinised by its surface roughness because it is a 

fundamental quality feature of end-milled product. If a higher surface roughness is 

required it is essential that before the process starts the setting of cutting parameters is 

done properly (Lou et al., 1999). The mechanical properties of work pieces that has to 

machined ,the rotational speed of the cutter, velocity of traverse and feed rate are all 

factors that yield the final surface however the machining process is responsible for the 

development of surface roughness (Benardos and Vosniakos, 2003). The BUE held by 

the tool flank face can deviate the tool from its original route they can also increase the 

roughness (Mantle and Aspinwall, 2001). In addition, the fact that the nickel based 

alloys is of highly ductile nature which also increases the surface roughness values. 

Because of this ductility they are more prone to develop a huge and unbalanced amount 

of BUE and can lead to lower surface roughness (Khidhir and Mohamed, 2010). The 

functional characteristic of products including their fatigue, friction, wearing, light 

reflection, heat transmission, and lubrication are all affected by the surface roughness 

(Ibraheem, 2008). When the product is exposed to extensive machining we may observe 

slight differences in surface roughness because of the on-going wear produced at the 

coated carbide cutting edge and the temperature reduction at the cutting by the coolant 

active all through machining Inconel 718 (Ezugwu et al., 2004). 

 

There are certain parameters that influence the surface roughness of supermet 

718 nickel-base super alloy and the feed-rate is the most dominant among those 

parameters (Darwish, 2000), the reason for this dominance is that higher feed rate leads 

to the lower surface roughness and the surface quality. When the feed rate is higher the 

surface becomes rougher (Ginting and Nuori, 2009; Joshi et al. 2008). According to the 

authors when machining IN-718 increasing the feed lowers the surface quality that is 

why feed rate is deemed as the most dominant parameter that can affect surface 

roughness (Ulutan and Ozel, 2011). The effects of spindle speed and feed rate on 

surface roughness were larger than depth of cut for milling operations (Zhang et al., 



15 
 

2007). Arunachalam et al., (2004) documented that when the cutting speed of Inconel 

718 is increased the surface roughness decreased. Moreover, Sharman et al. (2004) 

confirmed that in order to machine the nickel based alloys cutting speed is an important 

factor that increases the surface roughness value. Many researchers after studying the 

literature establish that the surface roughness of nickel bases alloy machine surface is 

negatively affected by feed rate and cutting speed,  the surface roughness, however, 

rises linearly when the tool diameter and spindle speed are increased (Wang et al., 

2005). 

 

2.5.2 Surface Integrity 

 

The condition of a surface produced in machining, this condition may be innate 

or else it is acquired but is measured by the mechanical, metallurgical, chemical and 

topological state of the surface is known as the surface integrity (Field and Kahles, 

1971). The structural changes corrosion resistance,  hardness variation, surface 

roughness, residual stress, etc. are all then used to measure these states (Jang et al., 

1996). That is  surface  integrity  is  given so much importance during machining  

(Ulutan and Ozel, 2011). In the case where the fatigue life of a machined part is deemed 

central it is tried to achieve a smoothest possible  surface (Novovic et al., 2004).  The 

greater strength of nickel based alloys is due to elevated temperature, high ductility, 

high tendency to work hardening, etc. that is why heat treatment  strengthens them 

further because of their sensitivity to microstructure change (Dudzinski et al., 2004). 

Another factor that can be essentially critical to the machined  surfaces is the shape of 

the cutting tool. By feeding in the machine with round shape cutting insert the  surface  

finish  and minimum  surface  damage  can be rectified (Arunachalam et al., 2004). The 

hardness of the surface  layer and  the machined  surfaces are inversely proportional 

when exposed to extended  machining    (Ezugwu and Pashby, 1992) and (Ezugwu and 

Tang, 1992). The reason for this is high flank wear. As a result the component forces 

and cutting temperature increases because of higher contact area and relation motion 

between the flank land of the tool nose region and the freshly machined  surface  of the 

work piece (Che-Haron et al., 2007). The residual stresses, chemical change between 

the work piece and tool materials, micro cracking, tears, plastic deformation, 
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metallurgical transformations and changes in hardness of the  surface  layer are all 

declared as the foremost changes in the machined  surface  layer (Axinte et al., 2006). 

 

Many researchers were seen certain flaws in a lot of different nickel- and 

titanium-alloys like NiCr20TiAl (Zou et al., 2009),  IN-718 (Dudzinksi et al., 2004, 

Sharman et al., 2004), and Ti-64 (Che-Haron and Jawaid, 2005). It is known that while 

increasing the thermal softening of the material that compressive stresses also increase 

the machined  surface becomes free of these flaws s that the work piece near- surface 

can rebuild itself easily (Pawade et al., 2007). Researchers like Ginting and Nouari, 

(2009) stated that materials and cutting conditions and the depth of cut cannot influence 

the surface roughness. The reported thermal and mechanical cycling, microstructural 

transformations, and mechanical and thermal deformations during machining processes 

all cause these impacts (Axinte and Dewes, 2002). Some other researchers also stated 

that increasing the depth of cut decreases the surface quality (Darwish, 2000). 

 

Some interrelated topics like the residual stresses, metallurgical alterations, and 

alterations to mechanical properties of the work piece material can be used to study the 

integrity of surface (Liu. 1999). Itakura et al. (1999) studied Inconel 718 and established 

that it abides by the major cutting edge, and material to become a stable built-up-edge 

that keeps the rake face throughout incessant cutting at a cutting speed of 30 m/min. 

machining can make use of feed marks however the feed rate can be altered and 

enhanced to change their severity (Ginting and Nouari, 2009). These enhanced cutting 

speed values are capable of influencing the amount of microchip debris on the surface. 

Depth of cut along with parameters can impact material plucking, tearing, dragging, and 

smearing. It is extremely important to optimize the cutting conditions these issues can 

lead to difficulties while machining nickel and titanium alloys (Zou et al., 2009). There 

are crack locations that make the fatigue life of the material to decrease significantly 

because the nickel base alloy is opened to carbide cracking (Ranganath et al., 2009). 

 

2.5.3 Tool Life 

 

The tool life can be referred to as the span of cutting time of a tool. Moreover, 

tool life is the time before the cutting point tool fails to give satisfactory performance 
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(Onwubolu, 2006). It is to the credit of modern tools they do not fail too early because 

of mechanical breakage and rapid plastic deformation instead they wear down gradually 

as the machining time passes (Arsecularatne, 2004). When machining the nickel base 

alloys, the cutting tool is usually inserted so the tool is exposing to stark mechanical and 

thermal loads hence its tool life decreases because of fast tool wear (Xue and Chen, 

2011). The machinability of nickel-based alloys is also damaged by a short tool life. It is 

because of this short tool life that the machining efficiency of these tools decreases 

(Kadirgama et al., 2011). Many studies focused on the tool materials and their wear 

mechanism (Costes et al., 2007; Devillez et al., 2007 and Ezugwu et al., 2005). Many 

studies have been carried out study on the topic of surface milling (Alaudin et al., 1998) 

and (Diniz and Filho, 1999), which reveal that increasing feed rate and cutting depth 

increase the cutting forces too. Therefore, there is a direct relation between the cutting 

forces and cutting speed.  When the cutting speed during machining increases so does 

the temperature as a consequence hardness of the tool material decreases and abrasion 

and diffusion take place. The cutting speed is a core parameter that can impact the tool 

wear and tool life (Coromant, 1994). 

 

Choudhurya et al. (1999) states that the when the effect of feed rate and cutting 

speed are compared it is observed that feed rate is more manifested whereas no matter 

what the feed velocity is the cutting speed has a dominant impact on tool life 

(Bermingham et al., 2011).  Che-Haron (2001) detected that tool life increases as a 

result of lower feed rate the inserts and because of this temperature increases and the 

plastic is deformed. Ultimately the cutting tool materials tend towards failure. 

Moreover, inserting the cutting edge of the cutting tool at high temperature at the time 

when chemical reactivity is high will lead to lower tool life (Shokrani et al., 2012). As a 

result the microstructure of the material changes and prompts residual stress, micro 

cracks, micro hardness variation through to formation of white layer affecting the 

cutting tool’s life (Dudzinski, 2004). It is also conceived that increasing the cutting 

speed and keeping the feed velocity constant will lead to an increased frequency of   

entry of every cutting edge into the work piece and the speed of friction between tool 

and work piece and between chip and tool will also increase.  In the light of this 

testament we can say that machining with high cutting speed escalates the wear rate 

hence the tool life becomes short (Jawaid et al., 2001). 
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2.5.4  Tool Wear 

 

It is extremely essential to pay attention to tool wear during all machining 

operations including mould and die wear in casting and metalworking. The elements 

such as tool life, the quality of the machined surface and its dimensional accuracy are 

all affected by the tool wear as a result the costs of cutting operations increase 

(Wanigarathne et al., 2005). The cutting tools  undergo high localized stresses at the tip 

tool and high temperature at end to end of the rake face this glides the chip beside the 

rake face and the tool glides beside the newly cut work piece surface  which is known as 

tool wear (Kalpakjian and Schmid, 2007). During the machining of nickel-based alloys 

the cutting tool materials are exposed to stark thermal and mechanical changes. The 

wear rate is also affected by the stresses and temperatures produced near the cutting 

edge. While machining nickel-based alloys notching at the tool nose and/or depth of 

cutting areas is a very frequent failure mode the amalgamation of high temperature, 

high work piece strength, work hardening, abrasive chips, etc. all cause this failure 

mode (Weinert et al., 2008). Other causes of tool  failure mode during the machining of 

nickel-based alloys include flank wear, crater wear, adhesion wear, abrasion wear, 

oxidation wear, catastrophic failure, chipping, attrition wear,  and built-up edges 

(Kadirgama et al., 2011). The notching wear results from the phenomenon like the 

fatigue loading on the tool, the work-hardened layer and the observance to work 

material on the notched area and following displacement (Krain et al., 2007). Notching 

can also be recognized as diffusion–attrition wear mechanisms (Kaya et al., 2011). The 

seizure and pulls out of the material machine also cause the notches (Olovsjo and 

Nyborg, 2012). The cemented carbide tools that are implied for machining nickel-based 

alloys  are seen to do it at a speeds > 30 m/min but the effort remains futile because of 

the thermal softening of the cobalt binder phase and the later plastic distortion of the 

cutting edge (Kramer and Hartung, 1980). The relationship among the cutting tool and 

work piece  such as contact stress and cutting temperature can dominantly impact the 

tool flank wear (Isik et al., 2007). During the process of machining with coated and 

uncoated carbide tools failure results because of the stark flank wear and notching at the 

tool nose and the depth of cut line (Che-Haron et al., 2007). When the carbide tools are 

used at an incredibly high cutting speed notching increases at a fast pace consequently a 

premature fracture of the entire insert edge takes place (Ezugwu et al., 1990).  
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Moreover, it has been observed that since the nickel-based alloys are high in strength 

they create high temperature and stress in the tool–chip contact area. Furthermore, the 

split-up of the edge of the chip from the work piece is a tearing process mainly (Niemi, 

1971). High flank wear denotes short tool life (Thamizhmanii and Hassan, 2007). The 

flank wear is illustrated in Figure 2.3. 

 

 
Figure 2.3: Flank wear 

 

Source : Kalpakjian and Schmid (2007) 

 

For tools chipping is also phenomenon like the tool wear. During chipping small 

pieces break and fall from the cutting edge of the tool the tools with brittle materials 

like ceramic usually undergo chipping (Zhao et al., 2010). When the machining was 

done at low cutting speed chipping was seen to grow fast into the tool flank than on the 

rake face (Jawaid et al., 2001). The abrasion wear mechanism is a result of the scoring 

action of hard carbide particles enclosed in the Inconel 718 alloy all through machining 

it is mechanical wear (Ezugwu et al., 2000).  Pullouts at the depth of cut regions mostly 

were an outcome of the adhesion wear mechanism moreover abrasion took place  on 

both the rake and flank faces because of the sharp ridges and grooves beside the chip 

flow and work piece travel directions (Bhatt et al., 2010).  
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The process of amputating grain or grains of in tool material by the work 

material is known as attrition wears but because of this process area of alloys becomes 

rough (Ezugwu et al., 2003).  Tool fracture is a consequence of attrition wear and 

thermal cracking taking place at high temperature. The mechanical fatigue, fatigue 

induced by the serrated chip, the formation of cracks generated by thermal and/or 

irregular flow of the work material over the cutting edge of the tool, etc. all lead to the 

attrition wear of nickel base alloys (Zou et al., 2009). During the milling of Nimonic 75, 

the plucking of  tool particles depends on attrition  wear to a great extent (Aspinwall et 

al., 2007). In addition, the tool-side of the chip carries and dispenses the BUE and the 

remaining however, is deposited unsystematically on the work surface.  Unless no effort 

is initiated the process of the formation and destruction of BUE will carry on and as a 

result built-up edge will form at the cutting edge and it deadens because of the alteration 

in its geometry. Dry turning tests of Inconel 718 were initiated by Devillez et al. (2007) 

to study the wear behaviour of coated carbide tools this study revealed that prevailing 

wear modes detected throughout dry cutting Inconel 718 were welding and hold of work 

piece material on top of the flank faces and the rake. The study also revealed that the 

material of the work piece that is sticking to the cutting edge causes a built-up-edge, and 

a built-up-layer (BUL) on the face of the tool. The character of the BUE and BUL 

varies as per the cutting conditions and the type of tool sometimes they are stable but 

they can be the pieces of work piece material that are later on removed. But a crater on 

rake face, a band of wear on flank face and a notching at the extremity of depth of cut 

may also be caused as a consequence of this process.  

 

According to Liao and Shiue (1996) diffusion wear  occurs when turning of 

Inconel 718 with K20 and P20 grades cemented carbide tools because Nickel (Ni) or 

Ferum (Fe) from work piece material gets spread on the grain boundaries of binder Co. 

The intermetallic phases between carbides and binder because of diffusion at high 

temperature. Since the affinity of carbides with Nickel (Ni) is high the intermetallic 

phases dissolve bringing about damage to the bonding between carbides and binder. The 

cutting temperature however is an essential element to control the extent of diffusion 

wear (Xue and Chen, 2011). Basically, diffusion wear is the process where the material 

from the tool at its rubbing surfaces, or the rake surface to be precise diffuses with the 

flowing chips in atom when the tool material has chemical affinity towards the work 
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material. When the temperature of the cutting zone raises so does the rate of tool wear 

(Olovsjo and Nyborg, 2012). Since the cutting velocity and strength of the work 

material are high at high temperature diffusion wear escalates (Kadirgama et al., 2011).  

 

2.5.5 Cutting Forces 

 

Upon increasing the feed rate, axial rate and the radial depth of cut the cutting forces 

increase (Liu et al., 2004).  Because of the property of hardening possessed by nickel 

base alloy machining becomes difficult as soon as  the milling cutter is used due 

because of the hardening property consequently the metal is not cut but pushed because 

the cutting edge is not very sharp.  Ultimately the cutting force and temperature increase 

(Li et al., 2006). Traditionally, the softening of the work piece material increases cutting 

speed while decreasing cutting forces to the least (Krain et al., 2007). The relation 

between cutting force and the cutting speed is inversely proportional (Shunmugam et 

al., 2000). But when feed per tooth, axial depth of cut and radial depth of cut increase so 

does the cutting force (Liu et al., 2010). According to Fang and Wu (2009), when the 

cutting conditions are same as the cutting force and the thrust force in machining 

Inconel 718 are higher as compared to those in the machining of Ti–6Al–4V. Upon 

decreasing the cutting force, the thrust force, and the result force the cutting speed 

increases so does the force ratio for both materials. However, the coated carbide and 

uncoated carbide both have  different cutting force the coating layer of coated carbide 

barricades heat owing to its high thermal conductivity and after this the heat in the chip 

is removed (MacGhinley and Monaghan, 2001). Nevertheless, numerous coating layers 

can expand wear resistance considerably as a point of fact the coated layer is not able to 

last longer because of the high rates of tool wear and short tool life. It is difficult to 

handle the increase in load and temperature. (Li et al., 2006). The cutting force 

decreases as the cutting speed increases (Shunmugam et al., 2000). On the contrary, the 

cutting force increases as the feed per tooth, axial depth of cut and radial depth of cut 

increase (Liu et al., 2010). The tool breaking is also affected the rake angle negatively 

that causes to the increases of cutting speed (Nalbant et al., 2007).  
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2.5.6 Chip Formation 

 

The continuous chips, built-up edge, serrated or segmented and discontinuous 

are the most frequently used types of metal chips. The ductile materials that are 

machined at high cutting speed and high rake angle lead to the formation of continuous 

chips (Astakhov, 2006). The primary shear zone is constricted where the distortion of 

the material occurs. However, continuous chips are formed in a secondary shear zone as 

a result of high friction at the tool-tip interface. The high friction is produced 

subsequent to the thickening of the zone. When the cutting speed is below 50 m/min 

long and continuous chips of nickel based alloys are formed (Lorentzon et al., 2009). 

Chip formation is shown in Figure 2.4 (Kalpakjian and Schmid, 2007). 

 

      
(a)                                                     (b) 

 

Figure 2.4: The chip formation, (a) Continous chip with narrow, straight  primary shear 
zone, (b) secondary shear zone at the chip tool 

 

The built up edge is made up of layers of material of the work piece that are 

dumped on the tool tip bit by bit. The BUE becomes unstable and eventually breaks 

apart as a result.  The succeeding ways can lead to lower BUE formation: increase the 

rake angle, increase the cutting speeds, decrease the depth of cut, and use the sharp tool 

and use cutting tool with chemical affinity for the work piece material. The BUE 

formation is illustrated in Figure 2.5 (Kalpakjian and Schmid, 2007). 
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Figure 2.5: Built up edge 

 

The chips look like teeth still no customary standard is available for the 

inception of saw-tooth chip formation (Trent and Wright, 2000; Thakur et al., 2009). 

The saw-tooth chip is made because of the adiabatic shearing and surface crack 

propagation (Guo and Yen David, 2004). Discontinuous chips are made up of  firmly or 

loosely attached  segments these chips develop due to  the internal crack initiation and 

propagation in front of the cutting tool and above the cutting edge, the large depth of 

cut, low rake angle and deficiency of an operational cutting fluid (Guo and Yen David, 

2004). Segmented chips are semi continuous chips and have large zones of low shear 

strain and small zones of high shear strain that result from the cutting speed of more 

than 100 m/min (Lorentzon et al., 2009). Shear localization is the name for small zones 

with high shear strain. Titanium has thermal softening which leads to low thermal 

conductivity and dulling strength that falls with temperature (Kalpakjian and Schmid, 

2007). Figure 2.6 illustrates the segmented chip and discontinuous chip (Kalpakjian and 

Schmid, 2007). 
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     (a)                                                               (b) 

 

Figure 2.6: (a) Serrated chips, (b) discontinuous chips 

 

2.5.7 Cutting Tool Materials  

 

The machining nickel based alloy is done at high temperatures produced at high 

speed  hence the cutting tools used for this purpose must have tolerable hot hardness 

(Rahman et al., 2003), since a lot of tool materials drop their hardness under such 

conditions which leads to the wearying of the inter-particle bond strength and but the 

tool wear increases. The cutting tool materials when exposed to high thermal and 

mechanical stresses near the cutting edge and lead to poor machinability and plastic 

distortion. Since the machining of nickel based alloys has high performance 

requirements the machining is done at high speed with coated carbide tools, ceramics 

and cubic boron nitride (CBN) tools materials– because low speed machining is suitable 

only for tools with uncoated carbide (Ezugwu et al., 2003). During the machining of the 

super alloys, the ensuing factors are capable of impacting the performance of a cutting 

tool: chemical inertness, wear resistance, high hardness, and fracture toughness 

(Szeszulski et al., 1990). 

 

The machining of the nickel-based super alloys applies cemented carbide tools 

(Subhas et al., 2000). The machining of nickel-based super alloys with these cemented 
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carbide tools are done within a speed range of 10–30 m/min (Warbuton, 1967). 

According to M'Saoubi et al., (1999), the uncoated tools have more strength during 

machining at high temperature than the coated tools.  It is seen that for steel work pieces 

the coated carbide tools have lower maximum tool temperature, surface stresses, and 

smoother chip formation that is why white layer formation, residual stresses and 

thickness of the work-hardened zone is much better and 57% costs are saved than using 

carbide tools in the semi-finish turning of Inconel 718 (Baker, 2000). While machining 

with carbide tools stark flank wear and notching at the tool nose and the depth of cutline 

are the most prevailing failures (Xue and Chen, 2011). So for machining nickel base 

alloy up to 100 m/min the PVD TiAIN coated carbides  are appropriate (Dudzinski et 

al., 2004; Li et al., 2002). The use of coated and uncoated WC cutting tools is seen to 

have control over the residual stress because the coated WC cutting tool enhances the 

residual field on the work piece machined to reduce cutting temperature when 

machining nickel base alloy (Outeiro et al., 2008). According to Sharman et al., (2001), 

TiAIN did well as compared to CrN because it is more hard and able to resist oxidation. 

When machining nickel based alloy at 76 m/min its multilayer leads to better 

performance than that of the TiAIN-monolayer and TiN and TiCN (Prengel et al., 

2001). As per Jindal et al., (1999), TiN coating cannot do as well as TiAIN and TiCN.  

 

When nonferrous metals and abrasive non-metallic materials have to be 

machined the diamond tools are best option (Prengel et al., 1998), because the single-

crystal diamonds are high wear but low shock resistance. Tiny synthetic diamonds are 

bonded together with a suitable carbide substrate to form the contemporary diamond 

tools known as polycrystalline diamond (Stephenson and Agapiou, 1997). Machining 

with polycrystalline diamond (PCD) leads to higher wear, higher shock resistance and 

surface finish is improved too (Ulutan and Ozel, 2011). When charged with shock/wear 

resistance and high in edge life these tools are effective that is why they are suitable for  

machining high-temperature alloys and hardened ferrous alloys (Arsecularatne et al., 

2006; Ashatakhov, 1999) These cutting tools form because of the bonding of a layer of 

polycrystalline cubic boron nitride to a cemented carbide substrate. The ceramic tools 

have their high hot hardness, high wear resistance and high chemical stability still they 

cannot effectively machine nickel-based alloys (Jianxin et al., 2005), this is because 

they are  not able to resist thermal shock, have low fracture toughness/low resistance to 
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mechanical shock at  high temperature (Nalbant et al., 2007). Severe notch is also 

formed by ceramic tools (Liao and Wang, 2008). When during cutting nickel based 

alloy notch wear speeded up on both rake and flank of ceramic tool because of water jet 

impingement (hydrodynamic) erosion (Ezugwu et al., 2005). Using the ceramic cutting 

tool prompts the tensile residual stresses that with cubic boron nitride (Arunachalam et 

al., 2004).  

 

Other than diamond the Cubic boron nitride (CBN) is the hardest material 

however it is not natural (Farhat, 2003). The synthesis of polycrystalline CBN is made 

of approximately 50–90% CBN and ceramic binders including titanium carbide and 

titanium nitride. When cutting super alloys high CBN content is preferred (Ezugwu et 

al., 2003).  CBN is a commonly used material in tools for cutting difficult-to-cut 

materials because it can perform better in high temperature stability, hot hardness and 

low affinity to iron (Lin et al., 2008). While machining nickel base alloy with CBN 

crater wear was seen at the rake face and flank wear at the edge of cutting edge 

(Ezugwu et al., 2003). While machining Inconel 718 adhesion, diffusion and abrasion 

are the prevalent forms of tool wear they result because of high temperature and stresses 

of work piece ( Costes et al., 2007).  

 

2.6 PERFORMANCE MODELLING  

 

2.6.1 Regression Modelling 

 

The response surface method (RSM) is  used to optimize the responses 

(Montgomery, 1997),  it is a mathematical and statistical method  for modelling and 

analysing the engineering process. There are many parameters that are capable to cast 

an influence on the RSM.  This method is proficient of optimizing when the desired 

response is being influenced by different factors (Tong et al., 2011). In order to 

understand the connection between explanatory and response variables in statistics used 

RSM (Box and Wilson, 1951).  This method is practical, economical and comparatively 

easy to be applied to modelling of machining processes (Dabnun et al. 2005).  A series 

of tests for acceptable and reliable measurement of response of interest is designed and 

a mathematical model of the response surface is developed to implement the RSM. And 
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expressing the direct and interactive effects of the process parameters over two and 

three dimensional plot and find the optimal set of experimental parameters that produce 

maximum and minimum value of response are essential for the RSM (Noordin et al., 

2004). The Box Behnken design (BBD) of  RSM was conceived when there were three 

levels of every factor with a “reasonable” number of experimental points 

instantaneously (Aslan and Cebeci, 2007). The Box-Behnken design was applied  when 

cutting force in end milling of modified P20 tool steel with three levels of parameters 

were to be predicted (Abou-El-Hossien et al, 2007). For the time being, Box-Behnken 

design has become very popular and is widely used to study the possibility of 

homogeneous liquid-liquid solvent and also for finding lead from food samples 

(Khajeh, 2011). The optimization cutting condition for surface roughness leads to the 

development of linear and polynomial model (Oktem et al., 2005). Dicholkar et al. 

(2012) carried out modelling and optimizing of steam pyrolysis of dimethyl formamide 

by applying response surface method and Box-Behnken design. When turning AIS1 

H11 steel with CBN tool, some authors have used RSM to determine the relationship 

between cutting parameters with surface roughness and cutting force (Aouici  et al., 

2012). The surface roughness model has been developed by response surface method 

(Sahin and Motorcu, 2008). The BBD was used for optimizing the process of foam cup 

moulding and for finding out the optimal moulding temperature (Wu et al., 2012). The 

optimal cutting parameters necessary for minimizing the cutting time while keeping up 

a satisfactory quality level is determined by the use of BBD design (Jeang, 2011). 

