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ABSTRACT
The rice leaves related diseases often pose threats to the sustainable production of rice
affecting many farmers around the world. Early diagnosis and appropriate remedy of
the rice leaf infection is crucial in facilitating healthy growth of the rice plants to
ensure adequate supply and food security to the rapidly increasing population.
Therefore, machine-driven disease diagnosis systems could mitigate the limitations
of the conventional methods for leaf disease diagnosis techniques that is often
time-consuming, inaccurate, and expensive. Nowadays, computer-assisted rice leaf
disease diagnosis systems are becoming very popular. However, several limitations
ranging from strong image backgrounds, vague symptoms’ edge, dissimilarity in
the image capturing weather, lack of real field rice leaf image data, variation in
symptoms from the same infection, multiple infections producing similar symptoms,
and lack of efficient real-time system mar the efficacy of the system and its usage.
To mitigate the aforesaid problems, a faster region-based convolutional neural
network (Faster R-CNN) was employed for the real-time detection of rice leaf
diseases in the present research. The Faster R-CNN algorithm introduces advanced
RPN architecture that addresses the object location very precisely to generate
candidate regions. The robustness of the Faster R-CNN model is enhanced by
training the model with publicly available online and own real-field rice leaf datasets.
The proposed deep-learning-based approach was observed to be effective in the
automatic diagnosis of three discriminative rice leaf diseases including rice blast,
brown spot, and hispa with an accuracy of 98.09%, 98.85%, and 99.17% respectively.
Moreover, the model was able to identify a healthy rice leaf with an accuracy of
99.25%. The results obtained herein demonstrated that the Faster R-CNN model
offers a high-performing rice leaf infection identification system that could diagnose
the most common rice diseases more precisely in real-time.
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INTRODUCTION
Plant disease has become a serious threat towards the production as well as the provision of
food security all over the world. For instance, it was reported that more than 800 million
people globally lack sufficient food, about 10 percent of the world’s food supply is lost
due to plant disease which significantly affects over 1.3 billion people who survive on less
than $1 per day (Strange & Scott, 2005; Christou & Twyman, 2004). It is worth noting
that plant diseases lead to 10–16 percent annual losses by costing an estimated US$
220 billion in global crop harvests (Society for General Microbiology, 2011). These statistics
portrayed the lingering food scarcity as a result of damage to food production induced by
plant diseases that have become a global issue which should not be overlooked by plant
pathologists (Strange & Scott, 2005; Ng, 2016). Therefore, to ensure an adequate supply of
food to the rapidly increasing population, agricultural production must be raised by up to
70 percent. Nonetheless, several factors militate against the provision as well as the supply
of the food to satisfy the need of the teeming population globally.

Rice is amongst the widely consumed food in the world with the total consumption of
493.13 million metric tons in 2019–2020 and 486.62 in the year 2018–2019 (Shahbandeh,
2021). This has shown an increase in the consumption of rice when compared with the
metric tons consumed across the years. It is expected that the increase in the consumption
of rice tallies with production rates. However, the absence or lack of proper monitoring of
farmland often resulted in the destruction of a large amount of rice emanating from
diseases related problems. Several diseases frequently occur in the cultivation of rice which
is the key reason for major economic losses. In addition, the abundant utilization of
chemicals, for example, bactericides, fungicides, and nematicides have produced adverse
effects in the agro-ecosystem to combat plant diseases (Nagaraju & Chawla, 2020).

Disease prediction and forecasting of rice leaves are essential in order to preserve the
quantity and quality of rice production since detection at the initial stage of the disease
are useful in ensuring that timely intervention could be provided to convert the growth of
the disease to facilitate the healthy growth of the plant for increasing the production as well
as the supply of the rice (Barbedo, 2016). Generally, the rice diseases are sheath blight,
bacterial blight, rice blast and symptoms characterized by texture, the color and the shape,
that are typical of rapid occurrence and easy infection (Zarbafi & Ham, 2019; Han et al.,
2014; Sibin, Duanpin & Xing-hua, 2010). The artificial identification, querying rice
diseases maps, and automated detection are currently considered as the procedure of rice
disease detection.

