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Machine learning (ML) often provides applicable high-performance models to facilitate decision-makers in various �elds.
However, this high performance is achieved at the expense of the interpretability of these models, which has been criticized by
practitioners and has become a signi�cant hindrance in their application. �erefore, in highly sensitive decisions, black boxes of
ML models are not recommended. We proposed a novel methodology that uses complex supervised ML models and transforms
them into simple, interpretable, transparent statistical models. �is methodology is like stacking ensemble ML in which the best
ML models are used as a base learner to compute relative feature weights. �e index of these weights is further used as a single
covariate in the simple logistic regressionmodel to estimate the likelihood of an event. We tested this methodology on the primary
dataset related to cardiovascular diseases (CVDs), the leading cause of mortalities in recent times. �erefore, early risk assessment
is an important dimension that can potentially reduce the burden of CVDs and their related mortality through accurate but
interpretable risk prediction models.We developed an arti�cial neural network and support vector machines based onMLmodels
and transformed them into a simple statistical model and heart risk scores. �ese simpli�ed models were found transparent,
reliable, valid, interpretable, and approximate in predictions. �e �ndings of this study suggest that complex supervised ML
models can be e�ciently transformed into simple statistical models that can also be validated.

1. Introduction

Machine learning (ML) models have gained signi�cant
importance in recent times due to their �exible nature to

gauge complex phenomena accurately. However, this high
performance often leads to the complexity of ML methods.
Interestingly, the higher complexity of models brings higher
accuracy, but it comes at the cost of the interpretability of the
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models [1, 2]. 'e trade-off between accuracy and inter-
pretability of models has directed that generally, artificial
neural network (ANN) models yield more accuracy but with
the least interpretability [3]. On contrary, linear models are
easy to interpret but with less accuracy. 'is issue of in-
terpretability associated with ML models is termed a “black
box.” It simply means that in ML processes, data go in,
decisions come out, but the processes between input and
output are opaque [4, 5]. However, the interpretability of
models is as important as accuracy [6], especially in clinical
decision-making [7].

In the domain of medical science, the understanding of
how the models make predictions is the key to practitioners’
trust in the model and its output [8]. Generally, the inter-
pretable models are trustworthy because they are consistent
with the prior knowledge and experience of practitioners.
Additionally, the decision-makers can identify the unusual
patterns within the data sets and explain them in a particular
scenario. 'e black box nature of ML models has attained
significant attention from experts in various fields. And
technology giants such as Google, IBM, and Microsoft have
been investigating the techniques and methods that can
enhance the interpretability of these models [9]. 'e ML
models focus on predictions and usually provide high ac-
curacy, while the statistical models focus on drawing statistical
inferences from these models [10]. 'eoretically, this huge
difference needs proper justifications when implementingML
models. 'erefore, understanding the transparent process of
developing ML models is always a key challenge for practi-
tioners, especially when we want to prioritize them over
traditional statistical models. Moreover, in the case of fatal
diseases such as cardiovascular diseases (CVDs), it is and
should be the fundamental requirement of clinical and public
health experts while developing risk assessment models.
Moreover, the need to have an accurate and validated heart
risk score will have an impact on the estimation and pre-
diction of the need for cardiac services and cardiac surgery in
different settings with a low financial burden [11, 12].

A risk assessment or prediction model acts as a pre-
ventive strategy [13] and helps establish decision support
systems [14]. Because of its simplicity and interpretability,
logistic regression (LR) is a traditional statistical technique
that is commonly used in developing such cardiovascular
disease (CVD) related models [13]. However, the existing
well-known risk prediction models fail, like the Framingham
heart risk scores, which could not detect a large number of
individuals accurately [15]. 'is failure increased the cost of
treatment by identifyingmany individuals as members of the
risky group who did not have the predicted level of risk
[16, 17]. 'erefore, researchers suggest that ML models can
solve these accuracy-related issues [13, 18, 19]. In recent
years, an extensive literature has been published regarding
the utilization of ML models for CVD-related problems
[15, 20–22]. 'ese studies found that the performance of the
complex ML models improved the prediction accuracy of
the process compared to the existing statistical models.
However, their “black box” nature is a potential hindrance in
their utilization [1, 4, 7], and practitioners could not get an
explanation for their prediction results and the role of