 

A surface roughness model  was devised by Mansour et al. (2002),  for the end 

milling of a semi-free cutting carbon casehardened steel for this model  a first-order 

equation covering the speed range 30–35 m/min and a second order generation equation 

covering the speed range 24–38 m/min was used. It was established as a result that if the 

feed or the axial depth of cut increases the surface roughness also increases whereas the 

surface roughness is decreased when the cutting speed increases. Choudhury and El-

Baradie (1999) analysed the machinability of Inconel 718 also with the help of response 

surface methodology for as a result it was established that the dual response contours of 

tool life and surface roughness are extremely beneficial when it comes to finding the 

maximum attainable tool life for the same surface finish. Suresh et al. (2002) evaluated 

the process of machining mild steel by TiN-coated tungsten carbide (CNMG) cutting 
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tools to achieve a surface roughness prediction model with the help of RSM. Ozcelik 

and Bayramoglu (2006) used response surface methodology for creating a statistical 

model by for predicting surface roughness in high-speed flat end milling as a result it 

was established that the order of significance of the central variables is the total 

machining time, depth of cut, step-over, spindle speed and feed rate.  Sahin and 

Motorcu, (2008) devised the first-order and second-order equations containing the 

independent variables are logarithmic transformations of speed, feed rate and depth of 

cut, by means of RSM for predicting  surface roughness in machining the hardened 

steel. Finally, it was declared that the fundamental factor that influences the surface 

roughness is the feed rate. The prediction model for surface roughness in turning 

operation was devised by Kirby et al., (2004). The regression model was established by 

a single cutting parameter and vibrations along three axes served as in-process surface 

roughness prediction system. It was done by the means of multiple regression and 

Analysis of variance (ANOVA). The parameters including feed rate and vibration 

measured in three axes and the response that is the surface roughness share a strong 

linear relationship. It was further verified that it is not essential that spindle speed and 

depth should be fixed to create an operational surface roughness prediction model.   

 

Doniavi et al., (2007) devised an empirical model to predict the surface 

roughness with the help of RSM to understand the optimum cutting condition in 

turning. The surface roughness was substantially seen to be affected by the feed rate. 

The authors determined that feed rate and surface roughness had a direct relationship 

cutting speed and surface roughness however share an indirect relationship. As 

compared to depth of cut, the feed and speed surface roughness have a stronger impact. 

The response surface methodology with an advanced genetic algorithm (GA) in the 

optimization of cutting conditions for surface roughness was used by Oktem et 

al. (2005). According to Sharif et al., (2006) applying factorial design along with 

response surface methodology  to devise the surface roughness model as compare to the 

primary machining variables like cutting speed, feed, and radial rake angle. A 

methodology essential for attaining optimal process parameters for the prediction of 

surface roughness in Al turning was devised by Ahmed (2006). The nonlinear 

regression analysis with logarithmic data transformation was used for creating an 

empirical model. But there were some errors in the new model however other results 
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were reasonable. It was established that the low feed rate was beneficial for the 

development of reduced surface roughness. Moreover, high surface quality is an 

outcome of high speed.  

 

Bouacha et al., (2010) conducted a statistical analysis of surface roughness and 

cutting force in hard turning of AISI 52100 that has steel with CBN tool with the help of 

RSM. The outcomes achieved by ANOVA table during the validation experiments are 

essential in particularised mathematical models for the predicting surface roughness 

parameters and cutting forces values with a 95% confident interval and high 

determination coefficient (greater than 96%). Shetty et al., (2008) discussed the use of 

Taguchi and response surface methodologies for minimizing the surface roughness in 

turning of discontinuously reinforced aluminium composites (DRACs) with the 

aluminium alloy 6061 as the matrix it comprises of 15 vol. % of silicon carbide particles 

of mean diameter 25 μm under pressured steam jet approach. The experiment shows 

that steam pressure and feed rate are important machining parameter for surface 

roughness. It was seen the predicted and measured values were almost same meaning 

that this model can be beneficial in predicting the surface roughness during the 

machining of DRACs.  

 

2.6.2  Artificial Intelligence Approach  

 

 Artificial neural network (ANN) models are empirical as the solutions they offer 

are very nearly accurate and driven by occurrences which can only be explained by the 

experimental data and field observations (Basheer and Hajmeer, 2000).  That is why it 

has been used ANN in this research. In order to solve mathematical problems traditional 

approaches are used because new models do not have enough autonomy and decision 

making ability to offer suitable solutions for uncertain artificial neural environments 

(Lin et al., 2003). Many artificial intelligence (AI) tools, techniques and paradigms like 

fuzzy logic (FL), neuro-fuzzy, simulate annealing (SA), artificial neural network (ANN) 

and many more have been used (Jawahir et al., 2003). Manufacturing of complex 

system is considered theoretically as being an integrated junction of complex interacting 

subsystem. The feedback manufacturing system is essential because part of society’s 

total energy is taken as input which is then turned into the efficient product. Artificial 
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intelligence is very effective as for the development and application of this task the tool 

(Haber and Alique, 2003). Ever since the development of AI the researches have come 

across new openings and problems that are complex, uncertain difficulties and systems, 

which cannot be resolved with the help of traditional  approaches (Clenaghan et al., 

1999). 

 

A lot of metal-cutting operations like turning, milling and drilling use ANN 

(Dimla and Lister, 2000). There are three factors comprising of the selection of the 

appropriate input/output parameters of the system, the distribution of the dataset, and 

the format of the presentation of the dataset to the network  that influence the ability of 

the network (Eynard et al., 2011). It is essential to achieve the optimum performance 

that the neuron number, hidden layers, activation function and training algorithm are 

carefully selected. Automated manufacturing largely depends on the production of 

computer-based learning schemes to code operational knowledge (Uraikul et al., 2007). 

Machining processes are very complex to include the right analytical models. It is very 

common that analytical models are driven by basic assumptions which actually oppose 

each other (Correa et al., 2009). Alignment of all the above parameters of the 

aforementioned models is very difficult as a result; ANN is able to map the input/output 

relationships. There are some benefits of ANN in solving processing problems which 

need real-time encoding and interpretation of connections between variables of high-

dimensional space (Ezugwu et al., 2005).  

 

Tsai and Wang (2001) equated six types of neural network models and a neuro-

fuzzy network in order to predict surface roughness the outcome was a multilayer feed-

forward neural network with hyperbolic tangent-sigmoid transfer functions. Which are 

accomplished by feed-forward neural network models. Yilmaz et al. (2006) applied a 

user friendly fuzzy-based system to choose electro-discharge machining process 

parameters. Ho et al. (2002) devised a method with the help of adaptive neuro-fuzzy 

inference system to correctly institute the association amid the features of 

a surface image. This system is capable of predicting surface roughness with the help of 

cutting parameters. 

A hyperbolic function was used as learning function by  Erzurulmu et al. (2007)  

to predict surface quality of moulded parts for investigating the effect  of cutting on 
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surface roughness in turning of free machining using ANN the same model was used 

(Davim et al., 2008). The feed forward back propagation algorithm that has sigmoid 

activation function was used to predict surface roughness in end milling machining 

(Mohd Zain et al., 2010). In the intervening time the activation function of hyperbolic 

tangent will develop the function of feed forward back propagation algorithm by 

Abeesh et al. (2008). As per Pal and Chakraborty (2005), the creation of back 

propagation neural network model for prediction of surface roughness in turning 

operation is used in mild steel work-pieces that have high speed steel in the lace of 

cutting tool to apply numerous experiments. A number of architectures of 

multilayer neural network with a back propagation training algorithm for 

drill wear monitoring were compared by Abu-Mahfouz (2003). Training data set was 

mined from the resulting vibration signal from an accelerometer connected to the work 

piece. The frequency domain features like the average harmonic wavelet coefficients, 

and the maximum entropy spectrum peaks are very useful in training the network as 

compared to the time-domain statistical moments. Őzel and Karpat (2005) feed forward 

neural networks models that predict precisely the surface roughness and tool flank wear 

both during finish dry hard turning. Using ANN with feed forward back propagation 

and tansig activation function subsists for the prediction of surface roughness in end 

milling machine (Oktem at al., 2006). For predicting the surface roughness in CNC 

lathe machine back propagation algorithm with sigmoidal function was suggested 

(Karayel et al., 2009). 

 

Aykut et al. (2007b) applied ANN while modelling the properties of 

machinability on chip removal cutting parameters for face milling of satellite 6 in 

asymmetric milling processes. To do so a scaled conjugate gradient (SCG) feed forward 

back propagation algorithm and hyperbolic tangent sigmoid function was used. 

Propagation algorithm was also applied to model cutting tool stress of Inconel 718 

(Kurt, 2009). Also with the help of back propagation algorithm of ANN with 

hybridization of genetic algorithm was used to craft a cutting force model for self-

propelled rotary tool (SPRT) cutting force prediction (Hao et al., 2006). ANN with 

hyperbolic activation function as online model to tracking is used for the estimation of 

cutting condition on tool life for the creation of flank wear at the cutting edge during the 

machining of nickel based alloy (Kaya et al., 2011). Moreover, using ANN with back 
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propagation algorithm during hot machining of the output parameter of the research was 

tool life (Tosun and Ozler, 2002). The hybrid of artificial neural network was 

introduced in cutting force signal pattern in end milling recognition with the  function 

multilayer perceptron (MLP) and with the back propagation algorithm and self-

organizing feature map (SOFM) both (Seong et al., 2010). Tsao and Hocheng (2008) 

examined the thrust force in drilling composite material with the help of ANN. To do so 

the ANN was inputted with the feed rate, spindle speed and drill diameter whereas the 

radial basis function network (RBFN) and multi-variable regression analysis were used 

to scrutinise the data.  

 

2.7 SUMMARY 

 

This chapter has been summarized the literature review based on milling 

process, nickel based alloys, response surface method and artificial neural network. The 

surface roughness, surface integrity, tool life, tool wear, cutting force and chips 

formation has been selected to evaluate the machining performance of Hastelloy C-2000 

since lack of research found conducted using this material based on machining 

characteristics listed. The experiment will be conducted using coated and uncoated 

carbide in order to indentify the effect of coating layer to the machining process in wet 

condition. The Box-Behnken design is selected to design the experiment procedure. The 

prediction and optimization will be developed through response surface method. The 

artificial neural network model will be used to predict the performance of machining 

characteristics. The experimental details and mathematical modeling will be further 

discussed in the next chapter.  



 

 

 

CHAPTER 3 

 

 

EXPERIMENTAL DETAILS AND MODELLING  

 

 

3.1 INTRODUCTION 

 

This chapter will present about the different methods and procedures used to 

develop this research. This includes the selection and properties of workpiece material, 

along with cutting inserts. The performance and cutting limits are included within the 

machining performances. Detailed information is also given for experiments conducted. 

This includes information regarding the design of experiment (DOE), physical 

equipment of the machine, workpiece preparation and experiment set up. In addition, 

the mathematical model based upon the first and secondary order response surface 

methodology and accompanying variance analysis are presented. The mathematical 

model in question aids in optimization of machining behaviour of Hastelloy C-2000 

during the end milling processes. Other than the mathematical model, an artificial neural 

network is also to be completed so that predictions could be made regarding 

performance of the machining. Other items include multilayer perception, back 

propagation and training algorithms will be discussed. 

 

3.2 MATERIALS 

 

It can be seen from the previous research that more work has been done to 

examine the machining behaviour of nickel based alloys while focusing heavily on 

utilization of Ni-Cr20-Ti-Al, IN-100, Nimonic-75, IN-718, types and UDIMET 720 LI. 

However, a very little study has been performed on the Hastelloy C-2000 type. This is 

the reason behind the selection of the Hastelloy C-2000 superalloy so that it can study 

performance of machining within the end milling machinery by using various cutting 
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tool inserts. The following sub sections will discuss details regarding the mechanical 

and chemical characteristics of tool and workpiece resources.  

 

3.2.1 Workpiece Materials 

 

Hastelloy C-2000 has been used for many long years within the chemical 

process industry. It is a nickel-chromium-molybdenum (Ni-Cr-Mo) C-type alloy and is 

best known for its flexibility. This superalloy is capable of resisting acids (in particular 

sulphuric, hydrofluoric and hydrochloric acids) in a wide temperature range and able to 

withstand dangerous attacks caused by halide and chloride solutions. It can especially 

withstand crevice attacks, stress corrosion cracking and pitting (M’saoubi et al., 2008; 

Sharman et al., 2004). The scientific goal during the designing of this superalloy was to 

increase its already substantial flexibility (in comparison with other traditional Ni-Cr-

Mo alloys) (HI, 2011). By using a small but precise amount of copper (1.6 wt.%) along 

with an elevated molybdenum content (16 wt.%) and elevated chromium content (23 

wt.%),  the above stated goal was achieved. It was found that copper helped improve the 

temperature capabilities within sulphuric acid, and also helped dilute the hydrochloric 

acid. The practical application of Hastelloy C-2000 is within the aerospace sector, 

where it is used primarily within gas turbines, and in the reactors used in the chemical 

process industry. Some examples of the reactors include columns, piping and heat 

exchanges (Nalbant et al., 2007; Arunachalam et al., 2004).  

 

Other than these two sectors, Hastelloy C-2000 is also used in the 

pharmaceutical industry. It is used in flue gas desulfurization systems, reactors and 

dryers. During the experiments conducted, it made use of a test specimen with a 

46 mm × 120 mm × 20 mm specification. Tables 3.1 and 3.2 show the physical and 

chemical characteristics of the Hastelloy C-2000 workpiece. It can be seen in Table 3.2 

that the superalloy has poor thermal conductivity. This translates into a greater chance 

for adhesion on the cutting tool face and also, work hardening. Due to this, the surface 

quality can be affected, along with significant tool wear (Axinte et al., 2006). Figure 3.1 

shows workpiece blocks and a small slot was etched onto the workpiece block to latch 

the workpiece to the force dynamometer. This was done to aid in measuring the cutting 

forces through the machining processes. In order to ensure that the workpiece could 
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easily fit into the scanning electron microscope, it was cut into 4 pieces. This helped 

study of surface integrity and surface texture.  

 

Table 3.1: Chemical composition of workpiece material (Hastelloy C-2000) 

 

Composition  Ni Cr Mo Fe Cu Al Mn Si C 

Wt. (%) Balance 23 16 3 1.60 0.50 0.50 0.08 0.01 

 

Table 3.2:  Physical properties of workpiece material (Hastelloy C-2000) at room 
temperature 

 

Parameters and unit Value 

Density (g/cm3) 8.5 

Thermal conductivity (W/m°C) 9.1 

Mean coefficient of thermal expansion (μm/m°C) 12.4 

Thermal Diffusivity (cm²/s) 0.025 

Specific heat (J/kg°C) 428 

Modulus of elasticity (GPa) 223 

 

            
 

(a)                                                         (b) 

 

Figure 3.1: (a) Workpiece blocks (Hastelloy C-2000); (b) Slot at workpiece 

   

 Slots 

Blocks of workpieces 
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3.2.2 Cutting Tool Materials 

 

The tool inserts are made by Ceratizit and its international standard organization 

(ISO) catalogue number is (CTP-1235, CTW-4615). CTW 4615 is a coated carbide 

grade with TiAlN coating PVD with grade designation P35 M50. Titanium-aluminium 

nitride (TiA1N) is used in the cutting of material like difficult -to- machine material 

(Dudzinski et al., 2004). Hard material layers cause a reduction of friction, heat, 

oxidation and diffusion. CTP-1235 is a carbide not covered with grade designation K15 

(Ginting and Nouri, 2009). Only one input per experiment is allowed to rise on the 

cutter. Each of the cutters is a unique shape, axial rake 12.5 degree, radial rake angle 5 

degree and sharp cutting edges. Highly positive position of the insert and the surface 

finish of the machined work piece can be improved by the positive axial and radial 

angle (Arunachalam et al., 2004). Cutting tool insert is shown in Figure 3.2 and the 

arrangement of the cutting tool insert for coated and uncoated carbide cutting inserts is 

signified in Table 3.3.  

 

               
(a)                                                                (b) 

Figure 3.2: (a) Tool holder and cutting tool insert, (b) cutting tool Insert 

 

 

 

Insert Tool 
holder 

Arbour 

Insert 
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Table 3.3: Composition of the coated and uncoated carbide inserts 

 

Type of carbide Code 
name 

Composition Coating Grain 
size 

Coated carbide CTW 4615 6 % of Co, 4 % 
carbide,90 % WC 

PVD 
TiA1N, TiN 

4µm 

Uncoated carbide CTP 1235 6 % Co, 94 % WC - 1 µm 
 

3.3 MACHINING PARAMETERS 

 

The parameters of the machine can be sorted in two types; input parameters and 

output parameters. Table 3.4 shows the input and output parameters for machining 

Hastelloy C-2000. 

 

Table 3.4: Input and output parameters 

 

Input Parameters Output Parameters 
Feed rate Surface roughness 
Axial depth Cutting force 
Cutting speed Tool wear 
Radial depth of cut was kept (constant) Tool life 

Chip formation 
  

3.3.1 Performance Characteristics 

 

The frequency features of the machine tool structure and the forces of the cutting 

process can define the performance of the machine. Surface integrity, tool wear, tool 

life, chip formation and cutting force can calculate the ability of machine in end milling 

processes (Joshi et al., 2008; Nurul-Amin et al., 2007; Sridhar et al., 2003; and Mantle 

and Aspinwall, 2001). 

 

Surface Roughness: Substantial amount of random peaks and valleys cause surface 

roughness. The contact of two rough surfaces happens in a small area. This specific area 

is known as real area of contact. Real area of contact is a function of both surface 

topography and interfacial phenomena, for instance friction and wears (Bhushan, 1999). 

The participation of surface roughness is very vital in wear, affecting friction and 
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lubrication of contacting bodies that are what explained to Lee and Ren (1996). The 

area within the roughness profile and its centre-line called average roughness (Ra), also 

shown in Figure 3.3. Ra can be written as Eq. (3.1): 

 

                                dxxY
L

R
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0

1                                                        (3.1) 

 

Trapezoidal rule normally calculate integral, which can be described as Eq. (3.2). 
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 In Eq. (3.2), Ra is the arithmetic average deviation from the mean line, Y 

symbolizes for alignment of the profile curve and L is sampling length. 

 

 
 

Figure 3.3: Surface roughness profile 

 

Source: G¨o kkaya and Nalbant (2006) 

 

The effect of nose radius and feed can be combined in an equation to predict the ideal 

average roughness for surface produced by single point tool which can be described in 
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Eq. (3.3). The equation assume that the nose radius is not zero and that the feed and 

nose radius will be the principal factors that determine the geometry of the surface. 

 

                                                            
NR

fRi 32

2

=                                                    (3.3) 

 

where Ri is the theoretical arithmetic average surface roughness, mm; f is feed in mm 

and NR is the nose radius on the tool point. The greater the nose radius, the greater the 

degree of roundness at the tip. A zero degree nose creates a sharp point. The heat 

resistance of nickel based alloy accelerates tool wear of the nose radius cutting insert, 

thus affect the surface roughness of workpiece machined. A round insert with no sharp 

corner provides the strongest cutting edge, but the work-hardening common of nickel 

based alloy leads to progressive insert notching. 

 

Surface Integrity: The natural or improved form of workpiece surface machine by 

machining process is called the surface integrity (Field and Kahlas, 1964). Surface 

integrity can be sorted as frictional and wear performance at the edge of bodies when 

they are in contact, efficiency and control of lubrication through machining process, 

emergence and function of surface in successive surface finishing processes (cleaning, 

coating, or surface treating), initiation of surface cracks and residual stresses that 

influence fatigue life and corrosion properties (Ghanem et al., 2002) The usual 

transformation of the surface were recognized as plastic deformation, micro cracking, 

phase changes, hardness variations, tears and laps of BUE development and (Ulutan and 

Ozel, 2011). 

 

Tool Life:  It refers to the duration of work till which a new tool can work earlier to 

achieving the definite limit of tool deterioration. For the end milling application, the 

wear characteristic is determined based on ISO 8688-2:1989 (E) while ISO Geneva, 

1993 has placed a suggested a standard of 0.3 mm for uniform wear criterion, maximum 

criterion of 0.6 mm and severe flaking or chipping greater than 0.4 of the width takes 

place at the time in end milling (Kadirgama et al., 2011). The variables upon which the 

tool life is dependent include work material, machine tool, cutting conditions, tool 

material and geometry (Arsecularatne and Montross, 2006).  
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Mathematically, tool life can be described by Taylor equation as Eq. (3.4). 

  

                                                           CTV n
c =                                                           (3.4) 

 

where Vc is the cutting speed, T is tool life, n and c is constant maybe found in specific 

workpiece and tool material and feed, f, either by experiment or from published data. 

This equation is applicable normally for turning process. 

 

In end milling process, the formulation used for tool life is as Eq. (3.5). 

 

   
mF

CD
=Toollife                          (3.5) 

    

where, 

CD = the overall distance required for cutting tool to reach  flank wear (0.3mm) 

according ISO 8688-2:1989(E) and Fm  is the combination of  feed rate and cutting 

speed from RPM to mm/min.  

 

In the mathematical model based on response surface method, tool life can be modelled 

as Eq. (3.6). 

 

     mlk fdCVTL =                                                (3.6) 

 

where C is the constant, V is the cutting speed (m/min), d is the depth of cut (mm) and f 

is the feed rate (mm/tooth) and k, l and m are model parameters. The above function 

Eq. (3.7) can be represented in linear mathematical form as follows. 

 

                                     fInmdIniVInkCInTLIn +++=                           (3.7) 

 

Equation (3.8) can be written as a linear form: 

 

                     εββββ ++++= 33221100 xxxxy                                 (3.8) 
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Where, y  is the estimated response based on first-order equation and y is the measured 

tool life on a logarithmic scale, x0 = 1 (dummy variable), x1, x2, x3 are logarithmic 

transformations of cutting speed, depth of cut and feed respectively. The parameters β0, 

β1, β 2, and β3 are to be estimated where ε the experimental error. Y is the estimated 

response based on the first-order model. Analysis of variance (ANOVA) is used to 

verify and validate the model. 

 

Tool Wear: The basic processes involving wear and friction are called tool machining. 

The wear of a tool takes place while the procedures of cutting are in the process. This 

minimises the working span of the cutting tool and also results in enhanced roughness 

of the surface of the machine (Zhang et al., 2001). The optimum machining processes 

can be achieved through the aim of maximum material removal rate and minimum tool 

wear of the tool in the adequate cutting environment (Li et al., 1999). The surface on 

which the work is being performed gets changed due to the formation tool deterioration 

which is largely caused by feed rate (Liew and Ding, 2008).  Gu et al. (1999) is of the 

view that the erosion and deterioration takes place because of the presence of 

unbalanced built up edge on the flank of the tool. 

 

Cutting Force: It is important to be aware of the significance of cutting force while 

carry out a machining process. Appropriate designing of the machine tools can help 

reduce faults in parts of machine, assist in choosing proper holders for tools and work 

holding devices and to sustain the required dimensional correctness of the machined 

component. Apart from this, the workpiece has the capacity to endure these forces 

without getting highly distorted. The forces which act in the orthogonal are displayed in 

Figure 3.4 (Kalpakjian and Schmid, 2007). The resultant force (R) comprises of two 

component namely the thrust force (Ft) and the cutting force (Fc). The Fc has the same 

direction as the tool travel and controls the volume of completed work while Ft is not 

working. Nevertheless, two of these forces cause the tool to bend. The ensuing force, 

too, contains two constituents on the surface where wear is taking place. The friction 

force (F) and the normal force (N) are the constituent forces existing on the surface of 

the tool. The acting forces can be viewed in the orthogonal in Figure 3.4. 
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Figure 3.4: Force acting in orthogonal 

 

The figure shows that the direction of shear force and the thrust force Ft is 

opposite. This takes place when the rake angle together with the depth of cut is large 

and the resistance is less.The impact of the depth of cut is quite evident because as the 

depth of cut escalates, the ensuing energy also escalates bringing about an increase in 

the cutting force too. A surplus amount of force is provided by this action, which is 

needed to eliminate the surplus material generated by the escalating depth of cut 

(Astakhov, 1999; Ostwald and Munoz, 2002). The cutting force is also influenced by 

the speed of cutting. The cutting force is reduced when the cutting speed increases. The 

reason is that the work material becomes soft around the cutting area and brings about a 

positive modification in the contact between chip and tool (Fang and Wu, 2009). Kline 

et al. (1982) developed mechanistic discrete models of cutting force for end milling in 

which cutter is treated as an aggregation of discretized thin disk cutters along the cutter 

axis. At any angular position, chip load of each disk cutter can be computed as the 

product of chip thickness and disk thickness and can be determined by Eq. (3.9).  

 

                                                       rcrr ptCK )(
−

=                                                     (3.9) 

 

where kr is the radial cutting constant, Cr is the helical and rake angle, tc is the average 

chip thickness and pr is the tool/workpiece material properties. In this research, the 
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cutting force is measured by cutting force dynamometer. The force dynamometer is 

clamped on the table of CNC machining, and the workpiece is attached on the cutting 

force dynamometer. The force dynamometer will record the cutting force during the 

machining process and the data is send to the charge amplifier for data acquisition. The 

cutting component of (Fy), radial thrust force is measured where the cutting component 

of Fz and Fx are neglected due to the small values of them. Chen (2008), during the 

finishing operation of hardened steel, the radial thrust force (Fy) becomes the largest 

amongst the three cutting force components and it is very sensitive to the changes of 

cutting edge chamfer, tool nose radius and flank wear. 

 

Chip formation: Chip formation in primary and secondary deformation zones is known 

as chip formation. The cutting forces and contact processes at the tool-chip interface are 

among the basic points of consideration in kinematic relationship. Cutting speed and use 

of difficult methods in the development of materials of the machine are among factors 

that causing an increase in the number of broken chips (Astakhov, 2006). The crack 

often spreads from the tool tip of the chip to the free surface of the deformed chip in the 

share zone. This is because of different stress states near the tool tip of chip. The 

discontinuous and segregated continuous morphology of the chip is because of variation 

in crack and considered the basic reason (Hua and Shivpuri, 2004). The negative effect 

of strength occurs because of change in local temperature, which can be equivalent to or 

greater than the positive effect of strain hardening, the whole phenomenon is described 

as catastrophic shear that lead the formation of serrated chips used in machining 

difficult-to-machine material (Recht, 1964). 

 

3.3.2 Process Parameters 

 

Feed rate, axial depth and cutting speed are process parameters of CNC end 

milling machine (Mohd Zain et al. 2010; Ozcelik and Bayramoglu 2006; Yin-fong and 

Min-der, 2005). The details of these process parameters are as follows: 

 

Feed Rate:  The rate at which cutter is raised against work piece is defined as feed. The 

higher value of feed rate, increases the cutting force thus affects the surface finish of 

workpice machined (Korkut and Donertas, 2007). However, the calculation for single 
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point cutting machine is relatively direct and can be obtained from work done on a 

single point of willing machine which is equipped with multi-tipped cutting tools. 