The conventional means of rice diseases identification are often carried out manually
and has shown to be unreliable, expensive as well as time-consuming. The mapping
technique of rice disease detection is relatively clear and easier to perform; however, it is
possible to misinterpret some extremely similar diseases that have negative impacts on the
growth of the rice. The latest computer-based identification system is yet to be broadly
implemented due to the large environmental effect, slow detection speed, and low
accuracy. Hence, developing a rice disease detection technique that could provide quick
and accurate decisions on rice diseases is of great significance. Rice diseases are localized in
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leaves, which can be directed by leaf diagnosis to guide growers on whether the crops
should be sprayed. It is worth noting that to date, a substantial progress has been made in
the detection of plant diseases through the leaf features (Phadikar & Sil, 2008; Hwang &
Haddad, 1995; Pantazi, Moshou & Tamouridou, 2019; Rahnemoonfar & Sheppard, 2017;
Zhang et al., 2019).

Many researchers have worked on the automatic diagnosis of rice diseases through
conventional means such as pattern recognition techniques (Phadikar & Sil, 2008; Rahman
et al., 2020), support vector machine (Phadikar, Sil & Das, 2012; Prajapati, Shah & Dabhi,
2017), digital image processing techniques (Arnal Barbedo, 2013; Zhou et al., 2013; Sanyal
et al., 2008; Sanyal & Patel, 2008) and computer vision (Asfarian et al., 2014) for enhancing
the accuracy and rapidity of diagnosing the results. In an earlier study, Phadikar & Sil
(2008) proposed a rice disease identification approach where the diseased rice images were
classified utilizing Self Organizing Map (SOM) (via neural network) in which the train
images were obtained by extracting the features of the infected parts of the leave while four
different types of images were applied for testing purposes. A somewhat satisfactory
classification results were reported. In a different study, Phadikar, Sil & Das (2012) proposed
an automated approach to classify the rice plant diseases, namely leaf brown spot and the leaf
blast diseases based on the morphological changes. A total of 1,000 spot images captured
by Nikon COOLPIX P4 digital camera from a rice field were used. The results obtained were
79.5% and 68.1% accuracies from the Bayes’ and SVM classifiers, respectively.

Support Vector Machine (SVM) technique was also utilized by Prajapati, Shah & Dabhi
(2017) for multi-class classification to identify three types of rice diseases (bacterial leaf
blight, brown spot, and leaf smut). The images of infected rice plants were captured using a
digital camera from a rice field and obtained 93.33% accuracy on training dataset and
73.33% accuracy on the test dataset. Zhou et al. (2013) investigated a technique to evaluate
the degree of hopper infestation in rice crops where a fuzzy C-means algorithm was used to
classify the regions into one of four classes: no infestation, mild infestation, moderate
infestation and severe infestation. Their study illustrated that the accuracy reached 87% to
differentiate cases in which rice plant-hopper infestation had occurred or not whilst the
accuracy to differentiate four groups was 63.5%. Sanyal et al. (2008) proposed an approach
for detecting and classifying six types of mineral deficiencies in rice crops where each
kind of feature (texture and color) was submitted to its own specific multi-layer perceptron
(MLP) based neural network. Both networks consist of one hidden layer with a different
number (40 for texture and 70 for color) of neurons in the hidden layer where 88.56%
of the pixels were correctly classified. Similarly, the same authors proposed another similar
work (Sanyal & Patel, 2008) where two kinds of diseases (blast and brown spots) that
affect rice crops were successfully identified. Asfarian et al. (2014) developed a new
approach of texture analysis to identify four rice diseases (bacterial leaf blight, blast, brown
spot and tungro virus) using fractal Fourier. In their proposed study, the image of the
rice leaf was converted to CIELab color space and the system was able to achieve an of
accuracy 92.5%.

The feature extraction from diseased and unaffected leaf images, the gray level
co-occurrence matrix (GLCM) and the color moment of the leaf lesion region were
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implemented by Ghyar & Birajdar (2018) to create a 21-D feature vector and related
features. The redundant features were eliminated with the genetic algorithm-based feature
selection method to generate 14-D feature vectors to minimize complexity. The technique
has shown a promising result; however, to improve its detection accuracy there is need
for more optimization procedure to take place. The rice disease from the brown spot and
blast diseases was described utilizing the color texture of rice leaf photos by Sanyal & Patel
(2008). However, the technological standard of identification of rice diseases needs to
be strengthened. In Phadikar & Sil (2008), the entropy-based bipolar threshold technique
was employed for segmentation of the image after improving its brightness and contrast.
The author sought to integrate the image processing and soft computing technique for
the detection of rice plant attacked by several types of diseases. The idea behind the
technique was robust when utilized effectively. However, the average accuracy of
identification on the four datasets was 82 percent which indicates that more enhancement
is still required. The image processing and machine learning methods were utilized to
non-destructively screen seedlings with rickets by Chung et al. (2016). Moreover, genetic
algorithms were employed to develop SVM classifiers in order to optimize feature
selection and model parameters for differentiating healthy seedlings and infected ones.
The overall accuracy achieved in their study was 87.9 percent. However, since various
diseases may have several symptoms, this approach should be tested if it is needed to use in
other diseases, suggesting that this procedure has some limitations.