features [23, 24]. 'e complexity and behavior of features
within these opaque models pose a question about the in-
terpretive abilities of the models. It motivates designing such
methodologies that can help improve the interpretability of
complexMLmodels with the minimum loss in performance.
'is study aims to propose and implement a methodology
for transforming complex supervised ML-based risk pre-
diction models into simple interpretable yet accurate risk
prediction models. 'is proposed methodology was tested
on the primary dataset, especially collected for the devel-
opment of a predictive heart risk score using nonlaboratory
features.'e details of this data set have been provided in the
subsequent Section.

2. Materials and Methods

'e proposed methodology is like a stacking ensemble that
combines different simple and weak ML models for better
performance [25]. However, in this study, we adopted it to
improve ML models’ interpretation and transparency and
concluded with a simple LR model (see Figure 1). Mainly, it
trained the ML models and derived the importance of the
features through best-performed models. Furthermore, these
extracted feature weights are used in the simple statistical
model. 'e used ML models were from the class of artificial
neural networks (ANN), support vector machines (SVM), and
decision trees (DT). 'is methodology consists of a long
process, and the same process has been followed for the
derivation of novel nonlaboratory-based heart risk score
(NLHRS) and their related risk prediction models. 'is
NLHRS or heart risk score is specifically developed in this
study. For easy implementation, in the development of this
heart risk score, we only focused on such factors whose data are
observational and can be collected without laboratory settings.

(1) In the first step, supervised ML models that are DT,
SVM with different kernels, and ANN were trained
and implemented on the data set.

(2) In the second step, the performance of these ML
models was compared with that of an LR-based
model. It is because LR is a commonly used statistical
technique in the literature for predictionmodels.'e
ML models, which outperformed the LR model, will
be continued in the next steps. 'is comparison is
needed because weak ML models should be scruti-
nized to make this approach more efficient. 'ere-
fore, weak ML models were dropped for further
processing. In this study, accuracy, sensitivity,
specificity, area under the curve (AUC), root mean
square error (RMSE), and kappa statistic were used
to assess the performance of risk prediction models
using tenfold cross-validation. We need to extract
relative feature weights from the best-performed
models in the next steps; therefore, this cross-vali-
dation was adopted because, in the training and
testing approach, we can have different relative
feature weights at various splits, that is, 80:20, 70:30,
and 60:40, which can be problematic in further usage
[26].
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(3) In the next step, relative feature weights were
computed using a model-driven approach. It is also
called a learner-based approach to extracting feature
weights (see Figure 1). 'e best-performed ML
models were employed to compute relative feature
weights or importance. Input-hidden-output con-
nection weight methodology (CWM) was used to
compute relative feature weights in the finalized
ANN model as suggested in the literature [27, 28].
DT uses information gain (IG) and the Gini index
(GI) for assigning relative weights to features as
discussed in the recent literature [26]. In addition,
orthogonal vector coordinates orthogonal to the
hyperplane are used by SVM to figure out the relative
weights of features in the trained model. However, if
the SVM model utilizes the radial basis function
(RBF) kernel, then relative weights of features can be
extracted through the recursive feature elimination
(RFE) method as discussed in the literature [29].

(4) Next, we transformed the original binary data set
(explained in the next section) with newly computed
relative feature weights. Initially, feature values in the
data set were in the form of “0” and “1” and were
labelled with “no” and “yes,” respectively. Yes� 1
indicated the exposure or presence of a particular
feature. In the data transformation process, “1” was
replaced with newly computed relative weights of
features derived through the best ML models. Ad-
ditionally, an additive approach was used to compute
an index or score. However, the new score ranges
from 0 to 100 while developing heart risk scores. In
this study, these scores were denoted as ML-based
NLHRS and were further used as input in the simple

LR model for the development of NLHRS-based
simple risk prediction models.