Thereafter the number of teeth on the cutter and the desired volume of material of each 

tooth required during cutting are desired to produce anticipated feed rate. Therefore, 

feed rate is described as mm/rev (fr), mm/min (fm), or mm/tooth (ft) by the vendors of 

milling machine. Feed rate described in mm/tooth are used for specific cutter of the 

machine whereas feed rate described in terms of mm/ tooth are desirable for general 

use. However, the feed rate mm/rev can be represented as follows in Eq. (3.10):  

 

vnff tr ××=                                                  (3.10) 

 

where, 

 fr = Feed rate in mm/rev; ft = Feed rate in mm/tooth 

n = Number of the teeth of cutter; v = Cutting speed 

 

Axial depth: The distance at which tools digs in metal at the time of working is used to 

measure the axial depth of cut. There are two types of cut: the axial depth of cut and the 

radial depth of cut.  The former is measured by the depth of the cut along its axis during 

the time of cutting workpiece. Lower feed rate is useful to get large axial depth of cut 

and help to maintain fewer loads on the tool and results to maximize the life of the tool. 

Thus, when tool moves through each pass it will generate passes at several stages and 

moves the tool along specific axial depth of cut. However, the depth of tool along the 

radius of workpiece is the radial depth of cut, which is less than the radius of the tool 

and partially used to make peripheral cut in the work piece. The surface roughness of 

workpiece machined is affected mainly by radial depth of cut (Vivancos et al., 2005).  

 

Cutting speed: Cutting speed is the speed at the outside edge of the milling cutter as it 

is rotating. It can also be defined as how fast the metal comes into contact with the tool 

at the cutting point. There are multiple variables which affect the machinist’s decisions 

to fix the speed of the tool. It is equally valid for drilling, grinding, milling and turning 

(lathe). The decreases in the cutting speed enhance the machinability without using 

lubricant (Diniz and Micaroni, 2002). It can help improve productivity and streamline 

the cutting process. The cutting speed in the context of milling cutter is defined as the 
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speed which allows cutting tip to pass the work. It is measured in m/min. When the 

cutter is moving at the N rpm and its diameter is D (measured in mm), the distance 

covered by cutting edge in N revolution. The formula of cutting speed is mentioned in 

Eq. (3.11).  

 

DNv π=                                                                    (3.11) 

 

The intensity of the heat source is an important measure in the cutting system. It is 

affected by cutting speed which in turn determines the energy distribution level. When 

the cutting speed is increases, plastic deformation in the chip formation zone reduces. 

This inverse relationship leads to low level of conversion from applied mechanical 

energy to heat. As a result, the chip is born at the less hot level (Ashtakhov, 2006). 

 

3.4 EXPERIMENT DETAILS 

 

3.4.1 Parameters Selection 

Findings from the literature review by the previous researchers and the preliminary 

experiment were the bases of selecting the parameters. The process parameters such as 

the axial depth, feed rate and cutting speed were considered in the end milling process 

(Palanisamy et al., 2009). Earlier considered factors of nickel based alloys are depicted 

in Table 3.5 

 
Table 3.5: Factors considered in previous studies of Nickel based alloys 

 

Material Variables Author (years) 
IN-718 Feed rate (0.03 mm/rev) 

Axial depth (1.2 mm) 
Cutting speed (30 m/min) 

  Li et al. (2006) 

IN-718 Feed rate (0.04 mm/rev) 
Axial depth (0.5 mm) 
Cutting speed (16, 200 m/min) 

  Derrien and Vigneau (2004) 

IN-718 Feed rate (0.08 mm/rev) 
Axial depth (0.2 mm) 
Cutting speed (18,200 m/min) 

 Guerville and Vigneau (2002) 
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3.4.2 Design of Experiments 

 

The procedure of choosing the optimum level of cutting tools, machines and 

cutting parameters and condition is very long and costly (Kincl et al., 2005). An 

experiment was performed with diverse cutting tools for various parameters, then it is 

concluded that the best technique which can be used to cut different things is Design of 

Experiment (DOE). The Box-Behnken design used to optimize the experiment of 

judging effects of important parameters by using RSM (Zhao et al., 2006). This design 

is also used in practicing some discontinuous experiments but for only once. As you can 

see the Figure 3.5, which illustrated the Box-behnken design of three different variables, 

(Ferreira et al., 2007). Because of the advantages of using Box-Behnken design in 

different studies, it is finally concluded that this design has few points to remember and 

very much cheaper in conducting experiments (Chopra et al., 2007). Thus, it is 

preferable than the other central composite designs (Li et al., 2010). To check the 

feasibility and authenticity, three cutting levels parameters were used to observe the 

machinability and features of this trustworthy design. As you can see this model in 

Table 3.6, that shows the coated and uncoated carbide. The output value of the 

experiment is entered under the coated and uncoated columns in Table 3.7.  

 

                               
 

Figure 3.5: Typical example of BBD with three variables 

X1= Cutting speed (m/min) 
X2= Feed rate (mm/tooth) 
X3=Axial depth (mm) 
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Table 3.6: Machining parameters and their levels for coated and uncoated carbide 
cutting tool inserts. 

 

Process  
Parameters 

Level 
-1 0 1 

Feed rate (mm/tooth) 0.1 0.15 0.2 
Axial depth  (mm) 0.4 0.7 1 
Cutting speed (mm/min) 15 23 31 
Radial depth was kept constant at 16mm    

          

The radial depth of cut plays an important role in milling forces because as the 

radial depth of cut is increased, the “contact area” increases in the rotational direction, 

and the forces becomes larger. In this research, the machining is conducted in end 

milling machining and its is fully engaged, the radial depth of cut is equal to the 

diameter of cutting tool which is 16 mm, where the value is constant. 

 

Table 3.7: Design values of experiment for coated and uncoated carbide inserts 

 

Experiment 
No. 

Feed rate 
(mm/tooth) 

Axial Depth 
(mm) 

Cutting speed 
(m/min) 

1 0.15 0.4 31 
2 0.15 1 15 
3 0.1 0.7 15 
4 0.2 1 23 
5 0.2 0.7 31 
6 0.15 0.7 23 
7 0.15 0.7 23 
8 0.2 0.7 15 
9 0.1 0.4 23 
10 0.15 1 31 
11 0.15 0.4 15 
12 0.1 0.7 31 
13 0.1 1 23 
14 0.15 0.7 23 
15 0.2 0.4 23 

 

3.4.3  Workpiece Preparation 

 

A moist cloth and sand paper were used on the surface of the Hastelloy C-2000 

blocks (dimension of 46 mm x 120 mm x 20 mm) to make it more smooth and clean. 
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Sometimes the sticking dust makes the block very rough, so it is very beneficial to clean 

it before processing further. After cleaning up, the top surface is removed from the 

block and further uses it in the workpiece. After that, the dynamometer is attached with 

the slot and then clamped it with the block. 

 

3.4.4 Experimental Setup 

 

For the experimental setup, the Hastelloy C-2000 machine is used to test the 

design of the cutting technique. A wet cutting condition is made to test the effectiveness 

of the result of the CNC milling machine, HAAS TM-2 (See, Figure 3.6). This machine 

is equipped with 5.6 KW motor drive, 400 rpm spindle speed and 5.1 m/min feed rate 

(the complete specification is also shown in Table 3.8). The quality of the cutting tool 

for the cutting machine is very important. Therefore, coated carbide (CTW 4615) and 

uncoated carbide (CTP 1235) are used in the cutting tool. For each 15 different 

experiments, a new set of cutting tool is used every time to get authentic data.  

 

Table 3.8: The specification of the CNC milling machine HAAS TM2 

 

Part Specification 
X- axis                         40" 
Y- axis                  16" 
Z- axis                    16" 
Table surface to spindle nose         4" to 20" 
Column to spindle centre    22.05" 
Table working surface             57.75" x 10.5" 
Table load capacity               1000 lb 
Spindle speed RPM              4000 to 6000 rpm 
Spindle taper size                40 Taper 
Drive system      Direct speed, belt drive 
Maximum torque      33 ft-lb@ 1200 rpm 
Maximum thrust rating      2000 lb 
Cutting feed                  200 to 400 ipm 
Tool storage capacity               20 Tools 
Max tool diameter with adjacent tools             5.31" 
Max tool weight        12 lb 
Tool-to-Tool (avg)     5.7 sec 
Spindle drive       5.7 sec 
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Along with the dynamometer, a workpiece block is fastened on the table of CNC 

milling. It is very important to know that the dynamometer is used to measure the force 

of cutting a thing with the machine. On the other side, a CNC program is applied to cut 

the block in 120 mm of length. MarSurf PS (a portable tester used to calculate the 

roughness on a surface) is used on the surface of the block of the workpiece from 

different locations before going further. After this, a Scanning Electron Microscope is 

used to categorize the integrity of the surface. An advanced optical video computing 

system is used to evaluate the effectiveness of the cutting tool. The tool holder is 

removed from the panel of the testing machine, during the measurement of the 

operation. Flank wear is tested by using it on cutting 120 mm long block. After the first 

half, the tool wear at the face of the flank is measured to get the accurate result.  The 

frequency of the tool wear is depended upon the rate of growth when the wear. After it, 

the final parameter of the tool wear is called the optimal tool wear. The actual life of the 

tool is calculated by the total time of the cutting the cutting-part to get a specific tool 

life. During the milling operation, the Kistler charge Amplifier model 5070 and Kistler 

dynamometer model 1679A5 are used to measure the cutting force. These tools save the 

data of the critical forces into the computer for future analysis. At the end of this 

experiment, the chips are examined to know the mechanism of them. The method which 

is used to collect data from these chips describes as follows: 

 

 
 

Figure 3.6: CNC milling machine HAAS TM-2 
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Measuring Surface Roughness: For removing the coolness and oiling of machine 

while measuring the roughness of the surface the workpiece was dipped in an ultrasonic 

bath. To measure the surface roughness, a tester was used of model Marsurf PS1 whose 

value is represented as Ra. For calculating the mean surface roughness, 6 readings were 

taken: 2 from a space of 30 mm, 2 at the centre and 2 from the distance measuring 90 

mm. SEM is used to measure the surface integrity of model Hastelloy C-2000. The 

cutting pieces of the workpiece are then go through the process of polishing and 

grinding to clear the dirt and coolant as the workpiece was fixed by a certain fixing 

methodology. A mixture of epoxy and hardener was poured in a little container of size 

30 mm in diameter. Before the next stage, the specimens were kept to dry out and get 

hardened. Then with a Cameo Platinum with a wheeler having speed of 150 rpm was 

used to grind the fixed workpiece. Following this process, polishing starts with a Cameo 

silver disc of 6 micron having a speed of 150 rpm, then again a Cameo White FAS Disc 

of 3 micron with a diamond mixture, along with the diamond mixture of 1 micron and 

red cloth plus a micro extender of speed 200 rpm. Before the last process of giving the 

ultrasonic bath to get rid of the coolant and residue, polishing was done with colloidal 

silica of 0.05 micron along with imperial cloth and water having a wheeler speed of 

150 rpm. The ultra sonic bath was given by Aqua Regia-Glycerol an etching compound, 

and before this specimen was cleaned with an ultrasonic cleaner. 

 

Measuring Flank Wear: During the machining while last milling operation a flank 

wear inserted on the mill was determined after each pass on the specimen i.e. workpiece 

with an ISO 8688-2:1989 (E) tool with a constant wear criterion of 0.3 mm. This tool 

flank was chosen by looking at the different modes of failure predicted accordingly. It 

continues recording of each pass during the cutting till the insert collide its end 

criterion. 

 

Tool Life Measurement: The complete cutting duration of the cutting session at a 

particular tool-life principle is termed as tool life. It is defined as a calculated value of 

particular types of tool wear as per recommendations. During the machining of steel 

while end milling a recommended ISO 8688-2:1989 (E) tool of uniform wear of 3.3 mm 

along with the maximum wear criterion of about 0.5 mm is used. The process 

implemented during the trial is: highest flank wear = 0.3 mm, fracture or catastrophic 
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and also maximum wear standard = 0.5 mm. The trial stops immediately on reaching 

any of the mentioned criterions. 

 

Cutting Force Measurement: Kistler Force Dynamometer is utilized to measure the 

cutting force throughout the machining session going on. 

 

Chip Collection and Measurement: As illustrated in Figure 3.7, the chips were 

trapped by using a net while the machining session going on. This method is considered 

easier than others. Before the examination done by scanning of electron microscope, the 

chips were grinded and polished just like it is done for the surface integrity.  

 

   
 

Figure 3.7: (a) Dimension of the net   (b) Workpiece covered with net to collect the 
chips. 

 

3.4.5 Cutting Fluid 

 

The mineral oil is a rough classification of cutting fluids which is further 

differentiated as mixtures and emulsions. It posses characteristics like they are vastly 

combustible, inefficient at elevated cutting paces, greasy and are found at relatively high 

prices. A homogenous mixture is formed by the composition of mineral oils and 

emulsifiers. A stumpy surface layer is produced with the help of stabilizers including 

chlorine, sulphur and phosphor, detergents, rust controllers, foam controlling agents, as 

Workpiece 

Net 

Force dynamometer 
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well as steam controlling agents so as to diminish the friction (Nachtman, 1995). 

Mineral oils are not present in the solution which is soluble in water. The mineral oil 

was restored by synthesized hydrocarbons, forming synthetic fluids. When emulsified 

oil is mixed in this fluid, it forms semi-synthetic fluid possessing mutual properties. X-

Ten C 30 is the cutting fluid which is used as a synthetic brand in the overall research 

and literature. It is a synthetic fluid which can be used on different alloys and metals. It 

protects the alloys and metals used in the machines against corrosion and have the 

ability to cool the objects. It generally increases the years of life of the tools used for 

cutting through its coolant property as well as anti corrosion ability. The suggested 

strength and ratio of the coolant is around 1:10 to 1:20 and is used in a range of 

manoeuvres like drilling, grinding and milling. 

 

3.4.6 Physical Equipments 

 

The operations that particularly required cutting off pieces of work, a vertical 

milling machine was used namely HAAS TM2 for such operations and this machine can 

be viewed in Figure 3.6 above section. This is also known as a CNC milling machine 

commonly. This machine is firm for its operations and is perfect for end milling; it is a 

highly accurate machine. The machine center is driven by a 5.6 kW stepless motor 

which provides high torque. The experimental setup can be viewed in Figure 3.8. 

 

 
 

Figure 3.8: Experimental set up  
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Surface Roughness Tester: Figure 3.9 shows a portable roughness tester model 

MarSurf PS1, which measures the arithmetic average roughness of a surface (Ra). 

Basically, the purpose of this model is to measure the roughness of the machined 

surface which occurs during an experiment. 

 

 

 

 

 

 

 

 

 

 

 

                           Figure 3.9: Portable roughness tester, MarSurf PS1 

 

Optical Video Measuring System: For capturing the wear progress at the edge where 

cutting has taken place, from the period when first pass takes place to the end of tool’s 

life, an optical video measuring system model SOV-2010 (N/A) is used as shown in 

Figure 3.10.                  

 

 
 

Figure 3.10: Optical video measuring system 
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Scanning Electron Microscope: SEM observes the microstructures of the tools very 

closely and then measures the damage or the defects present on it. By doing this, it has 

played a very significant role, and has helped to a great extent in this study. Figure 3.11 

shows the picture of a Scanning electron microscope model XL 40. This model is 

outfitted with EDAX X-ray system. SEM consists of a filament, which is just 40 to 50 

μm. This filament has the capability to magnify the image up to 50,000X. On X and 

Y-axis the movement range is about 150 mm, and the unusual working distance is 

10 mm. 

 

                      
 

Figure 3.11: Scanning electronic microscope (SEM) model XL40 

 

Force Dynamometer and Charge Amplifier: Figure 3.12(a) shows a Kistler force 

dynamometer model 1679A5 for the purpose of recoding the force of cutting during the 

milling operations. The output signals of dynamometer are changed into voltage signals 

by the Kister dual mode charge amplifier, model 5070 as in Figure 3.12 (b). This change 

is done for the acquisition system and this is demonstrated in Figure 3.12(c). As per the 

sensitivity of the output force of the dynamometer the sensitivity of the charge amplifier 

is set. Dynamometer is rigid and gives a high natural frequency. Due to the high 

resolution of the dynamometer even the slightest changes in outsized forces are 

measures easily. 

Computers 
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                     (a)                                                                                  (b) 

                        
                                                                      (c) 

Figure 3.12: (a) Force dynamometer; (b) Model 5070 of Kistler dual mode charge 
amplifier; (c) The setting of force dynamometer and charge amplifier at CNC milling 

machine 
 

Grinding and Polishing Machine: The purpose of this machine is to prepare the 

workpiece along with the tools that are to be used for cutting. It prepares the tools by 

providing polish and grinding them. The tools pass through this machine before they 

undergo they undergo the surface integrity investigation test by the scanning electron 

microscope. Once the workpiece has gone through the machine, they are given an 

ultrasonic bath. Ultrasonic bath removes the presence of any residue or coolant. 
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Chemicals along with cloths are used in this mechanism of polishing and grinding. 

Cloth, grinding machine, ultrasonic bath and chemicals are shown in Figure 3.13. 

 

            
                           (a)                                                                    (b) 

             
                              (c) (d) 

    Figure 3.13: (a) Grinding machine, (b) Cloths, (c) Chemicals, (d) Ultrasonic bath 

 

3.5 MATHEMATICAL MODELLING 

 

3.5.1 Response Surface Method  

 

 RSM is basically a statistical and mathematical approach which is used by the 

researchers, it makes the solutions of engineering processes easy (Gayton et al., 2003). 

Grinding platform 
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Ultrasonic bath 

 



57 
 

RSM can also be regarded as a technique which is aimed to optimize the response that is 

being influenced by many factors (Montgomery, 2005). RSM came into existence to 

develop model experimental responses (Box and Draper, 1987). It is assumed that the 

output y is dependent on input x1, x2, … , xn,  (Myers, 1971).  

 

The problems that arise in RSM deal with both these models. All the factors of 

these models are independent of each other. For achieving the best possible results for 

approximation polynomials, the data are collected by using proper experimental 

designs. Best understanding about the RSM could be attained by knowing the 

topography of responses (local maximum, local minimum, ridge lines) and also by 

finding out the place where optimal response takes place. The target of RSM is to move 

with efficacy along the path to attain maximum or minimum responses, for getting 

optimized response (Kwak, 2005). RSM builds relationship between different cutting 

factors and characteristics of machines. The factors include; axial depth, feed rate, 

cutting speed, while the machine characters comprise of the tool life, surface roughness 

and cutting force. Eq. (3.12) gives the mathematical expression: 

 

  ε+= ),,( 321 XXXfY                                                       (3.12) 

 

where Y is a dependent variable and is a function of X1, X2, X3. Experimental error is 

denoted by ε. All other variations, which are not considered by f, are taken in by the 

error term along with any other measurement error that occurs on a response. This error 

is a statistical one and is distributed with variance, s2 and zero mean. Within this work, 

it will be taking X1, X2, X3 as feed rate (FR) and axial depth would be taken as AD. CS 

would be denoting cutting speed, and Y takes place of responses. Responses are tool life 

(TL), surface roughness (SR) and cutting force (CF). Therefore, Equation (3.8) can also 

be written as Eq. (3.13). 

 

                                      ε+= ),,( SDR CAFfY                                                           (3.13) 

 

 In terms of SR, TL and CK, the equations can be written as, Eq. (3.14), Eq. 

(3.15) and Eq. (3.16) respectively. 
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                                     ε+= ),,( SDR CAFfSR                                                           (3.14)   

                                     ε+= ),,( SDR CAFfTL                                                           (3.15) 

                                    ε+= ),,( SDR CAFfCF                                                          (3.16) 

 

3.5.2 First-Order Model  

 

The function f is not known in most of the problems of RSM. Experimenter must 

commence his work with a low order polynomial within a few small regions, like this 

they can achieve a better understanding for f. When linear function of independent 

variables is used to define the response, then the first order model is applied for 

approximating function. Eq. (3.17) gives an illustration of the first order model along 

with two variables, which are independent.  

 

                         εββββ ++++= 3322110 xxxy                                          (3.17) 

 

The three further equations have been formed by taking the responses as 

endogenous variables SR, TL and CF and the input parameters as exogenous variables 

FR, AD, and CS. Eq. (3.17) can be formulated further as Eq. (3.18), Eq. (3.19) and Eq. 

(3.20) respectively by neglecting error term ε. 

 

                          SSRDSRRRS CAFSR 3210 ββββ +++=                                            (3.20)    

                          STLDTLRTL CAFTL 3211 ββββ +++=                                               (3.21) 

                         SCFDCFRCF CAFCF 3212 ββββ +++=                                            (3.22) 

 

where, β0 is the intercept coefficient and the other coefficients β1, β2,and  β3 are the 

model parameters which describe the linear effect of the connecting factor. 

 

3.5.3  Second-Order Model 

 

The approximating function by constituting two variables is called a second-

order model as shown in Eq. (3.23). 
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where Y represent the corresponding responses such as SR, TL, CF, that yield by the 

several variables. jX represents the input variables such as FR, AD and CS; Xj
2 is square 

of the input variables, and XjXi is multiplication term of the input variables. The 

estimators 0β , jβ , jjβ and ijβ  are the second order regression coefficients. 

Equation (3.24) can be written as Eq. (3.25): 
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where 321 xxx ,, are feed rates (measured in mm/tooth), axial depth (measured in mm) and 

cutting speed (measured in m/min) respectively. The three further equations of the fitted 

model by taking SR, TL and CF as endogenous variable are indicated in Eq. (3.26), 

Eq. (3.27) and Eq. (3.28) respectively 
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All above three equations represent the second-order polynomial models, which 

measure the relationship between the machining characteristics of Hastelloy C-2000 

(SR, TL and CF) and the process parameters (FR, AX and CS). The first- and second-

order RSM were established on the basis of the experimental results. In order to 

estimate the proposed responses, it is essential to determine the relationship through the 

designed mathematical models. Therefore, the different statistical tools were carried out 

to measure for the linear and polynomial models to estimate the adequacy of the fitted 

model, such as analysis of variance. 
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3.5.4 Analysis of Variance 

 

Analysis of variance (ANOVA) is a collection of statistical technique that 

represents a set of models that can be fit to data, and also a set of methods that can be 

used to summarize an existing fitted model (Gelman, 2005). It is the smart method of 

comparing the mean values from more than two samples. ANOVA has been considered 

to be vital in order to determine which factors have a significant effect on the response 

(SR, TL and CF), and how much of the variability in the response variable (SR, TL and 

CF) is attributable to each factor. The ANOVA technique measures the coefficient of 

determination (R2), F-ratio, P-value, the standard error of the regression (S), and 

adjusted R2 of the model. The estimated results of ANOVA include other terms, like: 

sources of variance, their degree of freedom (DF), the total sum of squares, and the 

mean squares. The coefficient of determination of R2 can be determined as Eq. (3.29).  

 

                                  (TSS) squares of sum Total
(RSS) squares of sum Regression2 =R

                               (3.29) 

 

where, the total sum of squares (TSS) is equal to the sum of regression sum of squares 

(RSS) and the residual sum of squares (SSE).  

 

R2 is the coefficient of determination is defined as the ratio of the sum of squares 

explained by a regression model and the "total" sum of squares around the mean. R2 

measures the proportion of the total variation that is explained by the sample regression 

equation. The value of R2 lies in between 0 and 1. A high R2 value indicates that much 

of the variation in the regression and is explained by the sample regression equation (by 

the regressors), which in a regression framework means that model the data well. The 

value of R2 also suggests that very little of the variance is explained by the random error 

term. Mean square error (MSE) is the ratio of the sum of square of residuals (SSE) to 

the degree of freedom. The F-ratio is   a useful test statistics that is associated with 

ANOVA, which determine whether the variances in the two independent data sets are 

equal. It also defined as how different the means are relative to the variability within 

each sample. When the variances between two data sets are equal, then the value of the 

F-test is equal to 1. A large F-ratio value is an indication of significant differences 
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between the data sets. A large F-value shows that the average treatment (between) 

variation is larger than the error (within) deviation. The P-value is the probability of 

obtaining a test statistic, given that the samples are of the same population. Therefore, 

for large P-value, it is likely that the samples are part of the same population. The 

hypothesis that the samples are of the same population is known as the null hypothesis 

(H0). Furthermore, for a P-value greater than the significance level (larger than 0.05, in 

general), analysis would be said to not reject the null. The P-values less than the 

significance level, suggest that the null hypothesis is false and the results is said to be 

statistically significant.  

 

3.6 ARTIFICIAL NEURAL NETWORK 

 

3.6.1  Introduction 

 

Artificial neural network (ANN) has been defined by Luo and Unbehauen 

(1998), as “a model of reasoning based on the human brain”. According to them, the 

human brain comprises of a densely interconnected set of nerve cells, or basic 

information-processing unit, called neurons. Furthermore, ANN is basically a 

computational model at human brain than assumes that computational is distributed 

over several interconnection processing element called neurons. The brain can perform 

its functions much faster than the fastest computer by using these multiple neurons 

simultaneously. Although, the structure of each neuron is very simple, like an army of 

such elements constitutes a tremendous processing power. A neuron comprises of a cell 

body, soma, a lot number of fibres which is called as dendrites, and a single long fibre 

called the axon. While dendrites branch into a network around the soma, the axon 

stretches out to the dendrites and somas of other neurons. A schematic drawing of a 

biology neural network is depicted in Figure 3.14 (Negnevitsky, 2004). 

 

By the complex electrochemical reactions, the different types of signals are 

broadcasted from one neuron to another. In this process, the chemical substances 

released from the synapses cause a change in the electrical potential of the cell body. 

When the potential reaches its threshold level, an electrical pulse, action potential is sent 

down through the axon. The pulse spreads out and eventually reaches synapses, causing 
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them to increase or decrease their potential. Conversely, the most intriguing discovery is 

that a neural network shows plasticity. The strength of the connections of neurons is 

modified for a long-standing time period as a reaction to the stimulation pattern. 

Neurons also have the ability to develop new links with other neurons. The neuron is a 

recipient to information from many other neurons at the synapses. Approximately, one 

neuron may be a recipient to stimuli from around 10 000 neurons. Even whole groups of 

neurons may relocate from one region to another. These mechanisms make up the 

foundation of learning in the brain. A neuron is basically an information-processing 

element that is essential for a neural network to work properly. The three core elements 

of a neuron model can be identified. The non-linear model of a neuron is illustrated in 

Figure 3.15. 