Nonetheless, it is worth noting that researchers have also begun to move away from
such techniques to deep learning models in an effort to detect diseases in various plants
(DeChant et al., 2017; Zhang et al., 2018b; Zhang & Zhang, 2010; Liu et al., 2017). The
Convolutional Neural Networks (CNN) is a deep learning method that has become one of
the best image classification technique which has already acquired great success (Xu et al.,
2017; Zhao & Jia, 2016; Sainath et al., 2015; Ribeiro et al., 2016; Ciresan et al., 2011;
Kawasaki et al., 2015). A rice disease identification system based on a deep convolutional
neural network was reported by Lu et al. (2017b). It was observed that the average
identification rate was 95.48 percent for 10 common rice diseases using the 10-fold cross-
validation scheme. Zhou et al. (2019) suggested Faster R-CNN approach, which seems to
be ideal for the detection of rice diseases due to its good speed and high accuracy. Another
method suggested by Ren et al. (2017) was capable of detecting plant diseases as well as
enhancing the accuracy using Faster R-CNN. However, it is required to reduce the time for
disease identification in order to allow it to be suitable for monitoring large-scale
cultivation.

These advanced techniques are used not only for the rice diseases diagnosis but also for
some other crops including wheat (Lu et al., 2017a; Khairnar & Dagade, 2014), maize
(Zhang & Yang, 2014), pumpkin (Zhang et al., 2018a), cotton (He et al., 2013) and tomato
(Wang et al., 2019), amongst others. DeChant et al. (2017) proposed a three-stage
architecture consisting of multiple convolutional neural networks (CNNs) where the
stage-one model is trained on full-scaled images by dividing a single image into several
smaller images. On the other hand, two improved deep convolution neural network
models (GoogLeNet and Cifar10) were utilized by Zhang et al. (2018b) to improve the
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recognition accuracy of the maize leaf diseases and enhance the traditional identification
techniques that often require long convergence times and large numbers of model
parameters. It was shown from the study that an average accuracy of 98.9% and 98.8%,
respectively are attainable. Liu et al. (2017) developed an apple leaf disease identification
technique that includes of generating sufficient pathological images and designing a novel
architecture of a deep convolutional neural network based on AlexNet that was able to
achieve an overall accuracy of 97.62%. The CNN approach has also been applied byMartin
& Rybicki (1998) to classify the Helminthosporium leaf spot of wheat, and an accuracy of
91.43% and standard error of 0.83% were recorded.

Fuentes et al. (2017) proposed a deep-learning-based approach using three
architectures, namely, Faster Region-based Convolutional Neural Network (Faster
R-CNN), Region-based Fully Convolutional Network (R-FCN), and Single Shot Multibox
Detector (SSD) that can effectively recognize nine different types of diseases and pests in
tomato plants. In a recent study, Rahman et al. (2020) developed a CNN approach for
detecting diseases and pests (five classes of diseases, three classes of pests and one class of
healthy plant and others) from rice plant images. A total number of 1,426 images were
collected that were captured using four different types of cameras and the system achieved
a mean validation accuracy of 94.33 %. Kawasaki et al. (2015) suggested a method to
identify cucumber leaf disease based on CNNs by achieving 94.9 percent accuracy in
distinguishing between melon yellow spot virus, zucchini yellow mosaic virus, and
non-diseased type virus. A new stacked CNN architecture is suggested by Rahman et al.
(2020) which uses two-stage training to substantially reduce the model size while retaining
high classification accuracy. It was found that the test accuracy was able to achieve
95 percent using stacked CNN compared to VGG16, while the model size was reduced by
98 percent.