(5) Finally, complete processes of performance assess-
ment and validation were followed for these newly
developed simple risk prediction models. 'e pro-
cess of validation mainly evaluates the discrimina-
tion and calibration strengths of these simple risk
prediction models are explained in the subsequent
subsection. 'e valid NLHRS and associated risk
predictionmodels can be used for screening of CVDs
in the asymptomatic population.

2.1. Validation of NLHRS-Based Risk Prediction Models.
In contrast to ML models, the proposed methodology will
provide statistical models that can be validated through
existing well-known methods. 'erefore, in addition to the
common performance matrices mentioned above, newly
developed NLHRS-based risk prediction models were also
validated. 'e basic purpose of this validation is to assess the
discrimination and calibration capabilities of the models.
Various statistical tests were used to evaluate the validity of
these models. AUC, Brier score (BS), Spiegelhalter’s
Z-statistic, and Hosmer and Lemeshow (H) statistic were
used for this purpose. AUC is used to assess the discrimi-
native capability of the risk prediction model [30]. 'e
relative BS provides an overview of the discriminative
strength and calibration of the models [31]. In multiple
models, Spiegelhalter’s Z-statistic is used to make a com-
parison and help identify a better model [32]. Calibration is
another important measure that assesses the agreement
between observed and predicted outcomes [30]. H-statistic
was used to measure the calibration of the model as
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Figure 1: Proposed methodology for exploration of supervised ML models.
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suggested in the guidelines [33]. H-statistic is a goodness-of-
fit (GoF) criteria in risk prediction models; therefore, its
large value indicates the large difference between observed
and predicted outcomes, leading to less calibrated models.
For a good risk prediction model, the value of the H-statistic
should be less than 20 [34]. In addition to H-statistic, cal-
ibration charts are also recommended to visualize the
model’s performance in various groups of probability [30].

2.2. Collection and Description of Data Set. In the develop-
ment of NLHRS and its related risk prediction models, the
same fifteen features were used as discussed in the literature
[35, 36]. 'e features were gender, age in years, parental
history of CVDs, dietary habits, physical activity, smoking,
passive smoking, self-reported general stress, obesity, dia-
betes mellitus, and hypertension. Initially, except for age, all
features were binary. However, we categorized age into two
highly discriminative data-driven categories for scoring
purposes as discussed in the literature [35, 36]. 'e QUEST
algorithm, a type of DT, was used to derive the highly
discriminative age categories, and the new binary feature is
called “age groups.” 'is binary feature is utilized in the
formulation of NLHRS and their corresponding risk pre-
diction models. 'e data on these selected features were
collected from the Punjab Institute of Cardiology (PIC),
Pakistan, through a gender-matched case-control study.
Male and female cases were matched with their corre-
sponding male and female controls. Approval from the
ethical review committee was also sought before the exe-
cution of the study. A sample of 460 subjects (with 1:1
matching) having ages >30 years were selected for this study
in the duration of September 2018 to February 2019. Only
those cases were selected who had their first CVD event
(except congenital and rheumatic heart diseases) in their
lifetime. 'e details of the data collection process and de-
signs can be viewed in previous works [26, 37].'e empirical
study was performed on Weka version 3.8 and Python 3.9.0.

3. Results

'is study included 460 subjects with an equal distribution
of cases and controls (230 cases and 230 controls). Among
these subjects, 32.2% were females in both groups: cases and
controls, because, it is already mentioned in the previous
section that it is a gender-matched case-control study. 'e
average age of subjects was 48 years with 11.31 years of
standard deviation.

3.1. Implementation of Proposed Methodology for Computa-
tion of NLHRS. Selected supervised ML models were
implemented to train the models on the CVDs data set.
'ese models were trained without gender as it was found
insignificant due to the matching strategy and its insigni-
ficance can affect the performance of models. However, its
confounding effect would be adjusted at a later stage. Passive
smoking was an insignificant feature in the development of
the LR model. It was found that the two ML models that are
linear SVM and ANN outperformed LR and other ML

