
# HIGH DURABILTY BIO-POLYESTER RESIN USING GRAPHENE AND PALM OIL DERIVATIVES FOR COMPOSITE APPICATIONS

INVENTOR: TS DR SITI NOOR HIDAYAH MUSTAPHA FACULTY: FACULTY OF INDUSTRIAL SCIENCES AND TECHNOLOGY UNIVERSITY: UNIVERSITY MALAYSIA PAHANG EMAIL: snhidayah@ump.edu.my CO-INVENTORS: NURBAZILAH THALIB

## **Product Background**

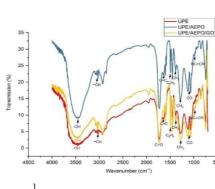
- Research and development of eco-friendly products such as bio-based unsaturated polyester resin helps differentiate product offerings.
- Graphene-enhanced fiber-reinforced biopolymer (gFRP) composites is a new approach in improving the biopolymer properties and applications.
- Since Malaysia is abundantly available palm oil and natural resources, new approach by blending palm oil and graphene reinforcement is a promising approach to replace the current synthetic product in market.

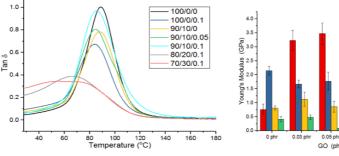
### State of the Art



## **Novelty/ Originality/**

#### Inventiveness

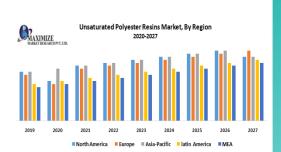

- Good compatibility of polymer blend.
- Formulated with 10% reduction of synthetic polyester to palm oil.
- Higher stiffness and strength than commercialized polyester.
- Higher thermal stability than commercialized polyester.


#### **Environmental Impact**

- Reduce reliance on petroleum resources.
- Enhance local palm oil production.

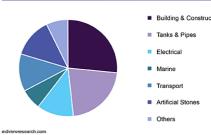
## **Publication**

- Bio-based thermoset nanocomposite derived from vegetable oil: a short review. Rev Chem Eng 30 (2) 167-182. 2014. (Q1: IF 5.315)
- 2. Tailoring Graphene Reinforced Thermoset and Biothermoset CorFiposites. **Rev Chem Eng** 36 (5) 623-652. 2020. **(Q1: IF 5.315)**






| Properties                | Synthetic UPE                                                        | g-UPE/AEPO resin                                                                       |  |
|---------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| Tensile Modulus<br>(GPa)  | 0.76                                                                 | 1.74 <b>(+128.95%)</b>                                                                 |  |
| Impact Strength<br>(J/mm) | 3475.6                                                               | 3689.5 <b>(+6.15%)</b>                                                                 |  |
| Degradation               | T <sub>10%</sub> – 307.66° C                                         | T <sub>10%</sub> – 309.33° C <b>(+0.54%)</b>                                           |  |
| Temperature (°C)          | T <sub>50%</sub> - 378.50°C                                          | T <sub>50%</sub> - 380.33° C <b>(+0.48%)</b>                                           |  |
|                           | Tensile Modulus<br>(GPa)<br>Impact Strength<br>(J/mm)<br>Degradation | Tensile Modulus<br>(GPa)0.76Impact Strength<br>(J/mm)3475.6DegradationT10% - 307.66° C |  |


## **Cost Analysis**

# Product Characteristics/Results Marketability & Commercialisation



Universiti Malaysia PAHANG

Global unsaturated polyester resin market share, by end use, 2019 (%)



## Applicability



- Effect of Kenaf/Empty Fruit Bunch (EFB) Hybridization and Weight Fractions in Palm Oil Blend Polyester Composite. Natural Fibers, DOI: 10.1080/15440478.2020.1788686, 2020. (Q1: IF 2.622)
- Vegetable oil-based epoxy resins and their composites with biobased hardener: a short review. Polymer-Plastic Technology and Materials, 1-6. 2019. (Q4)
- Novel Bio Based Resins from Blends of Functionalized Palm Oil and Unsaturated Polyester Resin. Materials Research Innovations 18 (S6) 326-330. 2014. (Q4: IF 0.83)
- Mechanical Properties of Graphite Filled Unsaturated Polyester and Unsaturated Polyester/Palm Oil Blend Resin, Materials Science Forum, 981, 105-155. 2020. (SCOPUS)
- Characterisation and mechanical properties of unsaturated polyester/acrylated epoxidised palm oil polymer blend at different acrylated epoxidised palm oil processing method. *IOP Conference Series: Materials Science and Engineering* 458 (1), 012026. 2018. (SCOPUS)
- Mechanical Properties of Hybrid Thermosets from Vinyl Ester Resin and Acrylated Epoxidized Palm Oil (AEPO). *Applied Mechanics and Materials* Vol. 695, pp. 73-76, Nov. 2014. (SCOPUS)

Production of 10 tons = 10,000 kg = 10,160 L resin

| Chemical         | Price (RM) | Usage      | Total (RM) |
|------------------|------------|------------|------------|
| Polyester Resin  | 30/kg      | 90%        | 270,000    |
| (A) MEKP         | 25/kg      | 1.5%       |            |
| Acrylic Acid (B) | 223/1 L    | (1/9)%x10% | 25,174     |
| Epoxidized Palm  | Free       | 10%        | -          |
| Oil (B)          |            |            |            |
| Hydroquinone (B) | 281/2.5L   | 1%x10%     | 1,142      |
| Amine (B)        | 339/2.5L   | 1%x10%     | 1,378      |
| Initiator (C)    | 215/250g   | 1.5%       | 129,000    |
| Graphene oxide   | 800/250 ml | 0.1%       | 32,512     |
| (c)              |            |            |            |
| Synthetic UPE    | 303750     | g-bioUPE   | 459206     |
|                  |            |            | (+50.18%)  |

#### **Status of Innovation**

- Product readiness: 3
- TRL level: 2

#### **Achievement/Award**

• Silver medal i-Finog 2019

www.ump.edu.my