The development of a technique for automatic identification of rice leaf disease is
hitherto faced many challenges. It is noted that the diagnosis, as well as detection, involves
processes that could render the specific area in which the symptoms manifest within the
rice plant very difficult to segment correctly. The capture conditions are hard to handle,
which can make it harder to predict images and make detection of the disease more
difficult. Moreover, the symptoms caused in different diseases can be identical visually, and
the approaches of discrimination could be based on very tiny variations. Another very
common issue is the discrepancies in the distribution of the data features to train the
model as well as the data that could be used to validate the model. This situation creates
overfitting problem. This is very important when plant diseases are automatically detected
because the symptoms can differ from the geographical position and fall into the
overfitting problem. It has also been observed that many of the suggested rice leaf disease
diagnostic architectures are off-line, and only a few experiments have been carried out in
real-time. Usually, the image resolution is enhanced in real-time by which the
computational complexity should also be enhanced. In addition, the difficulty of real-time
operations increases with a large variety of disease features, complex backgrounds and
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obscure boundaries of the disease symptoms. In order to address these challenges, the
current study endeavors to employ the latest deep learning approach based on Faster
R-CNN to conduct real-time detection of rice leaf diseases. The present investigation is
sought to mitigate the lingering problems in the process of developing a system of
diagnosing rice disease. The key contributions of the research are summed up as follows:

� Disease spot identification is considered as the basis of recognition for rice leaf disease,
as such the accuracy of spot identification directly impacts on the accuracy of
recognition of rice leaf disease. Hence, when choosing the target detection algorithm,
recognition accuracy should be employed as the key indicator. YOLO, SSD and Faster
R-CNN are the mainstream algorithms for the detection of the deep learning target.
Among them, the Faster R-CNN algorithm creatively proposes the RPN structure to
generate candidate regions, making the target positioning very precise. In addition,
Faster R-CNN also has strong advantages in detection accuracy compared to YOLO and
SSD. The proposed study employed Faster R-CNN as the key research algorithm due to
its efficacy in detecting the spot of the disease reliably.

� The data set for rice leaf disease is designed to provide a significant guarantee of the
proposed model’s generalization capability. Here, diseased rice leaf images with
standardized and complex backgrounds are captured both in the lab and in real field
conditions to improve the robustness of the Faster R-CNN model. In addition,
natural-diseased rice leaf images are processed to produce sufficient training images
through data augmentation technology in order to solve the complexity of insufficient
diseased rice leaf images and to avoid overfitting of Faster R-CNN models in the
training phase.

� A Faster R-CNN network is employed for the real-time detection of rice leaf diseases.
With the proposed deep-learning method, the discriminatory features of diseased rice
images will automatically be classified, and the three major types of rice leaf diseases
are recognized with high accuracy. Furthermore, the proposed method could manage all
the rice leaf images collected from the rice farmland in real conditions.

The present manuscript is structured as follows: rice leaf diseases dataset (RLDD)
generation techniques are implemented in the Materials and Methodology section.
A detailed description of the development of the model for the detection for the rice leaf
diseases is described in this section. Experimental outcomes to determine the accuracy
of the proposed solution are described in the Results section, and the Discussion section
exhibits a discussion on the comparison of the proposed model with other related studies
along with limitations with prospective solutions for rice leaf disease detection approaches,
followed by the Conclusion, which draws the outcome of the present study.

Materials and methodology
Figure 1 shows the comprehensive procedure of real-time identification. First of all, RLDD
is constructed using a combination of an online database and an own dataset that was
collected in this experiment. The online database is freely accessible. The own dataset was
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created by capturing diseased rice leaf images in the laboratory which were collected by the
authors from actual rice fields. The original RLDD is then annotated manually and
expanded through the several data augmentation procedures. The entire dataset is
subsequently split into two groups: training dataset and testing dataset. To train the Faster
R-CNN model, training dataset is employed whereas testing dataset is utilized for
performance assessment. The detection outcomes consist of the classes as well as the
locations of the identified rice leaf diseases.

Data collection
Due to the absence of adequate data for real-time rice leaf disease, some of our authors and
material resources were committed at the start of our study to collect diseased rice
leaves. The patterns of diseases of rice leaves are varied over the season and other factors
including moisture, temperature, different insects and illuminance. For example, most
conspicuous symptoms of brown leaf spot disease occur on leaves and glumes of maturing
plants. In real-time operation, the data collection process is very important since the
inappropriate information in a dataset may hamper the experimental result. Hence, during
the data collection process, the standard rule should be introduced and maintained.

In this study, the rice images have been captured from the rice farmland and a
different condition of the leaves were collected and brought to the lab. The rice leaf datasets
were also collected from Do (2020) due to the lack of suitable and different conditions data
from real field. It also helps to check the validation of the proposed model. Then, the entire
datasets were merged to train the model and each data has been checked individually to
avoid misclassification. The rice leaf infected image database consists of healthy leaf and

Figure 1 Complete architecture of the proposed study. Full-size DOI: 10.7717/peerj-cs.432/fig-1
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three diseases including rice blast, brown spot, and hispa. To enhance the robustness of the
proposed system, our own captured rice leaf image is combined with a publicly available
online database.