models in the majority of the performance matrices (see
Table 1). 'erefore, it was excluded from further processing.
We tried more than 50 configurations that include various
numbers of hidden layers, number of nodes, and so on.
However, the ANN model of a single hidden layer and 7
hidden nodes performed better than other ANN- and LR-
based models (baseline model). Figure 2 is the illustration of
the ANN model and showed the complexity of the associ-
ation between features and outcome variables. Various cost
function values (ct) were implemented to optimize the linear
SVM model, and ct � 0.5 provided a good risk prediction
model. It was found that ANN with a single hidden layer
yielded the highest amount of accuracy (82.61%), specificity
(0.848), AUC (0.881), and kappa statistic (0.653). Similarly,
linear SVM also provided better performance matrices than
the LR model. 'erefore, linear SVM and ANNmodels were
selected to evaluate model-driven relative feature weights.
'ese two ML models fulfilled most performance criteria
with good discrimination and calibration. 'ese extracted
feature weights were subsequently used to form the NLHRS
and its corresponding risk prediction models. 'e NLHRS
produced through the ANNmodel was named the “artificial
neural network-based risk score” and is denoted by ANN-
RS. Similarly, NLHRS produced through linear SVM is
named support-vector-machine-based risk score (SVM-RS).

3.2. Extraction of Relative Feature Weights Using Best-Per-
formed ML Models. 'e finalized relative feature weights
were computed through CWM methodology in the ANN
model and given in Table 2. 'e relative weights of features
range from 5.138% to 11.944% in the overall prediction
process (see Table 2). It is found that the feature “age groups”
is crucial for the ANN-based risk prediction model since it
receives the highest weight (11.944%). Hypertension is the
secondmost important feature, with 10.527% relative weight
in the ANN network. 'e least important feature identified
by the ANN-based model with a relative weight of 5.138% is
self-reported general stress.

Linear SVM is another ML best-performed model that
was used for the computation of relative feature weights.
Table 2 shows the relative feature weights computed through
this model, ranging from 2.683% to 11.283%. Linear SVM-
based feature weights identified that hypertension was the
most discriminating feature for CVD status. Physical in-
activity was the second most important feature in the linear
SVM-based model. Contrary to the ANN-based model, the
linear SVM ranked parental history of CVDs was the least
discriminating feature for the model. Overall, it was found
that both ML models have different patterns of features and
different ranks. 'is is possibly due to the different nature of
these two ML models.

3.3.Development ofNLHRS-BasedRiskPredictionModels and
?eir Performance Assessment. Now, the two types of
NLHRS were represented as ANN-RS and SVM-RS and
were used in the simple LR equation as proposed in
methodology to formulate NLHRS-based risk prediction
models (see Figure 1). ANN-RS and SVM-RS acted as a
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single covariate or prognostic index (PI) in two different LR
equations. 'ese PIs were denoted as PIA and PIS for ANN-
RS and SVM-RS, respectively. PIA and PIS are the indexes
that will be computed for an individual using the ANN- and
SVM-based relative feature weights. For elaboration, an
example is discussed here.

Example 1. For example, if a person is physically inactive,
has a smoking history, consumes high salty foods, and has a
history of hypertension and diabetes mellitus, then PIA and
PIS will be computed as follows:

PIA � 8.024 (physical inactivity� 1) + 9.067 (smoking
history� 1) + 6.128 (consumption of high salty
foods� 1) + 10.527 (hypertension� 1) + 6.371 (diabetes
mellitus� 1)� 40.12
PIS � 9.499 (physical inactivity� 1) + 7.887 (smoking
history� 1) + 8.338 (consumption of high salty

foods� 1) + 11.283 (hypertension� 1) + 7.961 (diabetes
mellitus� 1)� 44.91

It was found that the regression coefficient of each type
of PI was significant in their respective model. Furthermore,
these equations were also adjusted for gender effects. 'ese
equations were referred to as NLHRS-based risk prediction
model equations (see equations (1)–(4)). 'ese simple LR-
based equations with the PIs need to be validated before
being used as a risk prediction model. 'erefore, the pre-
dictive capability and validity of each NLHRS-based model
were computed in the subsequent section. Equations (1) and
(3) are the zi (logits) of the ANN-RS and SVM-RS, re-
spectively. However, equations (2) and (4) were used to
estimate the probability of having CVDs based on ANN-RS
and SVM-RS, respectively.