 

 
 

Figure 3.14:  Schematic drawing of biology neural network 

 

Their own force distinguishes a collection of synapses. Distinctively, the 

presence of a signal xj at the input of synapse j linked with neuron k is multiplied by the 

weight of the synapse Wkj. It is significant to pay attention to the way the subscripts Wkj, 

representing the synaptic weight, are written. The neuron in question is represented by 

the first subscript, and the second subscript represents the input side of the synapse, 

which the weight represents. The weight Wkj becomes positive when the linked synapse 

is excitatory in nature. However, when the synapse is inhibitory in nature, then the 

weight Wkj is negative. This is basically an activation function to decrease the amplitude 

of the output of a neuron. It has also been called as the squashing function in the 

previous literature, since it squashes (reduces) the allowable amplitude range of the 
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output signal produced by a neuron to a finite value. Usually, the regulated amplitude 

range of the output signal generated by a neuron is scribed as the closed unit interval [0, 

1] or otherwise [-1, 1]. The neuron model consists of an outwardly applied bias 

(threshold) wk0 = bk that influences the activation function by decreasing or escalating 

its net input. Mathematically, this pair of Eq. (3.30), Eq. (3.31) and Eq. (3.32) 

respectively, may be used to explain a neuron k. 

 

 
 

Figure 3.15: Non-linear model of a neuron 
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3.6.2 Training Algorithm   

 

 Artificial neural systems are made on the basis of the simplified version of the 

human brain’s biological roles. As a result, these systems are very competent with 

respect to computational systems where complicated factual world issues are 

represented (Svozil et al., 1997). Neural systems can be categorized into two types. 

Feed forward with respect to their activation period, and as supervised and unsupervised 

with respect to the learning period. Feed forward systems only permit one-way journey 

of signal from input to output. No feedback is present. No layer is influenced in any way 

by its own output the data dispensing can be expanded to include several units (Marini 

et al., 2007). The supervised training requires input and output information in the 

training procedure like Recurrent Cascade Correlation, Boltzman Machine, and Back 

propagation (Maren et al., 1990). A vital constituent of the supervised is the easy 

accessibility of an outside guide that is able to give the neural system a target reaction. 

The joint effect of the training vector and the error signal adjusts the system boundaries. 

The regulation is done on a step-by-step basis, with the objective of making the neural 

system imitate the trainer in due time. This type of supervised learning is actually error-

connection learning, as has been previously explained. Figure 3.16 illustrates supervised 

learning. 

 
 

Figure 3.16: Typical example of supervised learning 

Trainer 
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Supervised learning is needed for pattern matching, and one of the most widely 

accepted supervised learning methods is back propagation. The back propagation 

archetype modifies the linkage weights to decrease the output error. In the opening 

condition, the system contains an arbitrary set of linkage weights. When a network 

begins with all linkage weights equivalent, the system initiates a type of domestic 

optimum, and will not unite with a world-wide answer. For the system to learn, a 

collection of inputs is given to the network, and a group of outputs are deliberated. The 

disparity between the real outputs and the preferred outputs is deliberated, and the 

linkage weights are adjusted to decrease this disparity. The current researches have the 

aim to utilize the supervised system with perceptrons consisting of many layers, and 

train using the back propagation algorithm (with momentum). The input outline 

contains the control variables, which are utilized in the machining process (feed rate, 

axial depth and cutting speed), while the constituents of the output outline show the 

replies from sensors (surface roughness, tool life, and cutting force). The nodes found in 

the concealed level are mandatory to put into practice the nonlinear mapping between 

the input and output outlines. 

 

3.6.3 Multilayer Feed Forward Network 

 

Multilayer feed forward neural system, also known as multilayer perceptron 

(MLP), is very renowned, and is utilized more than the other neural system type for a 

large variety of deeds (Kumar and Yadav, 2011). Multilayer feed forward neural system 

understands using the back propagation algorithm, and is made on the basis of 

supervised process. The system builds a representation, which has roots in examples of 

information with recognized output. It has constructed the representation exclusively 

from the examples given, which are said to innately hold the data essential to building a 

link.  An MLP is a potent system, usually proficient in constructing complicated 

connections among variables (Mohd Zain et al., 2010). It permits the forecast of output 

object for a presented input object. The infrastructure of MLP is a feed forward neural 

system consisting of various levels, in which the non-linear constituents (neurons) are 

assembled layer-by-layer, and the data flow is one-way from the input level to output 

level, via concealed level(s). The more the amount of levels, the more time required for 

training, and unsteady networks are produced (Radhakrishnan and Mohamed, 2000), 
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and train excessively (Yue et al., 1998); however, it generates improved results 

(Crowther and Cooper, 2001).  

 

A MLP containing only one incognito level can learn to estimate basically any 

task to any extent of accuracy. Due to this reason, MLPs are termed as universal 

approximates, and can be utilized even when it only has a slight amount of previous 

knowledge of the connection between input and goal. One incognito level is enough, 

given that ample amount of information is provided. Figure 3.17 illustrates a MLP with 

one incognito level, having X1, X2, X3, ..., Xm  as input parameters, Wm as the weighting 

matrix for the incognito layer, and R as the exterior parameters for the reaction. 

 

 
Figure 3.17: MLP with one hidden layer 

 

The neurons found in between the levels are joined by the links, which have 

synaptic weights. The error back propagation training algorithm is made on the basis of 

weight updates, so that the sum of squared error for k amount of output neurons is 

decreased. As shown in Eq. (3.33) 
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where dk,p = the desired output for pth pattern.  
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The weights of link are updated as Eq. (3.34). 

 

)()()( nwonwnw jipipjijji ∆αηδ ++=+1                      (3.34) 

 

where n is the learning step, η is the learning rate and α is the momentum constant and 

δpj is the error term. Then it followed by Eq. (3.35) and Eq. (3.36). 

 

                          For output layer = ))(( kpkpkppk ood −−= 1δ             k = 1 ..... k        (3.35)             

                          For input layer = ∑−= kjpkpjjppj woo δδ )(1             j = 1 ..... j         (3.36)     

 

where, j denotes the number of neurons present in the hidden layer. When small values 

of weight are randomly assigned to all the links, then only the training process is 

commenced. The patterns of input and output come along one by one and keep on 

updating the weights. At the end of each period, the mean absolute error (MAE) is 

computed as per Eq. (3.37). 
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In this equation, NP gives the number of training patterns. When the target is 

achieved then the training process will come to an end. 

 

3.6.4  Back Propagation Algorithm 

 

Back propagation is the most well known example of supervised learning, which 

is provided to train the MLP network (Nalbant et al., 2009; Abeesh et al., 2008; 

Erzurumlu and Oktem, 2007;  and Cus and Zuperl, 2006). Back propagation aims to 

achieve very less errors in the prediction of the training set, and it achieves this 

objective by making adjustments to the threshold and the weight. Figure 3.18 gives an 

illustration of a typical example of back propagation ANN. The figure shows that for 

every node, i  is the input value, Ii
n   is the layer, while n is linked with each node j, via a 

weight of n
ijw .  It can be seen in Equations (3.38), (3.39) and (3.40) that when 
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multiplication of input and weight values takes places unfairly then the outputs received 

are n
njH  (hidden node) and Oj

n (output node) (Takashi, 2000). Artificial neural networks 

of back propagation are shown in Figure 3.18. 
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With the layer n, n
ib is the threshold and neuron is denote by ith. Here, n is equal 

to 1, and the function f is given the name of hidden node and output node activation 

function for n
nijH   and

n
jO . 

 

 

 

 

 

 

 

 

 

 
Figure 3.18: Back propagation algorithm artificial neural networks  

 
Source: Demuth and Beale (1998) 

 

In back propagation, three types of activation function are used, namely; linear 

(purelin), tangent hyperbolic (Tansig) and sigmoid. When moving from input to hidden 
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“S” shaped curve is produced by sigmoid and Tansig function. The output of the 

 

H1
2ij 

f 

wN
Nij

,
 

b2
2ij 

b2
1ij 

H1
1ij 

f 

b1
ij 

w2
1 wN

N
 

b1
2j 

∑ 

HN
Nij

 

f 

I1i 

 

I2i 

 

I3i 

 

w1
N ij ∑ 

bN
Nij

 

∑ 

∑ 

∑ 

Oj 

f 

ONj 

f 

O2j 

f 

bN
Nij

 

∑ 

w2
Nij 

 

 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

sigmoid function varies in between [0, 1], while the output of tanh varies between 

[-1, 1]. For getting an output node from the hidden node, a purelin function is used. 

Non-linear function is also known as hyperbolic tangent function, and is written just as 

Eq. (3.41) is written (Abeesh et al., 2008; Al-Ahmari, 2007; Oktem et al., 2006; 

Ezugwu, 2005). Figure 3.19 shows the hyperbolic tangent activation function. 
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Figure 3.19: Hyperbolic tangent activation function 

 

For giving appropriate results, ANN learns through the input data and then the 

adjustment is made to the weight. During the training session, the data are collected, and 

on the basis of collected data, the number of hidden layers are determined, states Maren 

et al. (1990). Training involves a greater time period when the number of hidden layers 

is more, and this results in unstable networks as well (Radhakrishnan and Mohamed, 

2000). At times over training (Yue et al., 1998) also takes place under this situation, to 

give much better results (Crowther and Cooper, 2001). Training is provided to an extent 

that the chances of errors are minimized to the least. When the errors are less in number 

then very few adjustments would also be required. Weights are figured out on the basis 

of input data, which corresponds with the output data. While ANN process takes place, 

the weights are adjusted in a random manner. This research work has used back 

propagation algorithm along with training provided at the hands of artificial neural 
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network. This algorithm makes use of supervised training mechanism in situations 

where network weights are initialized in a random manner, just at the commencement of 

the training period. In order to fit in the hyperbolic function model, patterns are 

normalized appropriately between 0 and 1 (Grabec and Kuljanic, 1994).  As the 

iteration numbers increase and reach up to a limit of 10000, the number of errors 

decreases. Error criterion is considered along with the number of iteration. An 

experiment was performed on the trial and error basis (Mohd Zain et al., 2010). Under 

this experiment, training session was stopped after 10000 iterations. Three inputs, 

namely; feed rate, axial depth and cutting speed were used, while the output parameters 

were; the surface roughness, tool life, and cutting force. The hidden layers along with 

the neurons were functioned to suit the complication of the dilemma.  For activation of 

the hidden layer, the sigmoid function is used. For output and hidden layer, the learning 

rule function of back propagation was preferred.  The MAE was 10-6, while the number 

totalled to 10000. The heuristic technique grounded on the correlation of the values of 

coefficient and R2 determines the finest network structure. The design of ANN for 

uncoated and coated cutting attachments is shown in Figure 3.20. 

 

 

 

 

 

 

 

 

 

Figure 3.20: Design of ANN for uncoated and coated cutting attachments 

 

3.7 SUMMARY 

 

The chapter explained the technique by Hastelloy C-2000 employed by end 

milling processes. The chapter elucidated the features of uncoated and coated carbide 

cutting attachments and Hastelloy C-2000. The tentative arrangement, appropriate 

choice of cutting structures and the choice of Box-behnken architecture of the 

 

  Cutting speed 

       Feed rate 

Cutting force 

 Input nodes  Hidden layers   Output layer 

Axial depth Tool life 

Surface roughness 



71 
 

experiment is clearly discussed. Techniques to examine the working of the machining 

process through the use of calculated modelling and mock neural network has been 

established. The way these approaches will work will be explained in the upcoming 

chapter. 

 



 
 

 

 

 

CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

4.1 INTRODUCTION 

 

The purpose of this report is to develop a mathematical model by making use of 

the response surface method. The process would take place when machining Hastelloy 

C-2000 using coated and uncoated carbide in the end milling processes. The 

mathematical model would help to establish a relationship between the input variable 

like feed rate, axial depth, and cutting speed with the cutting responses which are the 

surface roughness, tool life and cutting force. Regression models have been used to 

carry out the optimization of the machine characteristics and the prediction of these 

characteristics is done by the artificial neural network (ANN). In order to extract 

efficient results it is essential to use the hidden layers, neuron number, training 

algorithm and activation functions. To make sure the best performance is achieved, the 

ANN and RSM are compared to the most appropriate models. The chip formation and 

tool wear mechanism have also been stated as part of the report.  

  

4.2 SURFACE ROUGHNESS 

 

4.2.1 Development of Mathematical Model 

 

RSM has been used to develop the mathematical modelling and to optimize the 

machining parameters when machining Hastelloy C-2000 by using coated carbide 

(CTW4615) and uncoated carbide (CTP 1235). First order and second order of RSM 

model has been developed based on surface roughness results.  Using the RSM model it 

is possible to find those factors which have the ability to influence the surface 
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roughness. This is basically done to enhance the efficiency levels of the response 

surface which is found to be influenced by the different parameters. The RSM also 

provides a quantifiable relationship with the response surfaces and the input parameters 

(Montgomery, 1997 and Kwak, 2005). The following eq. (4.1) is a linear model which 

consists of independent variables and responses correlation in order to perform the task. 

 

dcbay +×+×+×= speed Cuttingdepth Axialrate Feed                (4.1) 

 

where a, b, c and d are the constants and y is the response.  

 

This Equation (4.1) can also be written as Eq. (4.2): 

 

                                    33221100 xxxxy ββββ +++=                                 (4.2) 

 

where, y is the response, x0 = 1(dummy variable), x1=feed rate, x2 =axial depth, and x3 

= cutting speed. β0 = D and β1, β2, and β3, are the model parameters.  

 

Equation (4.3) is the presentation of the second-order model: 
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First Order Model 

 

To predict the surface roughness, the first order linear equation has been expressed as 

eq. (4.4) and (4.5) for coated and uncoated carbide inserts respectively: 

 

For coated carbide inserts (CTW 4615): 

 

 321 008750.0017250.0072250.0415933.0' xxxy −++=            (4.4) 
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For uncoated carbide inserts (CTP 1235):    

 

321 0.21700.3654 0.59391.3786 ' xxxy −++=                                (4.5) 

 

Table 4.1 presents the results of the analysis of the variances of the coated and 

the uncoated carbide cutting inserts. The ANOVA has provided the level of adequacy of 

the first order model at a confidence level of 95%. According to the table 4.1, both 

models have P-values of linear source which are less than α-value (0.05) stating that 

they are significant as well as adequate. The values for coated and uncoated carbide of 

0.301 and 0.205 respectively have been found to be unfit and insignificant since they 

are higher than the α-level (0.05). Hence, it is found that the effectiveness of the model 

which is built in the value of the surface roughness prediction date can be observed 

using an indicator, as the models are considered appropriate. The appropriateness of the 

Regression model can be judged by using the co-efficient R2 (Davidson et al., 2008).The 

value of the uncoated carbide is higher than that of the coated carbide since it has been 

observed that coated carbide is 86.32 % and uncoated carbide is 93.57 %. Therefore, by 

making use of the models it is possible to extract an accurate prediction of the surface 

roughness which lies within the level of ±10% (Sahin and Motorcu, 2008).  

  

Table 4.1: Variance analysis for the first order model of the surface roughness for 
coated and uncoated carbide 

 

Source DF Coated Carbide 
inserts 

Uncoated carbide 
inserts 

  F-value P-value F-value P-value 
Regression 3 3.61 0.049 53.32 0.000 
Linear 3 3.61 0.049 53.32 0.000 
Residual Error 11     
Lack of Fit 9 2.69 0.301 4.25 0.205 
Pure Error 2     
Total 14     

            Note: DF= Degree of freedom 

 

Figure 4.1 shows the contour plot of surface roughness for the coated and 

uncoated carbide cutting inserts. They have been compared to the feed rate, axial depth 

and cutting speed and the linear models has been used to develop the linear line. Hence, 
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with the help of this table it has been possible to note that there exists a direct 

relationship between the surface roughness and the axial depth and feed rate. 

 

          
 

(a) Coated carbide inserts                              (b) Uncoated carbide inserts 

 

        
 

                 (c) Coated carbide inserts                            (d) Uncoated carbide inserts 

 

Figure 4.1: The surface roughness first order RSM contour plot versus feed rate and 
axial depth for (a) coated; (b) uncoated carbide inserts and feed rate as well as cutting 

speed for (c) coated and (d) uncoated carbide inserts 
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In the cutting condition, if the slow feed rate is being used then it is observed 

that the surface roughness value is also lower. The outer surface has been uniformed by 

a slow feed rate causing the surface roughness to be low and the machined work piece 

surface finish increases (Davidson et al., 2008). The surface roughness was found to be 

affected by the feed rate the most and because of this rate increased the surface quality 

lowered (Darwish, 2000; Ezugwu et al., 1999; Joshi et al., 2008). Keeping the axial 

depth low, the cutting speed had a sensitive effect over the surface roughness, since the 

roughness would decrease as the cutting speed increased (Doniavi et al., 2007). All 

these activities take place during the machining process due to the thermal and 

mechanical cycling, microstructural transformations, and mechanical and thermal 

deformations (Axinte and Dewes, 2002).  

 

Table 4.2: Experimental results and the first order RSM predicted values for coated and 
uncoated carbide 

 

No Exp.Cutting 
Condition 

Experimental 
result 

Predicted 
result 

Absolute Error  
(%) 

 FR AD CS CTW 
4615 

CTP 
1235 

CTW 
4615 

CTP 
1245 

CTW 
4615 

CTP 
1235 

1 0.15 0.4 31 0.378 0.710 0.3899 0.7962    3.157 12.141 
2 0.15 1 15 0.412 2.100 0.4419 1.9610   7.266   6.619 
3 0.1 0.7 15 0.318 0.950 0.3524 1.0017 10.827   5.442 
4 0.2 1 23 0.500 2.310 0.5054 2.3379  1.087  1.208 
5 0.2 0.7 31 0.456 1.993 0.4794 1.7555  5.139  8.906 
6 0.15 0.7 23 0.422 1.271 0.4153 1.3786   1.438  8.466 
7 0.15 0.7 23 0.427 1.200 0.4159 1.3786   2.592 14.883 
8 0.2 0.7 15 0.518 2.175 0.4969 2.1895   4.067  0.667 
9 0.1 0.4 23 0.334 0.520 0.3264 0.4194   2.266  19.346 
10 0.15 1 31 0.461 1.386 0.4244 1.5270   5.995 10.173 
11 0.15 0.4 15 0.442 1.250 0.4074 1.2302  7.821  1.584 
12 0.1 0.7 31 0.325 0.650 0.3349 0.5677  3.056 12.662 
13 0.1 1 23 0.365 1.335 0.3609 1.1501  1.114 13.850 
14 0.15 0.7 23 0.435 1.101 0.4159 1.3786  4.383 25.213 
15 0.2 0.4 23 0.446 1.728 0.4709 1.6071  5.590   6.997 

Note: FR= Feed rate (mm/tooth), AD=Axial depth (mm), CS=Cutting 
speed(m/min),CTW 4615= Coated carbide, CTP 1235= Uncoated carbide 
 

Figure 4.1(b) shows that as the cutting speed is increased the surface roughness 

reduces. If there is a decrease in the feed rate and an increase in the cutting speed, the 

contour plot of surface roughness has been observed to reduce (Davim et al., 2007). The 

uncoated carbide cutting tools have a higher surface roughness than the coated carbide. 
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With a minimum axial depth, higher cutting speed and lower feed rate it is possible to 

obtain a low surface roughness. Table 4.2 shows the experimental result and the first 

order RSM with percentage of absolute relative error for coated and uncoated carbide. 

The minimum errors have been observed as 1.087 % for coated and 0.667 % for 

uncoated carbide and the maximum errors 10.827 % and 25.13 % are coated and 

uncoated carbide cutting inserts respectively. 

 

Second Order Model 

 

The first order model had been considered efficient for use; however, due to 

some extended variable it was essential to develop the second-order model. This model 

would be able to form the relationship between the machining independent variables 

and the surface roughness (Kwak et al., 2005). Hence, the second order model for 

coated and uncoated carbide cutting tool inserts have been expressed in the linear 

equation as eq. (4.6) and eq. (4.7).  

 

For coated carbide inserts (CTW 4615):  
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For coated carbide inserts (CTP 1235): 
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             (4.7) 

 

At 95% confidence level of the ANOVA results, the adequacy of the second 

order model has been checked. It is observed from Table 4.3 that the P values of lack-

of-fit are 0.098 and 0.193 for coated and uncoated carbide cutting tool inserts 

respectively , which shows that they are insignificant and the model is adequate. Hence, 

an indicator has been found that shows the fitness of both the models as well as their 

effectiveness. The R2 is 90.80 % and 97.59 % for coated and uncoated carbide and by 

comparing this R2 for RSM first and the second order it can be said that the RSM 
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second order model is significant and adequate in order to determine the surface 

roughness.  

 

Table 4.3: Variance analysis for second order model surface roughness for coated and 
uncoated carbide 

 

Source DOF Coated carbide 
insert 

Uncoated carbide 
insert 

  F-value P-value F-value P-value 
Regression 9 21.67 0.002 22.54 0.002 
Linear 
Square 
Interaction 

3 
3 
3 

57.55 
1.65 
5.81 

0.000 
0.291 
0.044 

64.82 
2.42 
0.37 

0.000 
0.182 
0.776 

Residual Error 5     
Lack of Fit 3 9.38 0.098 4.53 0.193 
Pure Error 2     
Total 14     

       Note: DF= Degree of freedom 

 

Figure 4.2 shows the contour plot for the second order RSM model. Non-linear 

trends in the surface roughness had been fund with the help of the contour plot. When 

the axial depth and feed rate are high and combined for coated and uncoated carbide 

cutting tool inserts, the value of the surface roughness is also greater. It is due to the 

elastic deformation caused by a high feed rate that the surface roughness is negatively 

influenced. In this case, the tool profile also becomes prominent to the surface of the 

work piece (Karayel, 2009). However, when the cutting speed is increased, the surface 

roughness had been found to be low and this fact can be observed in Figure 4.2(b). The 

higher cutting speed generates high temperature which is attributed to the softening of 

the workpiece machined as well as increase the surface finish (Arunachalam et al., 

2004). The maximum and minimum feed rate for experimental number 3 and 8 can be 

observed in Table 4.4. Experimental 8 has a surface roughness of 0.518 µm for coated 

carbide and is 2.175 µm for uncoated carbide when using a maximum feed rate of 0.2 

mm/tooth. When maximum feed rate is present, the surface roughness is found to be 

high for both the cutting tools. Keeping the feed rate at 0.1 mm/tooth, the surface 

roughness value declines to a great extent. The coated carbide insert has a surface 

roughness of 0.318 µm and the uncoated carbide insert has a roughness of 0.950 µm; 

hence proving that the feed rate has the highest ability to affect the values of the 
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roughness (Ginting and Nouari, 2009). When feed rate increases, the roughness value 

increases. The roughness has also been affected by the coating layers in terms of 

efficiency since the coated carbide insert performs much better than the uncoated 

carbide insert.  

 

     
                (a) Coated carbide inserts                         (b) Uncoated carbide inserts 

                                                                     
 

 (c) Coated carbide inserts                       (d) Uncoated carbide inserts 

                    

Figure 4.2: The surface roughness second order RSM contour plot versus feed rate and 
axial depth for (a) coated; (b) uncoated carbide inserts and feed rate as well as cutting 

speed for (c) coated and (d) uncoated carbide inserts 
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Table 4.4: Result of surface roughness values for coated and uncoated inserts 
 

Experimental 
no. 

Feed rate 
(mm/tooth) 

Axial 
depth 
(mm) 

Cutting 
speed 
(m/min) 

Surface roughness 
(µm) 

Coated 
carbide 

Uncoated 
carbide 

8 0.2 0.7 15 0.518 2.175 
3 0.1 0.7 15 0.318 0.950 

 

According to the contour plot, the feed rate has the highest ability to affect the 

characteristics of the surface roughness. The uncoated carbide is compared to the values 

of coated carbide cutting insert lower surface roughness. There is toughness, abrasion 

resistance, good heat transmission and hardness observed in the behaviour of the 

coating layer of the PVD-coated which provides a work material with a good surface 

finish (Jindal et al., 1999). The thermal softening of the material is increased thus 

compressive stresses increases and such  surface  flaws clear out of the machined  

surface,  as well as enabling the workpiece near- surface  to reconstruct itself easily 

(Pawade et al., 2007).  

 

Table 4.5 shows the percentage of the absolute relative error of the experimental 

result along with the second order RSM model for coated and uncoated carbide. The 

first order RSM has a higher absolute relative error than the second order. The coated 

and uncoated carbides have minimum and maximum errors of 6.754 % and 0.226 % and 

15.859 % and 0.775 % respectively. Hence, observing these values it is found that the 

second order RSM should be chosen as the roughness model. The first and the second 

order RSM predicted values have been compared to the experimental results for coated 

and uncoated cutting inserts in Figure 4.3. The first order RSM shows that the mean 

absolute relative errors for coated and uncoated carbide are 4.386 % and 9.878 % 

respectively. The second order RSM has mean absolute relate error of 2.324 % and 

6.681 % for coated and uncoated carbide. The second order values are closer to the 

results of the experiment than the first order that is why the second order is found to be 

more significant to be used in the model of surface roughness.  
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Table 4.5: Experimental results and second order RSM predicted values for coated and 
uncoated carbide 

 

No Exp.Cutting 
Condition 

Experimental 
result 

Predicted 
result 

Absolute 
Relative Error 

(%) 
 FR AD CS CTW 

4615 
CTP 
1235 

CTW 
4615 

CTP 
1245 

CTW 
4615 

CTP 
1235 

1 0.15 0.4 31 0.378 0.710 0.369 0.8226 2.381 15.859 
2 0.15 1 15 0.412 2.100 0.421 1.9874 2.143   5.362 
3 0.1 0.7 15 0.318 0.950 0.323 1.0946 1.730 15.221 
4 0.2 1 23 0.500 2.310 0.506 2.3743 1.300   2.784 
5 0.2 0.7 31 0.456 1.993 0.506 1.8484 1.206   7.255 
6 0.15 0.7 23 0.422 1.271 0.428 1.1907 6.754   6.318 
7 0.15 0.7 23 0.427 1.200 0.428 1.1907 0.370   0.775 
8 0.2 0.7 15 0.518 2.175 0.502 2.2234 2.993   2.225 
9 0.1 0.4 23 0.334 0.520 0.327 0.4558 1.950 12.346 
10 0.15 1 31 0.461 1.386 0.460 1.4664 0.217   5.801 
11 0.15 0.4 15 0.442 1.250 0.443 1.1696 0.226   6.432 
12 0.1 0.7 31 0.325 0.650 0.340 0.6016 4.769  7.446 
13 0.1 1 23 0.365 1.335 0.350 1.303 3.973   2.391 
14 0.15 0.7 23 0.435 1.101 0.4280 1.1907 1.609   8.147 
15 0.2 0.4 23 0.446 1.728 0.4605 1.7600 3.251   1.852 

Note: FR= Feed rate (mm/tooth), AD=Axial depth (mm), CS=Cutting 
speed(m/min),CTW 4615= Coated carbide, CTP 1235= Uncoated carbide 
 

          
(a) Coated carbide  inserts                       (b) Uncoated carbide inserts 

 

Figure 4.3: Comparison between experimental result, first order and second order RSM 
for different cutting tool. 
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4.2.2 Artificial Neural Network Model 
 

In order to carry out non-linear mapping between the input and the output 

variables a multi-layer perception (MLP) network has been used (Mohd Azlan et al., 

2010). The back-propagation algorithm helped train the artificial neural network which 

was developed using the different iteration numbers (Abeesh et al., 2008 and Cus and 

Zuperl, 2006). During the training phase, the algorithm uses the supervised training 

technique and initializes the network weights and biases randomly. Till the iteration 

number reaches 10,000 the sum squared errors are found to decrease; however in this 

case they became constant. The error criterion was also developed when the number 

reached 10,000 and this error criterion was considered with the iteration number. No 

specific rule has been developed to extract the numbers or neurons of the hidden layers 

Due to this fact a trial-and-error process was applied (Mohd Zain et al., 2010) where the 

algorithm training was stopped at 10,000 iterations. The experimental test consisted of 3 

inputs namely feed rate, axial depth of cut and cutting speed and one surface roughness 

input parameter. Depending on the problem complexity and data set, the hidden layer 

number and neurons have been set in each of the layers. The ratio between training and 

testing is selected as 70% : 30%, (Mohd Zain et al., 2010). 