From the dataset, 600 images of rice blast, 650 images of brown spot, 500 images of
hispa and 650 images of healthy rice leaf have been collected. A total number of
2,400 images were collected. The total number of images collected from each database
(Kaggle and own dataset) are summarized in Table 1.

Data augmentation
Data augmentation is the process of broadening the dataset to enhance the model’s
performance by generating different forms of images. It also serves useful in mitigating the
overfitting problem in the model during the training stage. The overfitting problem occurs
when there is the presence of random noise or errors, rather than the underlying
relationship. With the help of data augmentation, more image was generated from each
image to train the model since some irrelevant patterns may occur during the training
process of the model. For data augmentation operations, several techniques were used
namely, rotation transformations, horizontal and vertical flips, as well as intensity
disturbance which includes disturbances of brightness. A Gaussian noise processing
scheme is employed in which the natural sources like thermal are responsible for the
Gaussian noise. It is worth noting that in digital images, Gaussian noise interrupts the gray
values. To train the model with training data set, Gaussian noise images were used for
better results. With the above approaches, 7 new images are generated from each image as
shown in Fig. 2. Finally, the dataset containing 16,800 images were created using the data
augmentation technique.

Image annotation
Image annotation plays a key role in labeling the positions and classes of object spots in the
disease and healthy images for multiclass object detection. In computer vision, Pascal
VOC is the method which stores annotation in the XML file and the separate annotation
files are saved for each image. The LabelIMG is the graphical image tool used for this
process in VOC format which is developed in python. The Pascal VOC provides
standardized image data sets for object detection. We constructed a file for every image of
the dataset in the Pascal VOC. The XML file created includes information such as the

Table 1 Total number of images collected from each database.

Leaf condition Kaggle dataset (publicly available) Own dataset (on-field dataset)

Rice blast 500 100

Brown spot 500 150

Hispa 500 –

Healthy 500 150

Total 2,000 400

2,400
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bounding box coordinate values and the disease classes. For training purposes, 400 images
were annotated for each class (rice blast, hispa, brown spots, healthy) from the dataset
and the rest of the images for testing our model performance. Although the whole process
is very challenging owing to the fact that the disease area seems to be tiny and difficult
to detect a times, nonetheless, it is worth highlighting that a high detection performance in
our model was observed. The Fig. 3 shows the annotated images of the brown spots.

Figure 3 shows that the image contains the object details. The object tag and its content
are replicated when images have several annotations. The object tag components are
name, pose, truncated, difficult and bound box. These are the names of the objects that are
to be detected. Truncated states the bounding box that the object specifies does not fit
the entire extent of the object. If an object is partly visible in the image, the truncated is
set to 1. Otherwise, the object truncated is set to 0, if completely visible. Difficult:
When the object is seen as difficult to identify, an object is identified as difficult. If the
object is difficult to recognize, then difficult is set to 1, else is set to 0. The axis-aligned
rectangle in the bounding box indicates the size of the object is visible in the image.
This technique contributed to understanding the specifics of the two common computer
vision data formats.

Model architecture with Faster R-CNN
A new effort Faster R-CNN (Ren et al., 2017) was launched in 2015 by the team in the
target detection community with Ross Girshick after R-CNN (Girshick et al., 2014) and
Fast R-CNN (Girshick, 2015) were launched. The R-CNN approach is very important for
understanding proposal regions since the proposal regions are classified into object
categories or background by training of CNNs end-to-end in R-CNN technique (Girshick
et al., 2014). Basically, R-CNN works as a network classifier. The accuracy of the model
is based on the performance of the region proposal module (Ren et al., 2017). Faster

Figure 2 Data augmentation of rice leaf disease images: (A) original image (B) image rotated by 180
degree (C) high brightness (D) Gaussian noise (E) horizontal flip (F) low brightness (G) vertical flip.