zi � − 5.659 + 0.107(Gender) + 0.160 PIA( 􏼁, (1)

P CVDs � 1|PIA( 􏼁 �
1

1 + e
− zi

�
1

1 + e
− − 5.659+0.107(Gender)+0.160 PIA( )( )

, (2)

zi � − 6.131 + 0.415(Gender) + 0.174 PIS( 􏼁, (3)

P CVDs � 1|PIS( 􏼁 �
1

1 + e
− zi

�
1

1 + e
− − 6.131+0.415(Gender)+0.174 PIS( )( )

. (4)

'e performance of newly developed NLHRS-based risk
prediction models was assessed and reported in Table 3. 'e
results showed that the SVM-RS-based model had a relatively
better accuracy of 83.50%with 0.888AUCand the lowest RMSE
value. 'e ANN-RS-based model provided 81% accuracy with
0.876 AUC.'e accuracy of the ANN-RS-based risk prediction
model was lower than the SVM-RS-based model. SVM-RS-
based risk prediction model yielded improved findings than the
original ML-based RPM provided in Table 1. However, the
ANN-RS-based model provided a slightly compromised per-
formance than the original ML-based risk prediction models.
'is slight loss of performance can be justified and possibly due

to the small to medium size sample of the study. However, it
shows thatML-based complexmodels are “wrapped up” within
the newly developed simple NLHRS-based models.

3.4. Validation Process of NLHRS-Based Risk Prediction
Models. In the medical sciences, the validity of the risk
prediction model needs to undergo more rigorous evalua-
tion. 'erefore, there is a need for at least valid internal
predictions of individuals from the underlying population
[38]. 'is section specifically answers the question, “Are
NLHRS-based risk prediction models valid?” Various

Table 1: Performance assessment of ML models for the development of NLHRS.

Models ANN Linear SVM RBF SVM Random forest LR
Confusion matrix Case Control Case Control Case Control Case Control Case Control
Case 185 45 187 43 187 43 191 39 188 42
Control 35 195 46 184 50 180 56 174 50 180
Accuracy 82.61 80.65 79.80 79.30 80.00
Sensitivity 0.791 0.813 0.813 0.830 0.817
Specificity 0.848 0.800 0.783 0.757 0.783
Kappa statistic 0.653 0.613 0.595 0.587 0.600
AUC 0.883 0.881 0.870 0.857 0.873
RMSE 0.365 0.372 0.379 0.411 0.380

Number of criteria fulfilled 5/6 5/6 1/6 1/6 Baseline risk
prediction model
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statistical tests were used and reported here to evaluate the
internal validity of NLHRS and its corresponding risk
prediction models. 'e ideal values of these tests are pro-
vided in Table 4.'e value of the BS score, which is close to 0,
is ideal. It is found that the SVM-RS-based model has the
lowest BS value of 0.115. 'e ANN-RS-based model pro-
vided a BS value of 0.142 that is far from the SVM-RS-based
model. 'e lower value of BS indicates it has relatively well
discriminated and calibrated NLHRS, but it also needs
support from a test of significance. 'erefore, Spiegelhalter’s
Z-statistic was used to assess the H0, which is similar to the
H-statistic. 'e smaller value of Spiegelhalter’s Z-statistic
reflected a good overall calibration by the model. ANN-RS-
and SVM-RS-based models provided –1.791 and –1.443
values of Spiegelhalter’s Z-statistic, respectively, with
p-value > 0.05. It means SVM-RS and ANN-RS provide
well-calibrated NLHRS-based models.

'e SVM-RS-based risk prediction model achieved the
highest value of AUC, but the ANN-RS-based model also
depicts comparable findings with a point estimate of 0.876.
Figure 3 is the presentation of the discriminating capability
of these two finalized models. 'ese values indicate that the
SVM-RS-based model had a better discriminating ability
than the other model.