 

A single hidden layer along with a set of neurons was used as selection for the 

initial network. The hyperbolic function was used as the activation function for the 

hidden layer (Al-Ahmari, 2007 and Oktem et al., 2006). Several other networks along 

with topologies needed to be examined, since the ANN model was not accurate enough 

with a single hidden layer. In order to improve the performance of ANN a subsequent 

network development process was managed. The learning rule function of back-

propagation was used for the output layer and hidden layers (Nalbant et al., 2009). The 

MSE was kept at 10-6 and the total number of epoch was 10,000. In Table 4.6 it has 

been observed that the heuristic method was used with the R2 evaluation to extract the 

hidden layer. This table also states that the coated carbide inserts have an ANN structure 

of no 4 with 15 hidden layers. The correlation coefficient is 0.996368 and R2 for the 

architecture is 0.990377 along with ID no 5 with 17 hidden layers being the best kind of 

hidden layer for the uncoated carbide cutting tool inserts. In this case the correlation of 

coefficient is 0.998914 and R2 for the structure is 0.997092.    
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Table 4.6:  Heuristic search for coated and uncoated carbide inserts 

 

ID N F TE VE TE C R-S SR 

Coated carbide inserts (CTW4615) 
1 18 113.5572 0.00578 0.00310 0.00880 0.992108 0.979777 AID 
2 11 114.0107 0.00365 0.00193 0.00877 0.995310 0.990297 AID 
3 7 113.2086 0.00610 0.00541 0.00883 0.99620 0.989341 AID 
4 15 112.3259 0.00356 0.00489 0.00203 0.996368 0.990377 AID 
5 13 116.4575 0.00781 0.00781 0.00821 0.992368 0.989891 AID 
6 14 118.5072 0.00478 0.00455 0.00778 0.99499 0.976351 AID 
7 21 115.0708 0.00784 0.00168 0.00678 0.993391 0.991221 AID 
8 12 111.2085 0.00654 0.00689 0.00606 0.994332 0.988762 AID 
9 10 113.1313 0.00567 0.00789 0.00716 0.992134 0.986854 AID 

Uncoated carbide inserts (CTP1235) 
1 2 0.553658 0.50243 0.24992 0.46641 0.19124 0.053658 AID 
2 25 0.944337 0.13029 0.34413 0.37670 0.974537 0.943373 AID 
3 16 0.968333 0.09510 0.30622 0.32446 0.987614 0.968331 AID 
4 10 0.996678 0.02647 0.35519 0.35519 0.998765 0.996678 AID 
5 17 0.997092 0.02379 0.45225 0.49123 0.998914 0.997092 AID 
6 8 0.08516 0.46635 0.32875 0.44589 0.9594834 0.911507 AID 
7 4 0.911507 0.46635 0.16748 0.34413 0.957838 0.821450 AID 
8 18 0.932114 0.60570 1.00221 0.80101 0.98874 0.758339 AID 
9 14 0.463519 1.677203 1.86953 0.99340 0.863745 0.756340 AID 

Note: N= Neurons, F= Fitness, TE= Training error, VE= Validation error, TE= Testing 
error, C= Correlation, R-S= R-square, SR= Stop reason AID = All iterations done 
 

Table 4.7: Summary training and testing best network for coated and uncoated carbide 
inserts 

 

 Target Output Absolute Error ARE 
 TR TE TR TE TR TE TR TE 

Coated Carbide cutting tool inserts CTW 4615 with NN model of 3-15-1 
Mean 0.407 0.430 0.4060 0.4230 0.0013 0.00070 0.186 0.164 
SD 0.411 0.434 0.4100 0.4340 0.0057 1.01250 0.261 0.228 
Min 0.318 0.325 0.3186 0.3250 0.0007 0.00009 0.032 0.027 
Max 0.518 0.500 0.5176 0.5009 0.0071 0.0021 0.151 0.454 

Uncoated Carbide cutting tool inserts CTP 1235 with NN model of 3-17-1 
Mean 1.425 1.286 1.427 1.286 0.0019 0.0013 0.149 0.116 
SD 1.524 1.402 1.526 1.404 0.0035 0.0014 0.202 0.137 
Min 0.520 2.310 0.522 2.312 0.0008 0.0009 0.007 0.003 
Max 2.175 2.310 2.1748 2.312 0.0102 0.0024 0.485 0.249   

Note: TR=Training, TE=Testing, ARE= Absolute relative error, SD: Standard 
Deviation 
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Table 4.7 highlights the summary of the training and testing of the coated and uncoated 

carbide cutting tool inserts. The absolute relative errors of the training and testing for 

coated are averaged out to be 0.186 % and 0.164 % meanwhile for uncoated are 0.149% 

and 0.116%. Table 4.8 and Table 4.9 show the training and testing of artificial neural 

network for coated and uncoated carbide cutting insert. Keeping in mind the coated 

carbide inserts the coefficient of correlation is 0.981 824 and R2 is 0.989 8658. The 

testing shows the values of 0.999 851 and 0.999 956. For training uncoated carbide 

inserts, the coefficient of correlation is 0.999 985 and R2 is 0.998 822. The testing 

values are 0.999 999 and 0.999 065. Table 4.10 shows the validation for coated and 

uncoated carbide. The absolute error for validation for coated carbide and uncoated 

carbide is within 1% to 4% of error accuracy. 

 

Table 4.8: The training, testing of artificial neural network for coated  
carbide inserts 

 
No Exp. Cutting 

condition 
Experimental 

result 
Predicted 

ANN 
Absolute 
Relative 

Error (%) FR AD CS 
Training, R2= 0.989 8658, C=0.981 824 

1 0.15 0.4 31 0.37800 0.37621 0.47354 
2 0.15 1 15 0.41200 0.41187 0.03155 
3 0.1 0.7 15 0.31800 0.31830 0.19811 
6 0.15 0.7 23 0.42200 0.42136 0.15166 
8 0.2 0.7 15 0.51800 0.51760 0.07720 
9 0.1 0.4 23 0.33400 0.44159 0.09270 
11 0.15 0.4 15 0.44200 0.366443 0.15616 
13 0.1 1 23 0.36500 0.43521 0.04827 
14 0.15 0.7 23 0.43500 0.44583 0.03810 
15 0.2 0.4 23 0.44600 0.33201 0.59580 

Testing, R2=0.999 956, C=0.999 851 
4 0.2 1 23 0.50000 0.50091 0.18200 
5 0.2 0.7 31 0.45600 0.45640 0.08771 
7 0.15 0.7 23 0.42700 0.42730 0.07025 
10 0.15 1 31 0.46100 0.43999 0.45475 
12 0.1 0.7 31 0.32500 ho0.32509 0.02769 

Note: FR= Feed rate (mm/tooth), AD=Axial depth (mm), CS=Cutting speed 
(m/min), R2=R square, C= Correlation coefficient 
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Table 4.9: The training, testing and validation of artificial neural network for uncoated  
carbide inserts 

 

No Exp. Cutting 
condition 

Experimental 
result 

Predicted 
ANN 

Absolute 
Relative 

Error (%) FR AD CS 
Training, R2=0.998 822, C=0.999 985 

1 0.15 0.4 31 0.71000 0.71110 0.15493 
2 0.15 1 15 2.10000 2.11020 0.48571 
5 0.2 0.7 31 1.93300 1.99286 0.00702 
7 0.15 0.7 23 1.20000 1.2012 0.10000 
8 0.2 0.7 15 2.17500 2.17482 0.08276 
9 0.1 0.4 23 0.52000 0.52119 0.22885 
10 0.15 1 31 1.38600 1.38720 0.08650 
13 0.1 1 23 1.33500 1.33420 0.05993 
14 0.15 0.7 23 1.10100 1.10393 0.26612 
15 0.2 0.4 23 1.72800 1.72835 0.02023 

Testing, R2=0.999 065, C=0.999 998 
3 0.1 0.7 15 0.95000 0.94890 0.11579 
4 0.2 1 23 2.31000 2.31241 0.10433 
6 0.15 0.7 23 1.27100 1.27147 0.00369 
11 0.15 0.4 15 1.25000 1.25094 0.07520 
12 0.1 0.7 31 0.65000 0.64838 0.24923 

Note: FR= Feed rate (mm/tooth), AD=Axial depth (mm), CS=Cutting speed 
(m/min), R2=R square, C= Correlation coefficient 

 

Table 4.10: Validation of artificial neural network for coated and uncoated carbide 
inserts 

 
No Exp. Cutting 

condition 
Experimental 

result 
Predicted 

ANN 
Absolute 
Relative 

Error (%) FR AD CS 
Coated carbide cutting insert 

1 0.15 0.4 31 0.38200 0.37621 1.5157 
9 0.1 0.4 23 0.44900 0.44159 1.6503 
12 0.1 0.7 31 0.31620 0.32509 2.8115 

Uncoated carbide cutting insert 
5 0.2 0.7 31 2.0231 1.99286 1.4947 
3 0.1 0.7 15 0.9828 0.94890 3.4493 
4 0.2 1 23 2.2218 2.31241 4.0782 
 

 

The coated carbide cutting tool has an ANN structure with 15 hidden layers 

which is found in Figure 4.4.   
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Figure 4.4: The best network for Coated carbide insert, 3-15-1 

 

The experimental values have a level of conformity with the ANN prediction 

since the results are 99% similar with the actual results. The coated cutting inserts have 

a maximum absolute relative error of 0.186 % and for uncoated is 0.164 %. On the other 

hand the minimum coated cutting inserts absolute relative errors are 0.149 % and 

uncoated is 0.116 %. Hence, it is found that the statistical models are not as accurate in 

terms of surface roughness prediction as the ANN model with back propagation 

algorithm (Feng and Wang, 2003).The experimental and ANN predicted results can be 

found in Figure 4.5 for the coated and uncoated carbide inserts. This table will help 

determine how much closer the ANN is able to predict the values. The experimental 

results are also found to be the same for coated and uncoated carbide. Hence the feed 

forward multilayer with the hyperbolic activation function can perform in an efficient 

manner and have the ability to predict the values for surface roughness (Davim et al., 

2008; Tsai and Wang, 2001).In Table 4.11, the models with the error analyses are 

recorded. Through this analysis it is observed that the ANN model has been able to 

perform better than the regression models (Ozel and Karpat, 2005). The first and second 

order RSM predicted results for both inserts show that the error analysis is small for the 
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ANN model. Therefore, the surface roughness of Hastelloy C-2000 can be predicted by 

using the ANN and the following Figure 4.6 has provided the comparison of the surface 

roughness of ANN and experimental results for the different kinds of cutting tools.  

    

               
               (a) Coated carbide inserts                               (b) uncoated carbide inserts  

 
Figure 4.5: Comparison between experimental results versus ANN predicted for coated 

and uncoated carbide inserts 
 

         
              (a) Coated carbide inserts                             (b) Uncoated carbide inserts 

 

Figure 4.6: Comparison between experimental results, first order RSM predicted, 
second order RSM predicted and ANN predicted. 
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The first and the second order have an absolute error of 4.386 % and 2.324 % 

respectively for coated carbide insert and of 0.1790 % for the ANN model. In the case 

of the uncoated carbide the mean absolute error for ANN, first order and second order 

RSM are 0.136 %, 9.878 % and 6.681 %. Hence, it is found that ANN significant for 

use as the model for surface roughness prediction and provides a less error than the 

statistical model. The absolute errors are able to provide a much more accurate ANN 

prediction than the regression models.  

 

Table 4.11: The error analysis of surface roughness model for coated and uncoated 
carbide inserts 

 

Model Minimum error (%) Maximum error (%) Mean error (%) 
 CTW4615 CTP1235 CTW4615 CTP1235 CTW4615 CTP1235 
FO RSM  1.0870 0.6670 10.827 25.130 4.386 9.878 
SO RSM  0.2260 0.0750 6.7540 15.890 2.324 6.681 
ANN 0.0277 0.0070 0.5958 0.4850 0.1790 0.136 
Note: CTW4615= Coated carbide, CTP1235= Uncoated carbide, FO RSM = First order 
RSM, SO RSM = Second order RSM 
 

4.2.3 The Minimization of Surface Roughness 

  

The basic aim of this research is to use appropriate variables in order to 

minimize and maximize the characteristics of the machining Hastelloy C-2000. By 

applying the optimization approach using the statistical analysis it would be possible to 

achieve this aim. Desirability functions would be used to convert each response and the 

weight would be able to define the desirability function shape for each of the responses. 

Using any weight from 0.1 to 10 for each of the responses the target can be emphasized 

or de-emphasized. When a weight:  

 

i) Below 1 and above 0.1 is chosen then there is less emphasis on the target 

ii) If it is equal to one then there is equal importance to the bounds and the target  

iii) Higher than 1 and below 10 then there is more emphasis on the target 

 

 In Table 4.10, the design variables for the coated and uncoated carbide inserts 

are corresponding to the minimum cutting conditions of surface roughness. 

Confirmation experiments have also been carried out upon the optimum machining 
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parameter combinations which show that there exists an efficient response for the 

surface model predictions. When the optimum design values are applied the surface 

roughness of the machined work piece is much lower. The coated and uncoated carbide 

inserts conditions have an error value for validation test to be 2.533 % and 2.88 % as 

shown in Table 4.12. Hence it is possible to use for minimize of surface roughness 

value. Many issues may be observed even though the models are considered accurate. 

These issues include high accuracy machining where the surface roughness is required 

to be efficient should be well observed since the cutting tool deflection or thermal 

condition are the future models for the creation of surface roughness. Another kind of 

application which could be efficient is that the existing models could be provided a 

general advisory system that can be used with a machine tool.  

 

Table 4.12: The minimum cutting conditions of surface roughness for coated and 
uncoated carbide inserts 

 

Cutting 
insert 

Feed rate 
(mm/tooth) 

Axial 
depth 
(mm) 

Cutting 
speed 
(m/min) 

Target 
(min) 

Experimental 
(min) 

Error 
(%) 

Coated 
carbide 

0.1 0.4 31 0.333 0.3415 2.553 

Uncoated 
carbide 

0.1 0.4 31 1.25 1.286 2.880 

 

4.2.4 Surface Integrity 

 

Deviation from the nominal surface of the third level till the sixth order is the 

concept of surface roughness. Order of deviation is defined in international standards 

(DIN 4760). Circularity, flatness and waviness refer to the first- and second-order 

deviations. These deviations are usually caused by the erroneous setups, workpiece 

material inhomogenities, machine tool errors, deformation of the workpiece and 

clamping. Chip formation, process kinematics, cracks, dilapidations and periodic 

grooves are the Third-and fourth-order deviations. The Fifth- and sixth-order deviations 

are the lattice scale like oxidation, residual stress, slip, diffusion etc and the workpiece 

material structure like physical–chemical mechanisms acting on a grain. When a nickel 

base alloy is machined there are many surface defects which are found. Magnifications 

for the coated and uncoated carbide inserts can be observed in Figure 4.7 since it shows 
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the images of scanning electron microscope (SEM). A feed rate of 0.2 mm/tooth, axial 

depth 0.7 mm and cutting speed 15 m/min has been used for the images that are taken 

and a surface defect has been found due to the low cutting speed.  

 

   
 

(a) Magnification 50x          (b) Magnification 250x          (c) Magnification 500x 

                            

   
 

      (d) Magnification 50x            (e) Magnification 250x         (f) Magnification 500x 

 

Figure 4.7: SEM viewing of Hastelloy C-2000 texture at certain magnification using 
different cutting tools (a-c) coated carbide, (d-f) uncoated carbide inserts. 
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 During the machining of the workpiece of the coated carbide cutting insert, there 

are several kinds of surface defects which occur. Out of these few the surface flaw, feed 

marks and chip redeposition are the most common kinds of defects that occur. The 

severity of a feed mark can be changed by optimizing the feed rate or than varying it in 

order to carry out effective machining process (Ginting and Nouri, 2009). Furthermore, 

plucking of particles from the surface and their redeposition to the surface create two 

different defects. The particles have the ability to cause tearing and dragging effect on 

the surface of the next pass (Soo et al., 2011). In the case of uncoated carbide, the same 

kind of surface plucking and tearing would take place. The uncoated carbide has a very 

different surface texture from the coated carbide which is mainly because the coating 

layer helps make the tool harder and tougher with a good surface finish. The residual 

stress which is present on the surface machine is improved along with reducing the 

cutting temperature and enhancing of the machine surface with the help of the coating 

layer (Outeiro et al., 2008). The depth of the cut can affect the cutting speed which in 

return affects the material plucking, tearing, smearing and the microchip debris on the 

surface (Ginting and Nouri, 2009). If there is a low cutting speed then the surface 

condition is also poor since the contact time between the work piece and cutting tool is 

increased (Soo et al., 2011). It is observed that the compressive stresses increases when 

increase of the thermal softening of the material  and such  surface  flaws clear out of 

the machined  surface and enabling the workpiece near- surface  to reconstruct itself 

easily (Pawade, 2007).  

 

Prolonged machining tends to increase the hardness of surface layer and also 

deteriorates the surface finish of machined workpiece. This is due to the fact that the 

contact area and motion that exists between the tool, flank area and workpiece machine 

surface is increased hence causing surface defect, increase component cutting forces and 

temperature and flank wear. When there is presence of nickel based alloys, many issues 

arise since the cutting parameters affect the defects to an extent. To avoid these 

problems the cutting condition optimization is essential. The machining processes have 

been observed to have many defects in the surface specifically in the micron precisions. 

It is not possible to entirely remove the cutting parameters or even adjust them to an 

extent. There are carbide particles in the structure of nickel based work piece materials 

along with coating inserts material with carbide particles. There is often detachment of 
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the carbide particles with the machine surface or the tool inserts when the work piece is 

machined or stuck on the work piece surface. Such a process is referred to as carbide 

cracking and may cause an increase in the level of stress when the cutting takes place 

due to plucking in the surface cavities (Zou et al., 2009). Figure 4.8 shows the carbide 

cracking formation.  

 

 

 

 

 

 

 

 

 

 

 

 

                  (a) Magnification, 500x                               (b) Magnification, 800x 

 

Figure 4.8: SEM viewing of experimental no 3 with two different magnifications for 
uncoated carbide insert. 

 

Keeping a feed rate 0.2 mm/tooth, axial depth of 1.0 mm and cutting speed 23 

m/min of the uncoated carbide machine process the phenomenon took place in the third 

experiment. Residual cavities and cracks occur in the machine surface which may cause 

several issues in terms of the micro-scale surface integrity. Much importance is given to 

the carbide cracking and end surface product when the feed values and axial depth are 

lower and the carbide particle sizes are too close to the level which is concerned. Energy 

dispersive energy (EDX) tests have been carried out after maintaining cutting 

parameters of work piece feed rate 0.2 mm/tooth, axial depth 0.7 mm and cutting speed 

15 m/min. These tests help to investigate the chemical composition of the material when 

machining takes place of the coated and uncoated carbide tool inserts. Cobalt has been 

formed in the EDX test when checking the texture of the machined surface; hence 

proving that adhesion mechanism does take place. All these activities have been 
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observed in Figure 4.9. This Cobalt, Co is a new element of the Hastelloy C-2000 which 

is present due to the high temperature of machining and the chemical change that takes 

place between the cutting tool insert and the work piece (Axinte et al., 2006).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Adhesion and diffusion base on EDX result at magnification 100x at coated 
carbide cutting tool. 

 

The formation of cobalt happened due to adhesive mechanism during the 

machining where the coated carbide itself contains the component of cobalt. The rake 

face is protected with the help of the adhering element (Co) as it became a stable built-

up-edge (Itakura et al. 1999). Diffusion took place which is why there was a vast 

increase or decrease in the elements of Carbon (C), Aluminum (Al) and Molybdenum 

(Mo). Due to this mechanism the atom present in the metallic crystal lattice changes 

from the higher atomic concentration to the lower concentration level. As the 

temperature increases the rate of diffusion also increases. The machining process of the 

coated and uncoated carbide caused by the chemical composition can be observed in 

Table 4.13. The diffusion mechanism also took place in these coated and uncoated 

cutting inserts. The weight elements of the several materials also changes due to the 

diffusion mechanism.  The aluminum (Al), silicon (Si), ferum (Fe), chromium (Cr), 

manganese (Mn), copper (Cu) and Nickel (Ni) are found to decrease. On the other hand 
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carbon (C), and molybdenum (Mo) are found to increase for the coated carbide cutting 

tool insert. 1.01% contribution to the chemical element is provided by the new element 

as shown in the table. The EDX based diffusion at uncoated carbide base can be 

observed in magnification of 100x in Figure 4.10.  

 

Table 4.13: Chemical composition (%) of material (Hastelloy C-2000), before and after  
machining for coated and uncoated carbide inserts 

 

Cutting insert                                Chemical element before machining 
 Ni Cr Mo Fe Cu Al Mn Si C Co 
 55.31 23 16 3 1.60 0.50 0.50 0.08 0.01 - 

                                 Chemical element after machining 
Coated carbide 54 12.83 24.53 1.05 2.16 1.2 0.57 0.76 1.89 1.01 
Uncoated 
carbide 

54.22 15.28 24.84 0.45 1.25 0.58 0.29 0.71 2.38 - 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: The diffusion based on EDX result at magnification 100x for uncoated  
carbide insert. 

 

The case of diffusion occurs when applying uncoated carbide, however, with no 

adhesion formation found as happened in coated carbide. It take place during cutting 
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condition of feed rate of 0.2 mm/tooth, axial depth 1.0 mm and cutting speed 23 m/min. 

Here, decrease is found in composition of chromium (Cr), manganese (Mn), copper 

(Cu), ferum (Fe) and Nickel (Ni) and increase is observed in molybdenum (Mo), 

aluminum (Al), silicon (Si), and carbon (C).   

 

4.3 TOOL LIFE 

 

A specific length of cutting time is managed by a tool which is referred to as the 

tool life (Onwubolu, 2006). Till the time the criterion value of the flank wear is 

achieved, there exists a usable time which is referred to as the tool life (Bouzid,  2005). 

In order to manage designs for the materials of cutting tools, the contributions of 

various wear mechanism should be predicted in an efficient manner (Gupta, 2005). The 

following Eq. (4.8) can be used to express tool life: 

 

                                                     Tool life = 
mF

CD                                                      (4.8) 

 

CD = the overall distance required for cutting tool to reach  flank wear (0.3mm) 

according ISO 8688-2:1989(E) and Fm  is the combination of  feed rate and cutting 

speed from RPM to mm/min.  

 

The machine efficiency is limited and the nickel based alloy machinability is 

also harmed due to the short tool life (Kadirgama et al., 2011). In this section, the tool 

life, the mathematical models have been developed to predict and optimize the 

machining characteristics for the first and second order RSM.  

 

4.3.1 Mathematical Model  

 

First Order Model 

 

The coated and uncoated carbide cutting tools inserts have the following Eq. 

(4.9) and Eq. (4.10) as their first order linear equations to predict the tool life.  

First order equation for coated carbide cutting tool inserts: 
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321 02738.017475.079363.017867.1' xxxy −−−=               (4.9)                           

 

First order equation for uncoated carbide cutting tool inserts: 

 

321 007125.0104375.0320750.0565933.0' xxxy −−−=          (4.10) 

 

The tool life is highly influenced by the equations (Eq. (4.9) and Eq. (4.10)) 

along with the feed rate, axial depth and cutting speed. If the feed rate, axial depth, and 

cutting speed increase then the life of the tool decreases. If these three things are kept at 

a minimal level then a longer tool life can be obtained. Table 4.14 provides an analysis 

of the variance of the coated and uncoated carbide. The adequacy of first order model is 

verified by ANNOVA results. It has been found that the P-values of linear terms of both 

models are less than α-value (0.05), for coated carbide, 0.000 and uncoated carbide, 

0.000 which is why they are considered significant and the model is adequate. The P-

values for lack of fit are 0.353 and 0.009 for coated and uncoated carbide respectively 

are insignificant since they are higher than α-level (0.05). Hence, this shows that the 

model is adequate and fit for use since there is an indicator to measure the effectiveness 

of this model based on the surface roughness data. The value of the uncoated carbide R2 

is higher than that of the coated carbide since it is 98.97 % and the coated carbide is 

94.03 %. Therefore, the models which have been established are able to provide a much 

accurate prediction of the surface roughness.  