Full-size DOI: 10.7717/peerj-cs.432/fig-2
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R-CNN does not need a fixed size to detect rice diseases image. As an image input, the
length and width must be limited to a certain degree, thereby preventing distortion.
The detection speed is significantly increased after the enhancement of the Regional
Proposal Network (RPN). An integration of the region proposal algorithm into a CNN
model will lead to a faster speedup implementation (Ren et al., 2017). This approach is
mainly conducted by Faster R-CNN in order to build a single and unified model that is
consisted of region proposal network (RPN) and fast R-CNN with shared convolutional
feature layers. Instead of selective search in Fast R-CNN, Faster R-CNN may be simply
regarded as a model of “the regional generation network + Fast R-CNN” that employs the
RPN which is a recommendation algorithm for this propose. The convolution layer/full
connection layer processing takes place on the feature map, then a position regression
and classification is applied to the detected target. The recommendation of the region is
utilized to secure a better location of the disease. Fast R-CNN refers to the detailed
measurement of the frame position and object categories in the frame. The following Box 1
exhibits the steps of Faster R-CNN are used to build the model for rice leaf disease detection.

� RPNs for candidate regions

The main concept of RPN is to produce regions utilizing CNN that are explicitly
suggested. The shared convolution network is fed by the rice leaf diseased images where
feature map is achieved that is used as RPN input. The convolutional feature map points

Figure 3 The image annotation outcome in XML file. Full-size DOI: 10.7717/peerj-cs.432/fig-3
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are the original image positions (Girshick et al., 2016). The components on every map
are nine anchor boxes of several sizes. There are two convolutional networks in the RPN.
One is a convolution technique of 18-dimensional using a 1 × 1 convolution kernel to
decide about a foreground image which belongs to the anchor box or not. The other
is a 1 × 1 volume with which another convolution structure is passed. To achieve the
relative position coordinates dx(A), dy(A) and dw(A) of the bounding box in the case
of Ground Truth, a 36-dimensional convolution mechanism is conducted by the
accumulative kernel. The original image is mapped with every point on the feature map in
which “anchor point” is described by each pixel (Ramaswamy et al., 2014). Each anchor
point is utilized to be positioned of multiple anchors of different sizes. The mostly
utilized 3 varied aspect ratios are 2:1, 1:1 and 1:2 for popular scales 5122, 1282 and 2562
respectively. The new rectangular position achieved by the anchor is modified at first
by the adjustment parameters in the proposal laying of the RPN. The position vector of the
lower-left edge and top edge within each target area are considered as the outcomes for
the target areas of the earliest photo. This is how the RPN measures are as follows (Box 2):

� Feature extraction

The processed RPN image is sent to the layer of RoI Pooling, which pools the areas of
rice diseases. By further enhancing the SPP-Net algorithm, the Faster R-CNN algorithm
suggests a region of interest (RoI Pooling). The RoI Pooling layer enables a number of
dimensions to be transformed into a fixed size in line with the needs of the next fully
connected network. Every rice disease candidate’s area is equally divided by the ROI
pooling layer in M × N blocks and performs maximum pooling per block (Chang et al.,
2019). On the rice disease map, disease candidates of different sizes are converted into
standardized data and forwarded to the following layer. Although the size of the input
image and the feature mapping is different, a feature representation of a fixed dimension
can be extracted for each area by applying the ROI pooling layer to define the disease
classification later.

� Classification, regression and location refinement

The diseases are classified, and the position is refined by taking into account the pictures
of rice diseases. The classification steps shall be: first, the classification of objects or
non-objects for each of the two regions corresponding to the Anchor Box, k then models of

Box 1 Steps of the Faster R-CNN technique.

The Faster R-CNN technique:

Step 1: To acquire a feature map, the entire image of rice diseases is fed into CNN

Step 2: To gain the feature information of the candidate frame and the convolution feature is then fed
into the RPN

Step 3: To recognize whether the features of rice diseases from the candidate box belongs to a specific
disease category and then classify

Step 4: To adjust the disease location again by a regression device for the candidate frame belonging to a
specific disease feature
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regression (both equal to a different Anchor Box). The formula (Eq. (1)) for the complete
estimation of the classification layer is as follows:

x1x2x3ð Þ
w11w12

w21w22

w31w32

0
@

1
Aþ b1b2ð Þ ¼ y1y2ð Þ (1)

The rice disease location is determined by the size of the overlap region. The inaccuracy
of the candidate’s frame and the slight overlap are often the main reasons for unreliable
test results. Therefore, a judicious identification of the location is non-trivial towards
attaining encouraging results. The eigenvectors achieved in the classification are
determined by a complete connection and Softmax, and a species is generated with a
probability of a certain rice disease species. The anchor box regression is used to
compensate the region from its actual GT position, hence closer to the real position of the
rice disease detection frame.