From Table 4, ANN-RS and SVM-RS showed good
calibration as both models have H-statistic <20. Both
NLHRS-based risk prediction models have acceptable
levels of calibration. Furthermore, the required level of
significance (>0.05) in both models was also achieved. It
can also be observed from Figure 4 that ANN-RS-based
risk prediction models showed better closeness with the
ideal line as compared to SVM-RS models. Overall, the
calibration plots graphically augmented the H-statistic
findings and found the slight superiority of ANN-RS over
the SVM-RS-based risk prediction model. However,
irrespective of good calibration, the ANN-RS-based
model had slightly compromised accuracy as discussed
previously.

Overall, the performance and validity of NLHRS-based
risk prediction models showed that both ANN-RS- and
SVM-RS-based models yielded stable results, especially in
the tests of significance such as H-statistic, Spiegelhalter’s
Z-statistic, and AUC. Except for calibration measurement,
the SVM-RS-based risk prediction model was found to be
more consistent in the performance and validation process.
'erefore, these simple models with almost the same ac-
curacy can reinforce the interpretability of initially devel-
oped complex ML models.

Table 2: Extraction of relative feature weights using ANN and linear SVM.

Features
Artificial neural network Linear support vector machine

Sum of input feature
contribution

Relative feature weights
(%)

Original feature
weights

Relative feature weights
(%)

Age groups 0.836 11.944 1.085 8.828
Parental history of CVDs 0.401 5.735 0.330 2.683
Self-reported general stress 0.360 5.138 0.732 5.957
Consumption of high salty
foods 0.429 6.128 1.024 8.338

Low fruit consumption 0.666 9.517 0.832 6.773
Physical inactivity 0.562 8.024 1.167 9.499
High fried foods/trans fats 0.404 5.770 0.857 6.976
Abdominal obesity 0.406 5.794 1.046 8.512
Diabetes mellitus 0.446 6.371 0.978 7.961
Hypertension 0.737 10.527 1.386 11.283
Smoking history 0.635 9.067 0.969 7.887
Low vegetables consumption 0.588 8.394 0.894 7.273
Red meat/poultry
consumption 0.531 7.591 0.987 8.030

Total 7.000 100.000 12.286 100.000

Table 3: Performance assessment of NLHRS-based risk prediction models.

Models ANN-RS SVM-RS
Confusion matrix Case Control Case Control
Case 190 40 190 40
Control 48 182 36 194
Accuracy 81.000 83.500
Sensitivity 0.826 0.826
Specificity 0.791 0.843
Kappa statistic 0.620 0.670
AUC 0.876 0.888
RMSE 0.378 0.362

Computational Intelligence and Neuroscience 7



4. Discussion

'e scope and application of complex ML models in de-
cision support systems are continuously increasing due to

their high performance. However, the usage of these effective
but complex opaque models is a real challenge for practi-
tioners. To help them, in this study, we proposed and
implemented a methodology that efficiently transformed the
complex supervised ML models into simple interpretable
but approximately accurate statistical models. 'is meth-
odology has been tested on a CVD-related data set. Two
newly developed heart risk scores (ANN-RS and SVM-RS)
and their corresponding models were found consistent in
performance matrices, specifically with good discriminative
and predictive strength. In addition to these matrices, the
validation process of these models also augmented our
proposed methodology. 'e small difference between the
performance of complex ML-based risk prediction models
and the transformed simple NLHRS-based risk prediction
models is the key output of this proposed methodology.

Literature has shown an upward surge in the develop-
ment and implementation of new ML algorithms. 'e
performance of these algorithms is almost equal to humans
or even surpasses them [1]. However, this constant im-
provement in the performance of these algorithms also
increases their complexity, which attracted the attention of
researchers [5, 39, 40]. 'e interpretability of models is an
attractive characteristic, but the requirement for high per-
formance in models cannot be undermined. 'erefore, the
balance of this trade-off is the ultimate requirement of re-
searchers in recent works [1]. 'e literature has discussed
that the simplicity of risk scores or models can come at the
expense of performance, especially in terms of discrimi-
nation and calibration [41, 42, 43], and could increase the
cost to the health system by providing wrong predictions

Table 4: Validation of NLHRS-based risk prediction models.