 

Table 4.14: Variance analysis for first tool life model for coated and uncoated  
carbide 

 

Source DOF Coated Carbide 
inserts 

Uncoated carbide 
inserts 

  F-value P-value F-value P-value 
Regression 3 353.43 0.000 57.70 0.000 
Linear 3 353.43 0.000 57.70 0.000 
Residual Error 11     
Lack of Fit 9 2.18 0.353 110.00 0.009 
Pure Error 2     
Total 14     
 



97 
 

Figure 4.11 shows the contour plot of tool life versus feed rate, axial depth 

cutting speed for coated and uncoated carbide cutting inserts. The cutting speed has a 

lower effect than the feed rate on the life of the tool. If the feed rate is low, the tool life 

is better rather than when the feed rate is high. A high feed rate can cause the cutting 

tool inserts to break (Kadirgama et al., 2011). This significant change attributed to the 

increase of temperature and plastic deformation which weaken the cutting tool materials 

(Shokrani et al., 2012). This increase in temperature causes the micro cracks and micro 

hardness by establishing a white layer and reducing the tool life of the cutting tool insert 

(Dudzinkski et al., 2004). The tool life of coated carbide is found to be longer than that 

of the uncoated carbide when the contour plot is observed of the axial depth versus the 

feed rate. If the axial depth and feed rate are increased then the tool life for the coated 

carbide reduces to 0.5 minutes and if it is maintained at low levels then the timings are 2 

minutes. The experimental results for the RSM predicted coated and uncoated carbide 

inserts can be found in Table 4.15. For coated and uncoated carbide the maximum errors 

are 29.90 % and 17.931 % respectively and the minimum errors are 0.0167 % and 0.599 

% respectively.  

 

Table 4.15: Experimental result and first order RSM predicted for coated and uncoated 
carbide inserts 

 

No Exp. Cutting 
Condition 

Experimental 
result 

Predicted 
result 

Absolute 
Relative Error 

(%) 
 FR AD CS CTW 

4615 
CTP 
1235 

CTW 
4615 

CTP 
1245 

CTW 
4615 

CTP 
1235 

1 0.15 0.4 31 1.278 0.667 1.3260 0.6632   3.759   0.599 
2 0.15 1 15 0.980 0.450 1.0312 0.4687   5.233   4.222 
3 0.1 0.7 15 2.000 0.830 1.9997 0.8938   0.017   7.590 
4 0.2 1 23 0.300 0.200 0.2103 0.1408 29.900 29.500 
5 0.2 0.7 31 0.450 0.290 0.3577 0.2381 28.149 17.931 
6 0.15 0.7 23 1.100 0.530 1.1787 0.5659   7.152   6.792 
7 0.15 0.7 23 1.140 0.520 1.1787 0.5659   3.392   8.846 
8 0.2 0.7 15 0.350 0.267 0.4124 0.2523 17.833   5.618 
9 0.1 0.4 23 2.166 1.122 2.1470 0.9911   0.875 11.676 
10 0.15 1 31 0.933 0.400 0.9765 0.4544   4.667 13.500 
11 0.15 0.4 15 1.500 0.667 1.3808 0.6774   7.947   1.499 
12 0.1 0.7 31 1.950 0.800 1.9450 0.8796   0.261   9.875 
13 0.1 1 23 1.833 0.901 1.7975 0.7823   1.934 13.208 
14 0.15 0.7 23 1.200 0.515 1.1787 0.5659   1.778   9.903 
15 0.2 0.4 23 0.500 0.330 0.5597 0.3496 11.800   6.061 
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(a) Coated carbide inserts                        (b) Uncoated carbide inserts 

 

       
                 (c) Coated carbide inserts                          (d) Uncoated carbide inserts 

 

Figure 4.11: The tool life first order RSM contour plot versus feed rate and axial depth 
for (a) coated; (b) uncoated carbide inserts and feed rate as well as cutting speed for (c) 

coated and (d) uncoated carbide inserts 
 
 

 

 

 

2.0

1.5

1.0

0.5

Axial depth (mm)

F
ee

d 
ra

te
 (m

m
/t

oo
th

)

1.00.90.80.70.60.50.4

0.20

0.18

0.16

0.14

0.12

0.10

Tool life (min)

0.8 0.6

0.4
0.2

Axial depth (mm)

F
ee

d 
ra

te
 (

m
m

/t
oo

th
)

1.00.90.80.70.60.50.4

0.20

0.18

0.16

0.14

0.12

0.10

Tool life (min)

1.5

1.2

0.9

0.6

0.3

Cutting speed (m/min)

F
ee

d 
ra

te
 (

m
m

/t
oo

th
)

30.027.525.022.520.017.515.0

0.20

0.18

0.16

0.14

0.12

0.10

Tool life (min)

0.7

0.6

0.5

0.4

0.3

0.2

Cutting speed (m/min)

F
ee

d 
ra

te
 (

m
m

/t
oo

th
)

30.027.525.022.520.017.515.0

0.20

0.18

0.16

0.14

0.12

0.10

Tool life (min)



99 
 

Second Order Model 

 

The second order of the tool life for coated and uncoated carbide inserts can be 

expressed by the following equations Eq. (4.11) and Eq. (4.12). 

For coated carbide cutting tool inserts: 

 

323121
2

3
2

2

2
1321

04375.003750.003325.000692.001917.0

03392.002738.017475.0079363.014667.1''

xxxxxxxx

xxxxy

+−++

++−−−=
                   (4.11) 

 

For uncoated carbide cutting tool inserts: 

 

323121
2

3
2

2

2
1321

012500.0013250.0022750.0033583.0057917.0

058667.0007125.0104375.0320750.0521667.0''

xxxxxxxx

xxxxy

−++−+

++−−=
     (4.12) 

 

The ANOVA results have helped understand the adequacy of the second order 

model at a level of 95%. The P-value for lack of fit have been considered insignificant 

since they are 0.229 and 0.007 for coated and uncoated carbide cutting tool inserts 

which states that the model is adequate. The P-value of regression for coated carbide is 

0.000 and uncoated carbide, 0.002 which are significant. These values are present in 

Table 4.16 and the model is fit for use. An indicator has been identified for the model 

effectiveness and both of the models are considered acceptable. The coated and 

uncoated carbides have R2 of 99.40 % and 97.46 % respectively and based on the P-

value and R2 it is clear that the second order model of RSM is much more adequate and 

significant in order to predict the tool life. Besides these effects, an increase in cutting 

speed increases the frequency of tool edge entrance into the workpiece (increasing the 

number of shocks per minute) and in addition the energy of the shock between the 

cutting edge and the workpiece. This makes cutting speed even more important to the 

end of tool life. High temperature is generated when the cutting speed is high and there 

is a long period contact between the cutting tool and the workpiece. This high 

temperature causes the tool life to reduce (Vivancos et al., 2005). The tool life may be 

induced with the help of the high chemical affinity of the chemicals being used for the 

cutting tool materials attributes to the increases of diffusion wear (Sharman et al., 
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2001). Cutting tool insert always experiences the severe mechanical and thermal load 

and enhances the tool wear in addition to reduce the tool life (Xue and Chen, 2011). 

When there is high cutting speed and feed rate, the inserts break which is why it is not 

possible to maintain a long tool life of the uncoated carbide inserts. The coating causing 

a high level of resistance and till the time it is still in shape, the tool wear rate is very 

low.  

 

The substrate of the tool and the work piece come into direct contact after a 

certain period of time due to the machine wear which removes the coating. Hence, the 

tool wear rate increases to a great extent and the tool life shows a large decline. 

Maximum cutting speed and feed rate values can be observed in Table 4.17 and in 

Figure 4.12 the graphs for different feed rate values and maximum cutting speed for the 

cutting tool in different cutting conditions can be observed.  

 

Table 4.16: Variance analysis for second order tool life model for coated and uncoated 
carbide inserts 

 

Source DOF Coated carbide 
insert 

Uncoated carbide 
insert 

  F-value P-value F-value P-value 
Regression 9 92.61 0.000 21.31 0.002 
Linear 
Square 
Interaction 

3 
3 
3 

276.64 
0.28 
0.93 

0.000 
0.840 
0.493 

61.67 
2.02 
0.23 

0.000 
0.229 
0.872 

Residual Error 5     
Lack of Fit 3 3.53 0.229 139.96 0.070 
Pure Error 2     
Total 14     

Note: DF= Degree of freedom 

 

Table 4.17: Cutting parameters when using the maximum cutting speed 
for coated and uncoated carbide 

 

Exp. no Feed rate 
(mm/tooth) 

Axial 
depth(mm) 

Cutting speed 
(m/min) 

1 0.15 0.4 31 
5 0.2 0.7 31 
10 0.15 1.0 31 
12 0.10 0.7 31 
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Figure 4.12: Tool life with different values of feed rate and maximum cutting speed 

 

Figure 4.13 shows the contour plot of tool life versus feed rate, axial depth and 

cutting speed for coated and uncoated carbide inserts. Here, the uncoated carbide is 

much more superior to the coated carbide tool life. The heat that was generated by the 

high feed rate was able to decrease the tool life and the hardness of the cutting tool 

material (Venugopal et al., 2007). Based on the contour plot of feed rate versus cutting 

speed, if the machine cutting speed is increased, the temperature increases which in 

return decreases the tool material hardness and leading to diffusion and abrasion 

(Coromant, 1994). In both the cases of coated and uncoated carbide inserts it is found 

that the tool life declines from 0.1 mm/tooth to 0.2 mm/tooth as shown in Experiment 

12 and 5 respectively. If the feed rate is at minimum level then the tool life is much 

higher and with a high cutting speed there is tool wear and short life of the tool is 

experienced (Jawaid et al., 2001). A low feed rate is able to provide a much longer tool 

life than a feed rate which is high (Che Haron, 2001 and Kadirgama et al., 2011). Table 

4.18 shows the experimental results of second RSM predicted model for coated and 

uncoated carbide inserts. In uncoated carbide the maximum absolute error is 11.792 % 

and 20.909 % and minimum absolute error is 0.166 % and 0.385 % for coated and 

uncoated carbide respectively. The experimental results and the first and second order 

RSM are being compared in Figure 4.14. The coated and uncoated carbide mean 

absolute error for the first order RSM are 8.313 % and 9.788 % respectively and the 
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second order RSM are 4.876 % and 7.627 %. The experimental values and the second 

order RSM are found to be much closer than the first order. Hence, for the surface 

roughness model, the second order model of RSM is considered significant.  

 

         
(a) Coated carbide inserts                       (b) Uncoated carbide inserts 

 

           
                    (c) Coated carbide inserts                       (d) Uncoated carbide inserts 

 

Figure 4.13: The tool life second order RSM contour plot versus feed rate and axial 
depth for (a) coated; (b) uncoated carbide inserts and feed rate as well as cutting speed 

for (c) coated and (d) uncoated carbide inserts 
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Table 4.18: Experimental, second order RSM predicted results and absolute error for 
coated and uncoated carbide inserts 

 

No Exp. Cutting 
Condition 

Experimental 
result 

Predicted 
result 

Absolute Error 
(%) 

 FR AD CS CTW 
4615 

CTP 
1235 

CTW 
4615 

CTP 
1245 

CTW 
4615 

CTP 
1235 

1 0.15 0.4 31 1.278 0.667 1.2764 0.6558   0.127   1.649 
2 0.15 1 15 0.980 0.450 0.9817 0.4613   0.166   2.444 
3 0.1 0.7 15 2.000 0.830 2.0460 0.8879   2.300   6.988 
4 0.2 1 23 0.300 0.200 0.2646 0.2359 11.792 16.000 
5 0.2 0.7 31 0.450 0.290 0.4040 0.2321 10.222 20.000 
6 0.15 0.7 23 1.100 0.530 1.1467 0.5217   4.240   1.538 
7 0.15 0.7 23 1.140 0.520 1.1467 0.5217   0.585   0.385 
8 0.2 0.7 15 0.350 0.267 0.3838 0.2199   9.643 17.603 
9 0.1 0.4 23 2.166 1.122 2.2014 1.0861   1.633   3.209 
10 0.15 1 31 0.933 0.400 1.1014 0.4220   8.713   5.500 
11 0.15 0.4 15 1.500 0.667 1.4186 0.6450   5.425   3.298 
12 0.1 0.7 31 1.950 0.800 1.9163 0.8471   1.731   5.875 
13 0.1 1 23 1.833 0.901 1.7854 0.8319   2.598   7.658 
14 0.15 0.7 23 1.200 0.515 1.1467 0.5217   4.444   1.309 
15 0.2 0.4 23 0.500 0.330 0.5476 0.3991   9.525 20.909 

 

               
(a) Coated carbide inserts                              (b) Uncoated carbide inserts 

 

Figure 4.14: Comparison between experimental results, first order RSM, second order 
RSM model 
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4.3.2  Development of Artificial Neural Network Model 

 

In the case of a coated carbide cutting tool, the best kind of ANN structure 

consists of three inputs, twenty five hidden layers and one output layer; (3-25-1). Table 

4.19 clearly shows the heuristic search for the best kind of hidden layer. In the case of  

uncoated carbide cutting tool, the ANN structure which is considered best is three 

inputs, seven teen hidden layers, and one output (3-17-1) with ID number 7. Using the 

correlation coefficient value and the R-square value, it is possible to choose the best 

criterion. The correlation of coefficient is 0.996991 and R2 for the structure (3-25-1) is 

0.991946 for coated carbide as shown in Table 4.17. The hidden layers structure 

provides a lower value as compared to this structure. In the case of uncoated carbide 

cutting tool the correlation of coefficient is 0.998218 and the R2 for combination (3-17-

1) is 0.997695.  

 

Table 4.19: Heuristic search for coated and uncoated carbide inserts 

ID N F TE VE TE C R-S SR 
Coated carbide inserts (CTW4615) 

1 16 4.33121 0.0561 0.4331 0.2660 0.977891 0.990123 AID 
2 10 7.00241 0.0678 0.4412 0.3450 0.969678 0.98321 AID 
3 21 6.69124 0.3001 0.3911 0.0188 0.992100 0.972128 AID 
4 25 7.44175 0.0448 0.3876 0.1347 0.996991 0.991946 AID 
5 19 3.34456 0.0607 0.6210 0.3821 0.994387 0.990014 AID 
6 23 4.03299 0.0522 0.6770 0.2236 0.987622 0.989991 AID 
7 22 8.09211 0.0489 0.4241 0.2467 0.99100 0.97956 AID 
8 12 7.13760 0.0789 0.5150 0.2981 0.978945 0.956712 AID 
9 17 3.00310 0.0056 0.4789 0.3364 0.995002 0.957781 AID 

Uncoated carbide inserts (CTP1235) 
1 25 9.6667 0.0178 0.0196 0.1034 0.996826 0.992725 AID 
2 16 10.0104 0.0228 0.0143 0.0998 0.995133 0.992725 AID 
3 10 6.15251 0.0378 0.0257 0.1625 0.989431 0.972564 AID 
4 21 8.69578 0.0115 0.0201 0.1149 0.998238 0.996302 AID 
5 13 6.49981 0.0322 0.0180 0.1538 0.998238 0.996302 AID 
6 19 6.96342 0.0223 0.0189 0.1436 0.995218 0.988567 AID 
7 17 13.1721 0.0144 0.0148 0.0759 0.997695 0.998218 AID 
8 16 10.9123 0.7718 0.3245 0.8214 0.9899011 0.977895 AID 
9 20 8.9126 0.0337 0.2323 0.0895 0.9956781 0.997213 AID 

Note: N= Neurons, F= Fitness, TE= Training error, VE= Validation error, TE= Testing 
error, C= Correlation, R-S= R-square, SR= Stop reason AID = All iterations done 
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Table 4.20: Summary training and testing for coated and uncoated carbide 

 

 Target Output Absolute Error ARE 

 TR TE TR TE TR TE TR TE 
Coated Carbide cutting tool inserts CTW 4615 with NN model of 3-15-1 

Mean 1.247 1.382 1.246 1.381 0.0017 0.0020 0.1596 0.5663 
SD 1.410 1.428 1.409 1.426 0.0028 0.0022 0.2444 0.1728 
Min 0.350 0.933 0.348 0.934 0.0009 0.0032 0.0261 0.0570 
Max 2.166 2.000 2.168 1.998 0.0085 0.0032 0.5857 0.2633 

Uncoated Carbide cutting tool inserts CTP 1235 with NN model of 3-17-1 
Mean 0.604 0.524 0.603 0.524 0.00080 0.0016 0.1803 0.2397 
SD 0.658 0.563 0.657 0.563 1.04520 0.0013 0.2728 0.3224 
Min 0.200 0.290 0.198 0.524 0.00009 0.0002 0.0021 0.0440 
Max 1.122 0.901 1.226 0.899 0.00180 0.021 0.7000 0.5862 

Note: T=Training, O=Overall, ARE= Absolute relative error, SD: Standard Deviation 

 

Table 4.21: The training and testing of artificial neural network for coated carbide 
cutting inserts. 

 

No Exp. Cutting 
condition 

Experimental 
result 

Predicted 
ANN 

Absolute 
Relative 

Error (%) FR AD CS 
Training, R2= 0.999 981, C=0.999 991 

2 0.15 1 15 0.98000 0.98091 0.09286 
4 0.2 1 23 2.00000 1.99793 0.10350 
5 0.2 0.7 31 0.45000 0.44963 0.08222 
6 0.15 0.7 23 1.00000 1.10032 0.02910 
7 0.15 0.7 23 1.14000 1.14044 0.03860 
8 0.2 0.7 15 0.35000 0.34795 0.58571 
9 0.1 0.4 23 2.16600 2.16674 0.03410 
12 0.1 0.7 31 1.95000 1.95051 0.02615 
13 0.1 1 23 1.83300 1.82450 0.46372 
15 0.2 0.4 23 0.50000 0.50070 0.14000 

Testing, R2=0.999 960, C=0.999 990 
1 0.15 0.4 31 1.27800 1.27678 0.09550 
3 0.1 0.7 15 2.00000 1.99886 0.05700 
10 0.15 1 31 0.93300 0.93436 0.14577 
11 0.15 0.4 15 1.50000 1.49677 0.21533 
14 0.15 0.7 23 1.20000 1.19684 0.26333 

Note: FR= Feed rate (mm/tooth), AD=Axial depth (mm), CS=Cutting speed 
(m/min), R2=R square, C= Correlation coefficient 
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Table 4.22: The training and testing and of artificial neural network for uncoated 
carbide cutting inserts. 

 

No Exp. Cutting 
condition 

Experimental 
result 

Predicted 
ANN 

Absolute 
Relative 

Error (%) FR AD CS 
Training, R2=0.999 983, C=0.999 954 

1 0.15 0.4 31 0.66700 0.66512 0.28186 
2 0.15 1 15 0.45000 0.44838 0.36000 
3 0.1 0.7 15 0.83000 0.82877 0.14819 
4 0.2 1 23 0.20000 0.19860 0.70000 
7 0.15 0.7 23 0.52000 0.51989 0.02115 
8 0.2 0.7 15 0.26700 0.26691 0.03370 
9 0.1 0.4 23 1.12200 1.12261 0.05437 
11 0.15 0.4 15 0.66700 0.66620 0.11994 
12 0.1 0.7 31 0.80000 0.80050 0.06250 
14 0.15 0.7 23 0.51500 0.51489 0.02136 

Testing, R2=0.999 959, C=0.999 980 
5 0.2 0.7 31 0.29000 0.28830 0.586210 
6 0.15 0.7 23 0.53000 0.53310 0.396226 
10 0.15 1 31 0.40000 0.40020 0.05000 
13 0.1 1 23 0.90100 0.89990 0.12209 
15 0.2 0.4 23 0.50000 0.49978 0.04400 

Note: FR= Feed rate (mm/tooth), AD=Axial depth (mm), CS=Cutting speed 
(m/min), R2=R square, C= Correlation coefficient 
 
Table 4.20 shows the summary of the training and testing of the coated and uncoated 

carbide cutting tool inserts. The absolute relative errors of the training and testing for 

coated are averaged out to be  0.1596% and 0.5663%. Meanwhile for uncoated are 

0.1803% and 0.2397%. Table 4.21 and Table 4.22 show the training and testing of 

artificial neural network for coated and uncoated carbide cutting insert. Keeping in mind 

the coated carbide inserts the coefficient of correlation is 0.999 991 and R2 is 0.999 983. 

The testing shows the values of 0.999 990 and 0.999 960. For training uncoated carbide 

inserts, the coefficient of correlation is 0.999 954  and R2 is 0.999 983. The testing 

values are 0.999 980 and  0.999 959. Table 4.23 shows the validation for coated and 

uncoated carbide. The absolute error for validation for coated carbide and uncoated 

carbide is within 3% to 1%. Figure 4.15 shows the prediction of ANN values compare 

to the actual values from the experimental. The coated and uncoated carbide cutting 

inserts have a maximum absolute relative error of 0.58621 % and 0.58571 % 

respectively and the minimum absolute relative errors are 0.02136 % and 0.02615 % 

respectively. Results state that the ANN values are much closer to the experimental 
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values and provide a good correlation level. Hence, the ANN models are able to provide 

better results than the regression method. Fewer errors are observed in the training of 

back propagation in predicting tool life than using the polynomial regression models. 

Table 4.24 can provide the error analyses of the tool life for coated and uncoated 

carbide inserts models. With the help of this table it is found that the first order RSM 

and second order RSM for coated carbide and uncoated carbide cutting insert have a 

higher error than those found by the ANN predictions. Hence, it is required that the 

ANN predicted results be used for the Hastelloy C-2000 tool life prediction 

 
Table 4.23: Validation of artificial neural network for coated and uncoated carbide 

inserts 
 

No Exp. Cutting 
condition 

Experimental 
result 

Predicted 
ANN 

Absolute 
Relative 

Error (%) FR AD CS 
Coated carbide cutting insert 

8 0.2 0.7 15 0.34795 0.34795 2.4530 
12 0.1 0.7 31 2.0042 1.95051 2.6788 
1 0.15 0.4 31 1.3220 1.27678 3.3948 

Uncoated carbide cutting insert 
3 0.1 0.7 15 0.8415 0.82877 1.5128 
8 0.2 0.7 15 0.2598 0.26691 2.7370 
15 0.2 0.4 23 0.5115 0.49978 2.2913 

 

             
(a) Coated carbide inserts                             (b) Uncoated carbide inserts 

 

Figure 4.15: Experimental result versus ANN predicted for tool life values 
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Table 4.24: The error analysis of tool life for coated and uncoated carbide inserts 

 

Model Minimum relative 
error (%) 

Maximum relative 
error (%) 

Mean relative error      
(%) 

 CTW4615 CTP1235 CTW4615 CTP1235 CTW4615 CTP1235 
FO RSM  0.0167 0.5990 29.9000 17.9310 8.3130 9.7880 
SO RSM  0.1660 0.3850 11.9200 20.9090 4.8760 7.6270 
ANN 0.02136 0.0262 0.58621 0.58571 0.2000 0.1580 
Note: CTW4615= Coated carbide, CTP1235= Uncoated carbide, FO RSM = First order 
RSM, SO RSM = Second order RSM 
 

It is found that the absolute relative error for ANN model, first order and second 

order carbide cutting inserts are 0.2 %, 8.3130 % and 4.8760 % respectively. In the case 

of uncoated carbide absolute relative error for ANN model, first order and second order 

carbide cutting inserts are for ANN, first order and second order, 0.1580 %, 9.7880% 

and 7.6270 % respectively. Both cutting tool inserts show that the error of ANN is 

smaller than the two orders. The statistical and ANN predicted results can be observed 

in Figure 4.16. The ANN predicted results provide a better prediction that those 

extracted from statistical analysis in the case of coated and uncoated carbide.  

 

   
               (a) Coated carbide inserts                          (b) Uncoated carbide inserts 

 

Figure 4.16: Comparison between experimental results, first order RSM predicted, 
second order RSM and ANN predicted results 
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4.3.3  The Maximization of Tool Life 

 

Table 4.25 shows the maximum value of the tool life with correspondence to 

design variable. The error percentage and the design variables have been used to 

calculate the validation process. Using the set of design for the experimental results 

provides both the tool with a longer tool life.  

 

Table 4.25: The maximum value for tool life for coated and uncoated carbide 

 

Cutting 
Insert 

Feed rate 
(mm/tooth) 

Axial 
depth 
(mm) 

Cutting 
speed 

(m/min) 

Target 
(min) 

Experimental 
(min) 

Error 
(%) 

Coated 
carbide 

0.10 0.4 15 2.3 2.28 1.593 

Uncoated 
carbide 

0.10 0.4 15 1.086 1.050 3.368 

 

4.4 TOOL WEAR 

 

The cutting tool is subjected to stress at the tool tip and this is how the tool wear 

is actually classified. The rake face is able to generate high temperature which then 

slides the new cut of the work piece (Kalpakjian and Schmid, 2007). Oxidation wear, 

fatigue wear, adhesive wear, abrasive wear and diffusion wear are some of the wear 

mechanisms which may take place during the machining process (Gu et al., 1999). 

Machining processes such as drilling and turning causes the tool life to last longer as 

compared to the milling process which causes the tool life to deteriorate due to cracks, 

chipping and edge breakage. Milling is an interrupted operation since the entry and exit 

of the tool cutting edge takes place in the work piece at many instances per second 

(Diniz and Filho, 1999). Chipping can be observed if the cutting edge is found to be 

jagged or then there are cavities present. Small chips break off from the tool cutting 

edge on account of mechanical impact, transient thermal stresses due to cycled heating 

and cooling in intermittent machining operations, chatter and flank wear. Figure 4.17  

Figure 4.17 shows the value of flank wear is  0.4199 mm after first pass for uncoated 

carbide at feed rate 0.15 mm/tooth, axial depth 0.7 mm and cutting speed 23 m/min 
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measured by optical video measuring system. The ISO 8688-2:1989 (E) end milling 

specification has provided the criterion for the classification of flank.  

 

 
 

(a) Uncoated carbide insert 

 

           
 

(a) Coated carbide  insert                       (c) Uncoated carbide insert 

 

Figure 4.17:  (a) Value of flank (b) Flank wear at coated carbide insert, (c) catastrophic 
failure at uncoated carbide insert 

 

Catastrophic 
failure 

    Flank wear 
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The flank wear of the coated and uncoated carbide cutting inserts can be found 

in Figure 4.17 which also shows the catastrophic failures happened at uncoated carbide 

inserts.  In the case of nickel-based alloys there is possibility of tool rejection which is 

caused by disastrous break downs; chipping and flank wear (Kadirgama et al., 2011). 

Table 4.26 shows the cutting parameters by keeping a maximum cutting speed of (31 

m/min) for coated and uncoated carbide cutting inserts. Figure 4.18 shows the progress 

of flank wear during the machining process at maximum cutting speed (31 m/min) 

which (a) coated carbide and (b) uncoated carbide. 