� The training processes and loss function

The Caffe deep learning approach is used to carry out the experiment. The training
set of rice diseases was sent randomly to the neural network for training. The model was
tested, and the test results were analyzed after the completion of the training process.
The following Box 3 reflects the phases for the Faster R-CNN training model:

Faster R-CNN is optimized for a multi-task loss function (Girshick, 2015).
The multi-task loss function combines the losses of classification and bounding box
regression. For training RPNs, a binary class label (of being an object or not) has been
assigned to each anchor. Equation (2) represented a loss function for an image following
the multi-task loss in Fast R-CNN (Alamsyah & Fachrurrozi, 2019; Ren et al., 2017).

L pif g; tif gð Þ ¼ 1
Ncls

X
i

Lcls pi; p
�
i

� �þ �
1

Nreg

X
i

p�i Lreg ti; t
�
i

� �
(2)

where, i is the index of an anchor, pi is the predicted probability of anchor and p�i is the
ground-truth label. ti is a vector that represents the 4 parameterized coordinates of the
predicted bounding box and t�i is the ground-truth box associated with a positive anchor.
The classification and regression loss are represented by Lcls and Lreg respectively. � is a

Box 2 Steps of the RPN for candidate regions.

RPN steps for candidate regions:

Step 1: To slide a window on the map of rice disease

Step 2: To classify the leaf infections and revert back the location of the frame, a neural network is
formed.

Step 3: To provide approximate distribution details of leaf infection according to the position of the
sliding window

Step 4: To achieve a better location of leaf infection with the box’s regression
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balancing parameter. The Lcls and Lreg normalized by Ncls and Nreg respectively that
are weighted by �. Thus, for the regression loss,

Lreg ti; t
�
i

� � ¼ R ti � t�i
� �

(3)

where, R is represented as a robust loss function.
The complete architecture of a Faster R-CNN is presented in Fig. 4.
Figure 4 illustrates an entire framework for object detection which is a single and unified

network. At first, the feature maps are received from CNN by the Faster RCNN. After that,
it passes the collected features to the Region Proposal Network (RPN). Various image
sizes can be fed as input to the region proposal network (RPN). The outputs are comprised
of a series of rectangular object proposals. RPN is inserted next to the last convolution
layer of CNN. A small network is slided over the convolutional feature map output
for creating region proposal network by the last shared convolutional layer in CNN.
A n × n Spatial Window of the input convolutional feature map is the input for this
small network. At the position of each sliding-window, multiple region proposals are
predicted simultaneously. RPN transmits the last layer of CNN (sliding window) to a lower
dimension into feature map. The proposal from RPN are fed to ROI pooling layer.
The fixed-size feature maps are generated from different sizes of inputs by ROI pooling
layers. The output fixed dimension of the ROI pooling depends on the parameters of
the layer. Finally, this feature is used to fed into two fully connected layer, namely
box-classification layer (Classifier) and box-regression layer (regressor). A refined
bounding box is utilized as a regressor whereas the objects are classified by the classifier.
The following equaltions (Eqs. (4)–(11)) (Girshick et al., 2014; Ren et al., 2017) are used for
bounding box regression.

tx ¼ x � xað Þ=wa; (4)

tw ¼ log w=wað Þ; (5)

Box 3 Phases of the training processes (Faster R-CNN training model).

Training processes: Different Phases of Faster R-CNN training model:

Phase 1: After initializing the RPN structure with the pre-trained framework, the RPN is trained. The
model’s distinctive value and RPN are revised when the training is finished

Phase 2: The Faster R-CNN architecture is formed. Subsequently the proposal is calculated by
utilizing the trained RPN and then the proposal is sent to the Faster R-CNN network.
Following this, the network is trained. Then the model and the uniqueness of the Faster R-
CNN is updated through the training process

Phase 3: The RPN network is initialized by employing the model that was formed in the Phase 2. Then
a second training is carried out on the RPN network. The RPN’s distinctive value is altered
at the time of the training procedure while the model parameters remain unchanged.

Phase 4: The model variables stated in Phase 3 are kept unaltered. The Faster R-CNN architecture is
formed and trained the network for the 2nd attempt to optimize the specifications
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t�x ¼ x� � xað Þ=wa; (6)

t�w ¼ log w�=wað Þ; (7)

ty ¼ y � yað Þ=ha; (8)

th ¼ log h=hað Þ; (9)

t�y ¼ y� � yað Þ=ha; (10)

t�h ¼ log h�=hað Þ; (11)

Figure 4 Architecture of Faster R-CNN. Full-size DOI: 10.7717/peerj-cs.432/fig-4
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where the center coordinates, width and height of the box are represented by x, y, w, and h.
The variables x, xa, and x� (similarly applicable for y, w and h also) are for the predicted
box, anchor box, and groundtruth box respectively.