Assessment Test statistic/criteria Ideal value ANN-RS SVM-RS
Overall discrimination and calibration Brier mean probability score 0 0.142 0.115
Overall comparison of models Spiegelhalter’s Z-statistic (p-value) 0 (p> 0.05) − 1.791 (0.073) − 1.443 (0.150)
Calibration H-statistic (p-value) <20 (p> 0.05) 13.719 (0.089) 14.427 (0.071)
Discrimination AUC 1 0.876 0.888
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Figure 3: Discrimination strength of ANN-RS- and SVM-RS-based risk prediction models.
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[16]. 'is study provides a methodology that extracts the
relative weights of features from best-performed complex
ML models and utilizes them in a simple LR model to
maintain the balance between interpretability and high
performance of models. 'is unique combination of com-
plex ML and simple LR models provides a hybrid approach
of high performance and interpretability.

Our proposed methodology has provided models that
are interpretable, can maintain performance, are trans-
parent in the process, can be validated, and can be pre-
sented in statistical equations. Interestingly, these
multiple characteristics are acquired at multiple stages of
the proposed methodology. In the first stage, the actual
input features were processed through complex ML
models by considering possible problems of nonlinearity
and interaction effects. 'is step provided higher accuracy
than traditional statistical models such as LR. Using the
relative feature weights approach, it tried to estimate the
real weights utilized in the best ML models. 'is ex-
traction of the relative weights of features highlighted the
individual role of features in complex ML models and
provided a transparent mechanism. 'e index of these
relative feature weights acts as a single covariate in the LR
model equation to form a simple statistical model. 'is
step leads to simplicity, interpretability, and statistical
form in the newly derived models. 'is simple LR model
equation can easily be used due to its excellent inter-
pretative capabilities, especially for medical scientists.
Finally, parallel to existing LR-based models, newly de-
veloped models can also be validated along the same lines.
'ese models also offer a continuous form of probability,
but in simplicity, they are comparable to the existing
semiquantitative models [44], which simply use an index
of features for risk estimation of CVDs.

'e newly developed heart risk scores, NLHRS, and their
associated risk prediction models fulfill the majority of the
criteria of a valid model, especially in terms of discrimi-
nation and calibration. 'erefore, these two NLHRS-based
risk prediction models can be used as screening tools for
future purposes. In addition, this validated score can help
predict the need for cardiac services in the different areas,
especially in the absence of a good database. It also helps
guide decision-makers to establish a cardiac unit or cardiac
centre. 'e predictive performance and discrimination
strength of the linear SVM-based NLHRS and its risk
prediction model are relatively better than the ANN-RS-
based model. Furthermore, the performance of linear SVM-
based NLHRS and its related model has been improved from
the original risk prediction models. However, the slightly
compromised performance of ANN-based NLHRS and its
model can be improved by using large data sets [45] and new
methodologies for the extraction of feature weights. 'e
findings of this study should be interpreted in the following
limitations. Firstly, the proposed methodology has been
tested on the CVDs data set that has been specifically col-
lected for this purpose. Future researchers can test this
methodology on other domains as well. Secondly, this study
mainly focused on binary independent features. It is because
the majority of risk factors of CVDs have binary nature.

However, the proposed methodology can also be imple-
mented on other types of data sets as well.

5. Conclusions

'e conversion of complex ML models into simple but valid
statistical models is the pertinent objective of the study. A novel
methodology was adopted that uses the philosophy of stacking
ensemble ML methods that combine different models for better
performance. However, this complex process has been unfolded
and yielded simple statistical models, which are interpretable,
transparent, and valid. 'e proposed methodology had been
tested on the primary data set and efficiently provided two valid
heart risk scores,NLHRS, and their corresponding risk prediction
models. Performance matrices generated by NLHRS-based
models are approximately equal to the original complex ML-
based risk prediction models. 'erefore, it is suggested that this
simple but transparent methodology can be used to develop
interpretativemodels that use the efficient output of complexML
models as input. Furthermore, this validated risk score will have
the potential for future use to predict cardiac diseases that will
have an impact on clinical settings and future decision-making.
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