 

Table 4.26: Cutting parameters when using the maximum cutting speed for coated and 
uncoated carbide inserts 

 

Exp. No Feed rate 
(mm/tooth) 

Axial 
depth(mm) 

Cutting speed 
(m/min) 

Maximum cutting speed 
1 0.15 0.4 31 
5 0.2 0.7 31 
10 0.15 1.0 31 
12 0.10 0.7 31 

 

 
                (a) Coated carbide inserts                         (b) Uncoated carbide inserts 

 

Figure 4.18: Progress of flank wear (a) coated carbide, (b) uncoated carbide 
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Figure 4.18 shows that the uncoated carbide takes 0.3 minutes to wear out as 

compared to the coated carbide which takes 0.5 minutes. The tool life of the cutting 

insert and the flank wear values are affected by the increase in cutting speed and the 

feed rate. The tool life is shorter if the flank wear is greater (Thamizhmanii and Hassan, 

2007). The interaction between workpiece machined and high cutting temperature has 

influences the tool flank wear (Isik, 2007). Severe flank wear may also be caused due to 

the high tool tip temperature which is caused by compressive stress since it weakens the 

machining characteristics and leads to plastic deformation at the cutting edge (Ezugwu 

and Bonney, 2004). In a coated carbide, the coated layers helps act as a protecting agent 

for the cutting inserts which is why it takes a longer time to wear. Whereas the uncoated 

carbide takes a shorter time period to wear due to the absence of the coating layer.   

 

         
(a) Coated carbide insert                                 (b) Uncoated carbide insert 

 

Figure 4.19: Chipping (a) Coated carbide insert (b) Uncoated carbide insert 

 

Figure 4.19 shows the chipping found to develop particularly at cutting speed of 

15 m/min, feed rate of 0.2 mm/tooth, axial depth 0.7 mm and cutting speed 15 m/min 

after 120 mm cutting length. Both coated and uncoated carbide experience chipping but 

the severe chipping occurs for uncoated carbide compared to coated carbide inserts at 

the same cutting condition due to no protecting layers present to protect it. If there is 

unfavourable chip removal then the cutting area is affected by chip impact and edge 

chipping occurs. This chip removal is accompanied with high temperature as well as the 

Chipping 

Severe 
chipping 

Notch 
Notch 
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tool rake face adhesion. The high strain hardening of nickel based alloys also leading to 

severe chipping to the cutting tool insert (Ezugwu et al., 2005). If the cutting tool insert 

has been affected by chipping, the geometry is changed as more heat is created and the 

force increase which is present become higher causing the surface finish to be a poor 

process. The adherence of the work material, the work hardened layer of nickel base 

alloy and fatigue loading are responsible for the occurrence of the notch (Krain et al., 

2007). The notching of in machining nickel base alloy is very much affected by the 

work hardening (Ezugwu et al., 1998). Diffusion-attrition wear may also be held 

responsible for the formation of notching (Kaya et al., 2011). The coated and uncoated 

carbide are machined during which the notching of the tool takes place (Che-Haron et 

al., 2007). The uncoated carbide is subjected to stronger notch wear than the coated 

carbide even though both categories are affected. Physical vapour deposition of TiA1N 

coated layers act as a thermal barriers and protecting layers to enhance the performance 

levels of the tool. This helps in the machining process of the substrate softening since it 

prevents the temperature form rising high (Krain et al., 2007). The tool flank of the 

cutting tool insert consists of the development of built-up edge (BUE) and adhered 

workpiece material which is mainly attributed to the adhesion and attrition mechanisms. 

The high chemical affinities between cutting tool insert and workpiece machined along 

with a high temperature causes the pressure to rise resulting in BUE (Krain et al., 2007). 

Figure 4.20 shows the formation of built-up edge (BUE) for coated carbide on the tool 

flank due to the attrition wear where the workpiece was machined at cutting speed 15 

m/min, feed rate 0.1 mm/tooth and axial depth 0.7 mm after second pass due to the 

attrition wear.  

 

The analysis of EDX shows the existence of new elements such as Manganese 

(Mn), Ferum (Fe), Molybdenum (Mo), Nickel (Ni) at the coated carbide insert. These 

elements were found due to adhesive of the workpiece during the machining process, 

which is subjected to high heat concentration. Adhesion wear is a removal of grains of 

tool material due to intermittent adhesion between the tool and the workpiece, as a 

result of the irregular chip flow and the breaking of a partially stable BUE. The rake 

face of the cutting insert can be protected if the BUE is stable which is why only flank 

wear is found and rake wear can be avoided. Coating peeling or delamination takes 

place due to BUE in a coated carbide cutting insert. In the case of nickel based alloys, 
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when high stress is applied to the cutting edge the breakdown of the cutting edge of the 

cutting tools takes place. The serrated chip causes fatigue which is why the adhesion 

mechanism takes place and this fatigue is also held responsible for the cracks that are 

formed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: (a) BUE formation at coated carbide, (b) EDX result 

 

Figure 4.21 shows the formation of adhering layer at uncoated carbide cutting 

insert. Thermal softening, strain rate and work hardening have been found to have a 

unique and complex relationship due to the passing of the workpiece material along the 

rake face. Such parameters are physical in nature which is why they are able to affect 

the dynamic flow strength of the material (Wright and Chow, 1982). A high temperature 

gradient would be able to create a difference amongst the tool–layer interface and the 

workpiece–layer interface. This temperature has also been referred to as the transient 

temperature since it has the ability to form a layer of hard base and top face which is 

soft (Qi and Mills, 2000).  
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Figure 4.21: (a) adhesion wear at uncoated carbide at magnification 50x, (b) adhering 
layer at magnification 1200x, (c) EDX test. 

 

It can be inferred that under the proper conditions of temperature, shear strain 

rate, and work hardening, the wear of adhered layer and the stacking of the layer 

attained a balance, leaving a relatively stable layer on the interface. The increasing 

stacking of layer contributed to an irregular, unstable layer, which was force fully 
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plucked away by the action of chip flow or workpiece travel. Thus, When the tool 

materials were removed, certain pullouts were formed which were inside the unstable 

layer. Figure 4.22 shows the plucking formation at coated carbide cutting tool insert. 

 

 
 

Figure 4.22: Plucking at coated carbide inserts 

 

Figure 4.23 shows the adhesion and diffusion mechanism for coated and 

uncoated cutting inserts. A new adhering layer has been formed over the area which was 

exposed due to the pullouts that occurred over the tool. A process by the name of 

formation–stacking–plucking took place in the adhering layer at the depth of the cut 

regions. When this process repeated, it was possible to form a notch at the cut line depth 

(Xue and Chen, 2011). Attrition wear may be held responsible for the plucking activity 

that has taken place (Aspinwall et al., 2007). Aggregates or removal individual cutting 

tool inserts take place in the workpiece which is why a rough area is formed over the 

cutting insert (Ezugwu et al., 2003). During the machining process there has been a 

localized form of tensile stress by the intermittent chip flow which causes the 

mechanism to take place. The tensile stress took place due to the chip detachment which 

occurred at the time of tool exit and then an instant ejection took place which stuck the 

chip on to the next entry (Jawaid et al., 2001). Attrition wear has also been caused by 

the irregular flow of the material of the cutting edge of cutting inserts and the cracks 

which formed at the time of the elevated temperature (Zou et al., 2009). The changes in 

Plucking 



117 
 

strains and stress have been held responsible for the adhesion wear process which is 

also intermittent. There is also presence of periodic attachment and detachment of 

workpiece material on the tool surface. Hence, the adhesion wear mechanism has been 

held responsible for the formation of notching in the depth of the cut line.  

 

 

 

 

 

 

 

 
 

Figure 4.23: Adhesion and diffusion wear at uncoated carbide 

 

Ferum (Fe), Nickel (Ni), Manganese (Mn), Cromium (Cr), Copper (Cu) have 

been found at the feed rate 0.1 mm/tooth, axial depth 0.4 mm, and cutting speed 23 

m/min using CTP 1235 (uncoated carbide) in the EDX analysis. This clearly shows that 

the diffusion mechanism has taken place. The material have been diffused into the 

cutting tool at the time of the machining process. High cutting temperature and intimate 

contact between the tool and the workpiece during machining were considered as the 

prerequisites for the occurrence of diffusion (Xue and Chen, 2011). If there is a high 

 

Adhesion 

Diffusion 

Oxygen 

Fe, Ni, Mn, 
Cr, Cu 



118 
 

temperature of cutting diffusion would occur and a metallic crystal lattice would move 

from high concentration to low concentration levels.  

 

The high temperatures increase the rate of diffusion which is why the cutting 

temperature has been regarded as the main characteristic to determine the rate of 

diffusion (Olovsjo and Nyborg, 2012). With the help of complete seizure at the tool 

layer along with high cutting temperatures, an environment is created where the tool 

material atoms are diffused from a high to a low concentration level (Itakura et al., 

1999). There exists strong contact between the cutting tool and workpiece and the atoms 

move from the workpiece to the cutting insert when a high temperature is maintained at 

the machining. Between two materials, an interface takes place which is within a narrow 

reaction zone hence causing the surface structure of the tool to weaken. Diffused into 

the grain boundaries of binder Co are the elements Nickel (Ni) and Ferum (Fe) from 

workpiece material. The high temperature causes the intermetallic phases between 

carbides and binder by ways of grain boundary diffusion. There exists high affinity of 

carbides with Nickel (Ni) which causes the intermetallic phases to dissolve which then 

disrupts the binder and carbide bonding (Liao and Shiue, 1996). As observed in 

Figure 4.23 shows process adhesion, diffusion and oxidation take place.  There exists 

oxidizing temperature and higher levels of hardness in the PVD- coated carbide with 

TiA1N coating layers. The aluminum coating film oxides are subjected to a high 

temperature which forms a very thin layer of amorphous aluminum oxide and stops any 

more of oxidation to take place (Yamada et al., 1996). Hence, the coated carbide is 

found to have no mechanism of oxidization. The water soluble coolant is able to create 

the mechanism (Kadirgama et al., 2011). The pull out, oxidation mechanism and 

increased level of seizure has the ability to increase the level of depth of cut notching 

(Machado et al., 1998). Co has lower levels of oxidation growth that W when the 

cutting temperature increases (Warren et al., 1996). Figure 4.24 shows the mapping 

wear of coated and uncoated carbide. For coated and uncoated carbide the Hastelloy C-

2000 machining has the ability to carry out chipping, notching and flank wear. Only 

uncoated carbide carries out catastrophic wear and the failure, notching and chipping 

takes place due to adhesion, BUE and mechanism of attrition. Both flank wear for 

cutting tools mainly attributes to BUE and adhesion however, it also happens due to 

diffusion and oxidation mechanism for uncoated carbide cutting tool. 
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(a) Uncoated carbide cutting insert 

 

 

 

 

 

 

 

 

 

 

(b) Coated carbide cutting insert 

 

Figure 4.24: Mapping of wear for different cutting tools 
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clearance angle, nose radius etc which are all held responsible for the issues which arise 

in developing an appropriate model. Many of the machining handbooks are available 

but they only stress upon the relation between the cutting parameters along with fixing 

other parameters. Using existing machining data it is required that proper mechanisms 

be developed for general models. Using the first and second order RSM, an approach 

for the model cutting forces will be developed in the section along with an analysis of 

the chip formation of Hastelloy C-2000.  

 

4.5.1 Mathematical modelling 

 

Development of Linear Model 

 

When experimental miller operations take place, a Kistler force dynamometer 

model 1679A5 is used to record cutting force. Each pass is equal to 120 mm length and 

after managing the first pass of 15 cutting experiments, the cutting force readings have 

been used to figure out the parameters in the linear order model Eq. 4.13 and Eq. 4.14 

for coated and uncoated carbide inserts. 

 

For coated carbide cutting tool inserts: 

    

               321 52.5867.7666.10756.442 xxxFy −++=                                             (4.13) 

 

For uncoated carbide cutting tool inserts: 

 

               321y -61.4171.76 115.47    508.79F xxx −++=                                            (4.14) 

 

The feed rate has the highest level of effect on the cutting force which is then 

followed by the axial depth and the cutting speed for all the models. This aspect can be 

observed in equation (4.13-4.14). The cutting force consisted of the feed rate as the 

strongest cutting force which was also followed by the axial depth, radial depth and the 

cutting speed (Ibraheem et al., 2008). If the feed rate decreased or then the cutting speed 

increased, there is possibility that the cutting force would decrease overall. This aspect 
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has also been presented by the researcher Fang and Wu (2009). Table 4.27 displays the 

variance analyses for cutting tools of both categories. ANOVA has presented the level 

of adequacy for the linear order model at a 95% confidence level. The P-values of linear 

terms for both the models are 0.000 for coated carbide and 0.000 for uncoated carbide 

that are less than the α-value (0.05) which is why the model is considered adequate and 

statistically significant. There are vast effects on the responses by the terms which are 

chosen in the model. The P-values of lack of fit for coated and uncoated carbide which 

are higher than the α-level (0.05) are 0.296 and 0.072 respectively are considered 

insignificant. Therefore the model has been observed as adequate and acceptable with 

an indicator to measure the effectiveness of the levels. In order to decide whether the 

linear model is appropriate, the co-efficient R2 has been used which also helps decide 

the best response model when it reaches unity (Bouacha et al., 2010). The uncoated 

carbide has a greater value of R2   which is 89.25 % than the coated carbide which is 

86.90 %.  

 

Table 4.27: Variance analysis for linear order cutting force model for coated and 
uncoated carbide inserts 

 

Source DF Coated Carbide 
inserts 

Uncoated carbide 
inserts 

  F-value P-value F-value P-value 
Regression 3 24.33 0.000 30.43 0.000 
Linear 3 24.33 0.000 30.43 0.000 
Residual Error 11     
Lack of Fit 9 2.74 0.296 13.31 0.072 
Pure Error 2     
Total 14     

 Note: DF= Degree of freedom 

 

Figure 4.25 (a-b) shows the relationship of cutting force with feed rate and axial 

depth for coated and uncoated carbide. For both cutting inserts, the cutting force is high 

when the axial depth and feed rate are high, hence proving that they have a directly 

proportionate relationship. The uncoated carbide had a higher cutting force than the 

coated carbide. The force concentration was reduced during the machining process since 

the coated carbide layering did not allow easy cutting. 
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                         (a) Coated carbide inserts                       (b) Uncoated carbide inserts 

 

            
                      

                        (c) Coated carbide inserts                       (d) Uncoated carbide inserts 

 

Figure 4.25: The cutting force first order RSM contour plot versus feed rate and axial 
depth for (a) coated; (b) uncoated carbide inserts and feed rate as well as cutting speed 

for (c) coated and (d) uncoated carbide inserts 
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Table 4.28: Experimental result and linear models predicted values for coated and 
uncoated carbide inserts 

 
No Exp. Cutting 

Condition 
Experimental 

result 
Predicted RSM Absolute Error 

(%) 
 FR AD CS CTW 

4615 
CTP 
1235 

CTW 
4615 

CTP 
1245 

CTW 
4615 

CTP 
1235 

1 0.15 0.4 31 280.901 350.223 307.3663 375.6227   9.422   7.252 
2 0.15 1 15 552.332 570.896 577.7496 641.9605   4.602 12.448 
3 0.1 0.7 15 350.220 450.290 393.4257 454.7351 12.337   0.987 
4 0.2 1 23 650.308 680.440 626.8818 696.0170   3.613   2.289 
5 0.2 0.7 31 423.020 500.110 491.6902 562.8481 16.233 12.544 
6 0.15 0.7 23 420.186 530.240 442.5579 508.7916   5.324   4.045 
7 0.15 0.7 23 460.525 550.801 442.5579 508.7916   3.901   7.627 
8 0.2 0.7 15 550.222 720.880 608.7399 685.6709 10.636   4.884 
9 0.1 0.4 23 239.706 326.995 258.2341 321.5662   7.730     1.66 
10 0.15 1 31 500.222 561.424 460.6998 519.1377   7.882   7.532 
11 0.15 0.4 15 480.330 461.433 424.4161 498.4455   11.64    8.021 
12 0.1 0.7 31 260.860 300.451 276.3759 331.9124   5.950 10.471 
13 0.1 1 23 450.309 500.831 411.5676 465.0812   8.603   7.138 
14 0.15 0.7 23 480.524 525.831 442.5579 508.7916   7.901   3.267 
15 0.2 0.4 23 538.802 600.880 473.5483  552.5020   12.11    8.051 

 

The cutting tools of both categories have a cutting speed and feed rate 

relationship with the cutting force which is found in 4.36 (b). Feed rate and cutting force 

are directly proportional but the cutting force and cutting speed are found to be 

inversely proportional to each other. If there is high feed rate and a low level of cutting 

speed then the cutting force of the Hastelloy C-2000 would increase. The cutting force 

tends to reduce when applying high cutting speed because it can to contributes to 

elevated temperature and softening the workpiece (Chen, 2001). The use of low cutting 

speed, decreases the shear angle which giving a long shear plane that contributes to the 

increases of shear force required for stress deformation. The friction of efficient also 

increases, thus the cutting force is increases (Alauddin et al., 1999). If the axial depth 

and the feed rate increase then the cutting force increases (Liu et al., 2010). Since nickel 

alloys work harden rapidly, once the milling cutter starts cutting, it will become more 

and more difficult for further machining due to the hardening effect. Hence, at one point 

the cutting does not occur and the metal is pushed as the edges are not sharp enough 

resulting in higher temperature and higher cutting force (Li et al. 2006). Table 4.28 

shows the experimental results for the coated and uncoated carbide inserts. The coated 

and uncoated carbide maximum absolute relative error is 16.233 % and 12.544 % 
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respectively and the minimum absolute relative error is 3.613 % and 0.987 % 

respectively.   

 

Development of Quadratic Model 

 

To find the desired region target and help extract the optimal condition of the 

machine processing, a quadratic model of response function is used. This function does 

not only provide help with the input and output of the responses (Bouacha et al., 2010). 

The end milling cutting forces can be predicted by using the quadratic models 

(Kadirgama and Abou-El-Hossien, 2005). Eq. 4.15 and Eq. 4.16 can be used for the 

quadratic model equation to predict the cutting force for coated and uncoated carbide 

cutting inserts. 

 

For coated carbide cutting tool inserts: 
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 (4.15) 

 

For coated carbide cutting tool inserts: 

 

               323121
2

3
2

2

2
1321

25.434 17.73323.569 42.017

7.6630.72461.411 71.757 115.468 535.674

xxxxxxxx

xxxx
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+−−++
              (4.16) 

 

Table 4.29 shows the variance analysis for quadratic model of cutting force 

model for coated and uncoated carbide inserts. The adequacy of the second-order model 

is verified using ANOVA results. At a level of confidence of 95%, the models are 

checked for its adequacy.   The P values of lack-of-fit are 0.557 in the case of coated 

and 0.060 for uncoated carbides stating that they are insignificant and that the model is 

adequate. The P values for regression models are 0.001 and 0.007 for coated and 

uncoated carbide respectively and considered significant. Both models have been 

considered efficient and there is a measure to check the effectiveness of the model.  

Meanwhile F-value for the model is  for 0.920 coated carbide and 15.91 for uncoated 
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carbide model implies the lack of fit is not significant relative to the pure error (Lajis et 

al., 2008).The coated and uncoated carbide R2 are 97.66 % and 95.61 % respectively. 

When the R2 and the P-values are compared it is found that between the linear and the 

quadratic models, the quadratic is much more efficient. This is specifically in the case of 

Hastelloy C-2000 as the cutting force of the machining.  

 

Table 4.29: Variance analysis for quadratic model of cutting force model for coated and 
uncoated carbide inserts 

 
Source DF Coated carbide 

insert 
Uncoated carbide 

insert 
  F-value P-value F-value P-value 
Regression 9 23.16 0.001 12.09 0.007 
Linear 
Square 
Interaction 

3 
3 
3 

61.82 
4.610 
3.040 

0.000 
0.067 
0.131 

33.87 
1.26 
1.15 

0.001 
0.382 
0.413 

Residual Error 5     
Lack of Fit 3 0.920 0.557 15.91 0.060 
Pure Error 2     
Total 14     

       Note: DF= Degree of freedom 

 

In Figure 4.26, the contour plot for the coated and uncoated carbide quadratic 

model RSM can be found. A parabolic line is provided by the quadratic models for both 

the carbides. The cutting force relation between the axial depth and the feed rate can be 

found in Figure 4.26 (a-b). The cutting force increases in both types of tools when the 

axial depth and the feed rate are increased. This increase occurs in the same proportion 

and the uncoated carbide is found to apply a higher cutting force than the coated 

carbide. There exists lack of protection in the uncoated tool which is why this scenario 

occurs. However, for the coated cutting tool, the cutting force is lower because mainly 

the decreased friction between the chip and tool, chip and workpiece and also the effect 

of the coatings acting as a thermal barrier. This barrier prevents heat from entering the 

tool due to its high thermal conductivity and hence most of the heat is removed in the 

hip (MacGhinley and Monaghan, 2001). For the coated carbide insert, the multiple 

coating layers can improve wear resistance significantly. It is hard to bear the high load 

impacts and high temperature. Actually, the coated layer cannot stand for long before it 

is worn. This causes in severe tool wear and short tool life (Li et al., 2006). 
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                       (a)Coated carbide inserts                          (b) Uncoated carbide inserts 

 

     
 

                   (c) Coated carbide inserts                           (d) Uncoated carbide  inserts                

                                                                                                               

Figure 4.26: The cutting force second order RSM contour plot versus feed rate and 
axial depth for (a) coated; (b) uncoated carbide inserts and feed rate as well as cutting 

speed for (c) coated and (d) uncoated carbide inserts 
 
 

Figure 4.26 (c-d) shows the contour plot of cutting force with the relation of feed 

rate and cutting speed (Shunmugam et al., 2000). When the cutting speed is increased 

then the cutting force decreases due to the increase in feed rate which more material will 
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have to be cut per tooth per revolution; as a consequence more energy is required 

(Reddy and Rao, 2006). Side surface, crater, notch wear, tool breakage and plastic 

deformation are all caused by the high cutting speed. To supply energy, the cutting force 

is working towards the cutting direction. As the depth of the cut increases, the cutting 

force also increases due to the resultant forces. The depth of the cut in increased and the 

extra material is removed by the additional energy that has been provided (Astakhov, 

1999; Ostwald and Munoz, 2002). The coated and uncoated carbide inserts 

experimental results of quadratic models are present in Table 4.30. The minimum 

absolute relative errors for coated and uncoated carbide are 0.0095 % and 0.97 % 

respectively and the maximum absolute relative errors are 8.751 % and 11.095 % 

respectively.  

 

Table 4.30: Experimental result and quadratic models predicted values for coated and 
uncoated carbide inserts 

 

No Exp.Cutting 
Condition 

Experimental 
result 

Predicted RSM Absolute Error 
(%) 

 FR AD CS CTW 
4615 

CTP 
1235 

CTW 
4615 

CTP 
1245 

CTW 
4615 

CTP 
1235 

1 0.15 0.4 31 280.901 350.223 281.4249 327.3906 0.186  6.519 
2 0.15 1 15 552.332 570.896 551.8081 593.7284 0.001 3.999 
3 0.1 0.7 15 350.220 450.290 337.4878 421.1435 3.635 6.472 
4 0.2 1 23 650.308 680.440 629.3309 690.9429 3.226 1.544 
5 0.2 0.7 31 423.020 500.110 435.7523 529.2565 3.010 5.828 
6 0.15 0.7 23 420.186 530.240 453.7450 535.6737 7.987 0.970 
7 0.15 0.7 23 460.525 550.801 453.7450 535.6737 1.472 2.746 
8 0.2 0.7 15 550.222 720.880 571.7230 687.5448 3.908 4.624 
9 0.1 0.4 23 239.706 326.995 260.6831 316.4921 8.751 3.212 
10 0.15 1 31 500.222 561.424 508.3689 521.7746 1.649 7.062 
11 0.15 0.4 15 480.330 461.433 472.0851 501.0824 1.717 9.243 
12 0.1 0.7 31 260.860 300.451 239.3590 333.7863 8.242 11.095 
13 0.1 1 23 450.309 500.831 463.5651 507.1451 2.944 1.261 
14 0.15 0.7 23 480.524 525.831 453.7450 535.6737 5.573 1.936 
15 0.2 0.4 23 538.802 600.880 525.5459 594.5659 2.460 1.000 

 

The experimental results for the coated and uncoated carbides are compared to 

the linear and quadratic RSM model in Figure 4.27. The quadratic RSM model shows 

the coated and uncoated carbide to be 3.651 % and 4.5 % respectively and the linear 

order RSM is 8.526 % and 6.547 % respectively. Hence the quadratic results are closer 

to the experimental results which states that the quadratic RSM is significant to the 

roughness model.  
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(a) Coated carbide inserts                            (b) Uncoated carbide inserts 

 

Figure 4.27: Comparison between experimental results, first order RSM, second order 
RSM for coated and uncoated carbide inserts 

 

4.5.3 Artificial Neural Network Model 

 

The Artificial Neural Network comprises of three inputs, twenty five concealed levels 

and one output level; (3-25-1). The paramount blend of the ANN system is ID number 

two used for cutting tool coated carbide. Table 4.31 shows the analytical exploration 

towards the finest hidden levels. In the meantime, the finest ANN’s formation for 

uncoated carbide is at ID number seven which is three inputs, fourteen hidden levels 

and one output (3-14-1). The The best criterions are automatically chosen by the 

software based R-square values and correlation coefficient values. The value of R2 for 

coated carbide is 0.999871 and correlation of coefficient is 0.999718. The best 

criterions are selected based on R-square values and correlation coefficient value. 

Moreover, 0.997284 is the R2 for uncoated carbide cutting tool and 0.998767 is the 

correlation of coefficient. The best architecture is trained using bath back propagation 

algorithm.  
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Table 4.31: Heuristic search for coated and uncoated carbide inserts 

 

ID N F TE VE TE C R-S SR 

Coated carbide inserts (CTW4615) 
1 2 0.1650 18.037 15.9413 60.5873 0.974298 0.943840 AID 
2 25 0.0194 1.9316 19.5725 51.2844 0.999718 0.999871 AID 
3 16 0.0181 0.3880 22.6253 55.0630 0.999967 0.99870 AID 
4 10 0.0157 0.6445 39.9913 63.6887 0.999556 0.99828 AID 
5 21 0.0175 1.0775 19.9626 56.8750 0.999331 0.999415 AID 
6 13 0.0088 0.4316 59.0196 112.441 0.999421 0.999841 AID 
7 19 0.0123 0.4156 56.7643 78.7603 0.999231 0.999233 AID 
8 17 0.0243 0.5897 40.2128 61.4343 0.999610 0.99940 AID 
9 22 0.0192 0.6342 16.7921 62.2748 0.999570 0.999011 AID 

Uncoated carbide inserts (CTP1235) 
1 9 0.0040 123.31 43.0506 249.877 0.449329 0.181491 AID 
2 10 0.0176 6.4446 9.85683 56.6367 0.998971 0.997693 AID 
3 21 0.0044 140.272 15.0904 224.0021 0.386889 0.790624 AID 
4 13 0.0072 69.0799 34.8271 137.0080 0.93609 0.903399 AID 
5 19 0.0139 45.2312 53.5528 71.6309 0.980390 0.992264 AID 
6 14 0.1636 6.2861 34.5556 6.1113 0.998767 0.997284 AID 
7 17 0.0235 11.3348 11.3348 42.4054 0.996595 0.982144 AID 
8 16 0.4321 8.4321 30.4789 20.2148 0.98764 0.982144 AID 
9 23 0.0339 7.2219 16.4789 13.2284 0.99021 0.990210 AID 

Note: ID= Identity number, N= Neurons, F= Fitness, TE= Training error, VE= 
Validation error, TE= Testing error, C= Correlation, R-S= R-square, SR= Stop reason 
AID = All iterations done 

 

Table 4.32 highlights the summary of the training and testing of the coated and 

uncoated carbide cutting tool inserts. The absolute relative errors of the training and 

testing for coated are averaged out to be 0.354 % and 0.794 %. Meanwhile for uncoated 

are 0.367 % and 0.519 %. Table 4.33 and Table 4.34 show the training and testing of 

artificial neural network for coated and uncoated carbide cutting insert. Keeping in mind 

the coated carbide inserts the coefficient of correlation is 0.999 899 and R2 is 0.999 793. 

The testing shows the values of 0.999 968 and 0.998 570. For training uncoated carbide 

inserts, the coefficient of correlation is 0.999 955 and R2 is 0.999763. The testing values 

are 0.999 968 and 0.998 570. Table 4.35 shows the validation for coated and uncoated 

carbide. The absolute error for validation for coated carbide and uncoated carbide is 

within 3% to 1%. Based on the training and testing, ANN gives near prediction to the 

experimental value and the validation test gives the error accuracy 1.5%-3.7% to the 

predicted value and considered in acceptable range. 
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Table 4.32: Summary training and testing for coated and uncoated carbide inserts 

 

 Target Output Absolute 
Error 

ARE 

 TR TE TR TE TR TE TR TE 
Coated Carbide cutting tool inserts CTW 4615 with NN model of 3-15-1 

Mean 400.697 442.261 442.401 444.264 1.470 3.513 0.354 0.794 
SD 457.863 454.732 457.495 457.615 1.786 3.989 0.446 0.852 
Min 260.860 239.706 263.241 234.429 0.034 1.869 0.007 0.389 
Max 650.308 550.222 651.284 557.348 3.377 7.127 0.913 1.295 

Uncoated Carbide cutting tool inserts CTP 1235 with NN model of 3-17-1 
Mean 502.802 508.948 502.206 510.016 1.822 2.616 0.367 0.519 
SD 519.997 511.397 520.138 511.599 0.206 2.913 0.407 0.594 
Min 300.451 450.290 299.443 454.889 0.619 0.554 0.118 0.497 
Max 720.880 570.896 724.432 568.224 3.552 4.599 0.638 1.021 

Note: TR=Training, TE=Overall, ARE= Absolute relative error, SD: Standard 

Deviation 

 

Table 4.33: The training and testing of artificial neural network for coated carbide  
 

No Exp. Cutting 
condition 

Experimental 
result 

Predicted 
ANN 

Absolute 
Relative 

Error (%) FR AD CS 
Training, R2=0.999 793, C=0.999 899 

1 0.15 0.4 31 280.9010 280.9220 0.0074 
2 0.15 1 15 552.3320 552.2985 0.0060 
3 0.1 0.7 15 350.2200 351.0000 0.2223 
4 0.2 1 23 650.3080 651.2845 0.1501 
5 0.2 0.7 31 423.0200 424.6371 0.3823 
6 0.15 0.7 23 420.1860 417.7848 0.5715 
10 0.15 1 31 500.2220 498.6261 0.3190 
12 0.1 0.7 31 260.8600 263.2411 0.9128 
13 0.1 1 23 450.3090 448.7873 0.3379 
15 0.2 0.4 23 538.8020 535.4248 0.6268 

Testing, R2=0.998 570, C=0.999 968 
7 0.15 0.7 23 460.5250 463.2816 0.5986 
8 0.2 0.7 15 550.2220 557.3486 1.2952 
9 0.1 0.4 23 239.7060 234.4293 0.9498 
11 0.15 0.4 15 480.3300 483.8691 0.7368 
14 0.15 0.7 23 480.5240 482.3922 0.3887 

Note: FR= Feed rate (mm/tooth), AD=Axial depth (mm), CS=Cutting speed 
(m/min), R2=R square, C= Correlation coefficient 
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Table 4.34: The training and testing of artificial neural network for uncoated carbide  
 

No Exp. Cutting 
condition 

Experimental 
result 

Predicted 
ANN 

Absolute 
Relative 

Error (%) FR AD CS 
Training, R2=0.999 763, C=0.999 955 

1 0.15 0.4 31 350.2230 347.9872 0.6384 
4 0.2 1 23 680.4400 683.7643 0.4886 
5 0.2 0.7 31 500.1100 497.2360 0.5748 
6 0.15 0.7 23 530.2400 531.1111 0.1642 
7 0.15 0.7 23 550.8010 549.6734 0.2047 
8 0.2 0.7 15 720.8800 724.4322 0.4928 
9 0.1 0.4 23 326.9950 325.5651 0.4373 
12 0.1 0.7 31 300.4510 299.4429 0.3355 
14 0.15 0.7 23 525.8310 525.2111 0.1179 
15 0.2 0.4 23 538.8020 1.1807 0.2191 

Testing, R2= 0.998 570, C=0.999 968 
2 0.15 1 15 570.8960 568.2245 0.4679 
3 0.1 0.7 15 450.2900 454.8890 1.0213 
10 0.15 1 31 561.4240 558.6592 0.4925 
11 0.15 0.4 15 461.4330 461.9874 0.1201 
13 0.1 1 23 500.8310 503.3210 0.4972 

Note: FR= Feed rate (mm/tooth), AD=Axial depth (mm), CS=Cutting speed 
(m/min), R2=R square, C= Correlation coefficient 

 
 

Table 4.35: Validation of artificial neural network for coated and uncoated carbide 
inserts 

 
No Exp. Cutting 

condition 
Experimental 

result 
Predicted 

ANN 
Absolute 
Relative 

Error (%) FR AD CS 
Coated carbide cutting insert 

4 0.2 1 23 357.5420 351.000 1.8297 
15 0.2 0.4 23 522.6168 299.4429 2.4507 
11 0.15 0.4 15 492.3214 558.6592 1.7168 

Uncoated carbide cutting insert 
5 0.2 0.7 31 484.2339 497.2360 2.6851 
12 0.1 0.7 31 310.9031 299.4429 3.6861 
10 0.15 1 31 568.4240 558.6592 1.7178 

 

Figure 4.28 shows the graph of experimental and ANN predicted results. This 

graph is constructed to indicate how well ANN can predict the cutting force result. The 

prediction results fall just near to the actual experimental results. The networks applied 

the feed-forward back-propagation algorithm. Results for the values predicted by ANN 
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were very close to experimental values. Feed forward multilayer ANN along with back 

propagation algorithm is applied to model cutting force for simulation. 

 

                                                          
(a) Coated carbide inserts                             (b) Uncoated carbide inserts 

 

Figure 4.28:  Experimental result versus ANN predicted for cutting force, Fy (N) 
values for coated and uncoated carbide inserts. 

 

A good performance was acquired by applying the feed forward back 

propagation algorithm to forecast the cutting forces by tangent sigmoid activation 

function. Figure 4.29 illustrates the combination of linear, quadratic RSM model, ANN 

and speculative values. It is apparent that the ANN predicted model provides with high 

precision in predicting the cutting force values as in contrast to the linear and quadratic 

RSM model. Table 4.36 illustrates the analysis error of statistical and ANN model in 

which the ANN model shows minor errors in comparison to the other models for coated 

and uncoated carbide. As a result it can be said that the ANN can be applied as a 

successful tool towards predicting the cutting force in machining Hastelloy C-2000. The 

mean absolute error for ANN model is 0.4181 %, for linear is 8.5260% and 3.6510% for 

quadratic model for coated carbide insert. In cases of uncoated carbide, the mean 

relative mistakes for ANN is 0.5 %, for linear is 6.5470% and for quadratic model is 

4.5000%. Regarding the errors, the ANN shows a better predict with fewer errors as 

compared to the statistical models. It is important to apply the ANN as the prediction 
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model of cutting force. Table 4.36 shows the error analysis of cutting force for coated 

and uncoated carbide inserts. 

 

                          
                   (a) Coated carbide inserts                              (b) Uncoated carbide inserts 

Figure 4.29: Comparison between experimental result, first order RSM, second order 
RSM for different cutting tools. 

 
 

Table 4.36: The error analysis of cutting force for coated and uncoated carbide inserts 

 

Model Minimum relative 
error (%) 

Maximum relative 
error (%) 

Mean absolute 
relative error  (%) 

 CTW4615 CTP1235 CTW4615 CTP1235 CTW4615 CTP1235 
FO RSM  3.6130 0.9870 16.2330 12.5440 8.5260 6.5470 
SO RSM  0.0095 0.9700 8.7510 11.0950 3.6510 4.5000 
ANN 0.0074 0.1179 1.2952 0.63840 0.4181 0.5000 
Note: CTW4615= Coated carbide, CTP1235= Uncoated carbide, FO RSM = First order 
RSM, SO RSM = Second order RSM 
 

4.5.4 The Minimization of Cutting Force 

 

An attempt is fulfilled to estimate the minimum value of cutting force within the 

experimental constraints. Table 4.37 shows the minimum values of parameters that were 

achieved. The validation test was performed based on the design variables and 

percentage of error was calculated. The outcome that was achieved from the validation 

test gave an up close reading to aim for minimizing the value of cutting force. In order 
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to accurately minimum and maximum the machining aspects is by bearing in mind the 

machinability principle the rates of production and outstanding output that such as low 

cutting forces, surface finish, high tool life, power utilization and dimensional 

accurateness.       

 

Table 4.37: The minimum value of cutting force for coated and uncoated carbide insert 

 

Cutting 
insert 

Feed rate 
(mm/tooth) 

Axial 
depth 
(mm) 

Cutting 
speed 

(m/min) 

Target 
(min) 

Experimental 
(min) 

Error  
(%) 

Coated 
carbide 

0.10 0.4 31 450 460 2.222 

Uncoated 
carbide 

0.10 0.4 31 550 563.4 2.444 

 

 

4.6 CHIP FORMATION 

 

Chip formation pertains to the formation of the chip in the primary and 

secondary deformation zones. Primary attention was established towards the kinematic 

relationships, cutting force and the contact process at the tool-tip interface. According to 

Astakhov (2006) the dilemma of chip-breaking became tremendously significant with 

growing cutting speed and the establishment of novel difficult-to-machine materials. 

According to Aykut el al. (2007a) chip formation relies upon the outcome of the 

workpiece and cutting tool materials, feed rate, cutting speed and the cutting tool 

geometry. According to Nakayama et al. (1992), the contemporary meaning of this 

expression implies the chip that has immediately left the tool-chip interface is to be 

broken. The chips produced during machining rely upon the materials being machined, 

the tools and the cutting condition. The mechanism of chip formation and separation is 

due to the extreme strain rate that occurs during the machining process. In case of the 

cutting of Hastelloy C-2000 due to the lower thermal conductivity characteristics of the 

material, temperature can be very high locally in some areas of the workpiece, resulting 

in thermal softening which reduces the material strain hardening capacity and therefore, 

the shear instability takes place in a narrow band of chips.  Figure 4.30 shows the shape 

of chip and surface texture at feed rate 0.2 mm/tooth, axial depth 0.7 mm and cutting 
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speed 31 m/min for coated carbide inserts. This type of chip shows a lot of waving. The 

types of chip formation can be organized into two groups that is unstable and critical 

chip, depending on its waviness. The unstable chip points towards the adiabatic shear 

taking place in the work material. According to Yuan Ning et al (2001) chatter acts as a 

cause of uneven surface roughness and the completed surface will comprise of alternate 

unburnished (dull) and burnished (shiny) areas. This mechanism of chip formation 

differs significantly from that of stable cutting. When chattering is developed fully, the 

cutting edge is no longer moving in the way as that in stable cutting, but vibrates while 

it is rotating. 

 

 

 

  

 

 

 

 

     

 

 

 

 

 

 

 

 

 

    

Figure 4.30: (a) Shape of chip, (b) Unstable chip – Coated carbide insert 

 

It has been illustrated in Figure 4.31 the figure of the chip with uncoated carbide 

at cutting machining feed rate 0.2 mm/tooth, depth of cut 0.7 mm and cutting speed 31 

m/min. The structure of the critical chip created when machining applying uncoated 
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carbide because of the chatter marks is dissimilar as in comparison to the unstable chips. 

Due to the lower thermal conductivity features of the Hastelloy C-2000, there can be a 

rise in temperature locally in a few areas of the workpiece which may result in thermal 

softening, that decreases the material strain hardening capability. As a result the shear 

unsteadiness takes place in a narrow band of chips. No harsh plastic deformation can be 

seen in the area of adjacent cracks produced between the constituents of the chip.     

 

                                            
        

 

 

 

 

 

Figure 4.31: (a) Shape of chip, (b) Critical chip – Uncoated carbide insert 

 

It was determined that a work material that cracks at a very low cutting speed 

would not crack at a higher cutting speed as compared to the chip formation at a low 

cutting speed. The crack increases without any obvious deformation of the worrkpiece 

free surface at a low cutting speed. A compressive stress ahead of the cutting edge was 

the reason towards the formation of the cracks at the free surface creating the brittleness 

of the workpiece (Kishawy and Elbestawi, 1999). According to Ekinovic et al. (2002) 

the cracks produced during the formation of chips cannot be entirely repaired by plastic 
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deformation. Therefore, their tips can be perceived at high magnification. According to 

Mason et al. (2007) the crack mechanism commenced through gross periodic fractures 

taking place from the workpiece free surface to the cutting tool tip and in the mean 

while the fracture initiated at the workpiece surface and prolongs down along the tool 

tip until the compressive stress established from the tool tip have a huge propensity to 

prevent the crack.     

 

Figure 4.32 show the saw-toothed edge chip. The deformation of chip is 

normally known to be inconsistent and deformation is very high in a narrow band 

between the segments. Abrasive saw toothed edges are generated from the localization 

of shear in the chip. The chip is a constant kind at low speed cutting and when the speed 

is enhanced it changes into a saw-tooth kind. It demonstrates that the higher the cutting 

speed, the saw-tooth chips are more visible. According to Trent and Wright (2000); 

Thakur et al. (2009) the mechanism engaged in the creation of saw-tooth chip is very 

intricate and is known to be accredited to the adiabatic shear on the shear plane and 

cycle cracks at the free surface of the chip. There is no regular principle to forecast the 

onset of saw-tooth chip formation. According to Guo and Yen David (2004) the 

creation of saw tooth attributes from the adiabatic shearing and surface crack 

propagation. According to Davies et al. (1997) and Vyas and Shaw (1999) the saw-tooth 

creation also contributes by catastrophic strain localization and fracture or crack 

generation. During the examination of the chip by applying the SEM and EDX test, 

adhesion mechanism has been detected on the chip when in the process of machining 

with uncoated carbide at machining parameters of feed rate 0.1 mm/tooth, axial depth 

0.7 mm and cutting speed 15 m/min. Figure 4.33 shows adhesion mechanism at 

uncoated carbide. The chemical element from the cutting tool such as cobalt (Co) and 

tungsten (W) were found at the magnification 500x on the chip of workpiece machined 

by EDX. The reason behind this is that the adhesion mechanism, which accredited 

towards the irregular flow of work material towards the cutting edge of the tool, fatigue 

produced by the serrated chip and creation of cracks produced by thermal/mechanical 

fatigue. According to Ezugwu and Wang (1996) and Dearnly and Gearson, (1986) the 

attrition wear is the elimination of grains, or agglomerates, of tool material because of 

irregular adhesion between the tool and the workpiece, consequently the uneven chip 

flow and the breaking of a moderately steady BUE takes place.  
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Figure 4.32: Saw-tooth edge chip 

           

Figure 4.34 illustrates that a little quantity of chip flows out of the cutting zone 

throughout machining with coated carbide at machining parameters, feed rate 0.15 

mm/tooth, axial depth 1.0 mm and cutting speed 31 m/min. Many chips are pressed to 

the sides of the slot, and they are piece-wisely piled up. The chips welded on both the 

sides of the slot slow down the flow of the chip and cutting temperature rises due to the 

heat produced cannot be dissipated with the chips. Simultaneously, the cutting force 

increases quickly. Each and every chip is welded on the sides of the slot, and there is no 

authorization of chip disposal and generating cutting force over 620.77 N. Regarding 

the earlier discussions, it is established that the cutting temperature and chip disposal 

are very significant and concurrent factors that affect slot milling of Hastelloy C-2000 

since the cutting temperature is associated to the cutting speed. The cutting temperature 

will be less than the softening point of gamma prime (γ) when the speed is low. High 

cutting speed is disadvantageous as it produces harsh strain hardening of the work 

material. The work material is softened during a high cutting speed but the cutting 

temperature will also be too high for the cutting tool to survive. Due to these 

circumstances, the welding of the chips on the work surface becomes grave and it is 

highly improper.      

 

 

Saw-tooth edge chip 
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Figure 4.33: The adhesion mechanism at uncoated carbide insert 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.34: Welded chip at the slot machining for coated carbide insert. 
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4.7     SUMMARY 

 

Using the RSM on machine characteristics like surface roughness, tool life, and 

cutting force, the mathematical model for Hastelloy C-2000 had been developed. 

ANOVA helped to check the accuracy levels of the model. The design variables have 

all been validated using the confirmation test in order to optimize the performance of 

the machine. Hyperbolic activation function and multilayer perceptron with back 

propagation algorithm are present in the ANN model to predict the performance of the 

machine. The machining of Hastelloy C-2000 with coated carbide and uncoated carbide 

tools the BUE, diffusion, adhesion and oxidation mechanism occur due to the dominant 

tool failure modes attributes such as , chipping, catastrophic failures, flank wear and 

notching. In the case of tool life, the PVD coated is found to provide much better 

performance than the uncoated carbide. The feed rate has the most effect over the 

cutting force which is then followed by the axial depth and the cutting speed for all 

kinds of models. As the cutting speed increases, the cutting force decreases. There are 

two kinds of chips found as part of this study. The Type I: unstable chip and type II: 

critical chip. The next section will focus on the findings, recommendation and 

suggestion for the future workings.  



 
 

 

 

 

CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 INTRODUCTION 

 

The chapter abridges the significant results of the efforts made in this research. 

This study has tried to come up with several models to predict the performance 

characteristics of machining Hastelloy C-2000 employed by end milling processes by 

means of uncoated and coated carbide cutting inserts. Some recommendations and 

suggestions are also provided so that further research can be carried out in this field.  

 

5.2      CONCLUSIONS 

 

In this thesis, an ample amount of dominant methods and new techniques have 

been thoroughly scrutinized to instate an improved model for optimization with the 

help of a response surface methodology, to devise a prediction model centred at 

machining characteristics by means of artificial neural network, and to investigate the 

contrivance of tool wear and development of chips of cutting tools during machining 

Hastelloy C-2000 in end milling. The machining characteristics such as the surface 

roughness, surface integrity, tool life, tool wear and cutting force in end milling 

operation were all investigated to accomplish the aforementioned objectives of the 

thesis.  

 

5.2.1 Mathematical Modelling 

 

The coated carbide and uncoated carbide in wet cutting environment was implied 

to this research initiated to devise first order and second order mathematical models that 

predict cutting parameters for Hastelloy C-2000. The experimental results and the 
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prediction models were used to formulate these mathematical models with the help of 

first and second order model. With these newly developed models optimization 

parameters such as the surface roughness, tool life and cutting force were calculated. 

ANOVA was applied for the process of analyzing data and to test the importance of the 

statistical models. When both the first and second order models for cutting inserts were 

compared it was seen that the second order models were more significant to be applied 

in the modelling of the machining. The RSM shows that surface roughness is 

considerably affected by the feed rate, axial depth and cutting speed for all the models 

this is owed to the fact that lower feed rate leads to lowers cutting forces. Lower axial 

depth means surface roughness will be decidedly subtle to cutting speed and increase in 

cutting speed significantly reduces the surface roughness. The surface roughness 

however, increases with increasing of feed rate and axial depth. Lower impact of cutting 

force decreases the vibration which ultimately improves the surface finish. Contrarily, 

the surface roughness and cutting force will be increased with the decrease in cutting 

speed. Nevertheless, the feed rate 0.1 mm/tooth, axial depth 0.4 mm and cutting speed 

31 m/min for coated carbide and feed rate 0.1 mm/tooth, axial depth 0.4 mm and cutting 

speed 31 m/min for coated carbide make up the optimum cutting conditions for surface 

roughness. It is seen that a majority of uncoated carbide inserts do not have a long tool 

life when exposed to high cutting speed, and feed rate leading to breakage of the inserts. 

Tall this takes place because the tool was coated and as long as the coating is unharmed, 

the tool wear rate is very low because wear resistance of the coating is still high. In 

terms of effect on tool life the feed rate is most influential then comes the axial depth 

and cutting speed.  Higher cutting speed, feed rate and axial depth indicate lower tool 

life. The optimum value for tool life for both types of cutting insert parallel to design 

variables are, feed rate 0.1 mm/tooth, axial depth 0.4 mm and cutting speed 15 m/min. 

The tool life of coated carbide is 30-50 % higher compare to the uncoated carbide 

cutting insert to their toughness and hardness of coating layer.The feed rate is most 

influential factor affecting the cutting force and followed by axial depth and cutting 

speed for both coated and uncoated carbide models. The cutting force decreases as the 

cutting speed increases. Since nickel alloys work harden rapidly, once the milling cutter 

starts cutting, it will become more and more difficult for further machining due to the 

hardening effect. In a situation when cutting edge is insufficiently sharp the metal is 

pushed instead of being cut creating an increase in cutting force and temperature. The 

cutting conditions optimum for cutting force are as follows; feed rate 0.14 mm/tooth, 
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axial depth 0.4 mm and cutting speed 31 m/min for coated carbide and feed rate 0.1 

mm/tooth, axial depth 0.4 mm and cutting speed 31 m/min for uncoated carbide. 

 

5.2.2 Artificial Neural Network 

 

The foundations of the best network our laid on the feed forward multilayer 

perceptron, back propagation algorithm and hyperbolic activation function. The artificial 

neural network prediction models however, are devised on the grounds laid by the 

experimental results with the feed rate, axial depth and cutting speed used as the input 

parameters.  And the output of the parameters comprised of surface roughness, tool life 

and cutting force. The mean absolute relative error is 0.1790 % and 0.136 % for coated 

and uncoated carbide for surface roughness models in that order these mean absolute 

relative error are an evidence to prove the accuracy of ANN network.  The mean 

absolute relative error for tool life is 0.2 % and 0.1580 % for coated and uncoated 

carbide, which is tailed by 0.4181 % and 0.500 % for cutting force models. On the basis 

of these outcomes we can say that ANN can yield much better results than mathematical 

modelling in predicting the machining characteristics. The trial and error method was 

applied here in order to find the efficient network for prediction model. 

 

5.2.3 Tool Wear 

 

For coated and uncoated carbide both during the machining Hastelloy the 

acquired tool wear included flank wear, chipping, and notching. But only the use of 

uncoated carbide resulted in very severe chipping because there was no protecting layer 

of carbide cutting insert that is why in the course of machining breakage becomes 

obvious. These protective layers are made up of PVD coated carbide with TiA1N 

coating layers their purpose is to increase the tool performance by acting as thermal 

barrier thus prevent the elevated temperature generating during the machining process 

from softening the substrate. Therefore coated carbide inserts perform better compare to 

the uncoated carbide. The flank wear for cutting tools mostly is an aspect of BUE, 

adhesion or attrition, diffusion and oxidation mechanism for uncoated carbide cutting 

tool. The BUE and adhesion/attrition mechanism cause the catastrophic failure, 

chipping, and notching.  
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5.2.4 Chip Formation 

 

In the course of this research, the chips formed were stable and unstable chip. 

The formation of the unstable chip is due to the adiabatic taking place in the work 

material. It is this adiabatic shear on the shear plane and or cyclic cracks at the free 

surface of the chip and catastrophic strain localization that leads to the formation of saw-

tooth edge chip. The crack also found occurs at the chip because of compressive stresses 

in front of the cutting edge. It is also formed in the formation of chip cannot be 

completely healed by plastic deformation. When the work material is irregularly flowing 

over the cutting edge of the tool, the fatigue brought by the saw-toothed chip and 

development of cracks by thermal/mechanical fatigue all lead to adhesion mechanism. 

 

6.2  RECOMMENDATIONS FOR FUTURE RESEARCH 

 

This study presents a wider scope in making the model more reliable and useful 

and to display an improved understanding of the end milling processes taking into 

account every individual constraint which influences the working features. Several 

fields of research are described in this section. 

 

• Further cutting variables like vibration, distinct coated cutting tools and distinct 

angle of cutting tool could be used to forecast the cutting constraints of various 

alloys involving nickel.  

• Apart from that, the research on the cutting temperature must be emphasised 

upon. The experiment must be carried out in high feed rate, axial depth and 

cutting speed so that greater values of an assortment are covered. 

• The minimum quantity lubricant (MQL) and nano-fluids coolant can be apply in 

order to compare the machining characteristics when using conventional 

lubricant. 

• Furthermore, part swarm optimization, colony fuzzy logic, protein optimization 

and fuzzy logic can be used to examine the findings. 

• A distinct type of ANN having distinct learning principles as well transfer roles 

can be assimilated.  
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	Kang et al. (2007) conducted a study on the cutting conditions in micro-end milling. Peripheral milling operations are carried out by End milling, the peripheral milling operations comprise of profiling and slotting operations. Bao and Tansel (2000) p...
	Figure 4.31: (a) Shape of chip, (b) Critical chip – Uncoated carbide insert
	Figure 4.32: Saw-tooth edge chip
	Figure 4.34: Welded chip at the slot machining for coated carbide insert.