RESULTS
Feature visualization process
Owing to the limited explanatory nature of CNN, visualization methods are often used to
further understand the CNN features maps in order to decide how CNN’s can learn
features of the different class evaluated. This experiment is carried out to comprehend
better the variations between the feature maps extracted from different diseased rice
leaf images. The visualization outcomes are shown in Fig. 5, which suggest that all
the disease spots are clearly identified from the background images. Therefore, the
proposed model demonstrates excellent performance in the discrimination of rice
leaf diseases.

The visualization outcome for the healthy leaf is shown in Fig. 5C. Figure 5D indicates
Hispa that is commonly occurred in a very small region, and the boundaries are not
explicit. For brown spot, the spots are divided into two laps, as shown in Fig. 5B. In
addition, Fig. 5A explores the Rice Blast, which is almost similar to Brown Spot as shown in
Fig. 5B. They can still be identified according to their minute differences. This experiment
demonstrates the strong performance in the design of the proposed model for disease
detection, and it clarifies how the CNNs can differentiate between classes by visualizing the
features of different rice leaf diseases.

Detection visualization and failure analysis
The outcomes for the identification of rice leaf disease are shown in Figs. 6 and 7. The
proposed approach can identify both a single object and multiple objects of a single class,
also multiple objects of multiple classes. The proposed method therefore demonstrates
high detection performance in both single and multi-class assessments. Although the

Figure 5 Activation visualization results: (A) Rice Blast (B) Brown Spot (C) Healthy (D) Hispa.
Full-size DOI: 10.7717/peerj-cs.432/fig-5
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model is excellent in terms of accuracy, there are inevitable detection failures which occur
when the spot region of the leaf is too small. A rice leaf disease example is illustrated in
Figs. 6F and 6H containing two leaf disease types in a single class. The proposed model is
able to detect rice blast and hispa diseases of this class, but the small portion of hispa
disease is not detected successfully. The model detects hispa and a healthy portion of the
leaf successfully, as shown in Fig. 6H. On the other hand, from the Fig. 6F, it is evident that
the model can detect the multi-class disease (rice blast and hispa) efficiently; however,
it fails to detect the very tiny portion of hispa. The reduction in the detection accuracy is
attributed to the similar characteristics of the diseases as shown in Fig. 6E. Owing to
the similar characteristics of brown-spot and rice-blast, the developed model was confused
in some cases. Environmental variables including complex background, blurriness and
lighting also influence the accuracy of identification. Furthermore, one of the factors
contributing to increase the detection failure is the small size of the lesion. Hence, it will be
difficult to extract and detect the feature if only a small part of the image is taken by the leaf
or the diseased region. Despite of all the limitations, in most of the cases, the proposed
model has the ability to detect the leaf spot as shown in Figs. 6A, 6B, 6C, 6D and 6G.
The detection ability of the leaf spot in a real rice field is presented in Fig. 7.

Comparison of pre-network recognition accuracy
Object detection algorithms like Single Shot Detector (SSD), Deconvolutional Single Shot
Detector (DSSD) and Rainbow Single Shot Detector (R-SSD) essentially consist of two
components. The first element is the pre-network model used to extract the basic features.
The other is an auxiliary structure that utilizes multi-scale detection of feature maps.
Various deep convolution networks including ResNet-101, ResNet-50, and VGGNet-16
(Simonyan & Zisserman, 2015; Liu & Deng, 2016), and MobileNET (Howard et al., 2017)
are trained and tested to compare the recognition performances of traditional networks

Figure 6 Types of detection results (Images collected from Online and captured in the lab).
(A) Brown Spot, (B) Healthy, (C) Hispa, (D) Rice Blast, (E) Brown Spot and Rice Blast, (F) Hispa and
Rice blast, (G) Rice Blast, (H) Hispa and Healthy. Full-size DOI: 10.7717/peerj-cs.432/fig-6
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with that of our proposed Faster R-CNN on RLDD. The stochastic gradient descent (SGD)
algorithm is employed during training to learn about the neural network weights and
biases, which reduces the loss function. A limited number of training sets are selected
randomly by the SGD algorithm, known as the batch size. The batch size is set to 1 where
the final number of iterations is fixed at 50,965. The learning rate is set at 0.0002, although
very small, it contributes towards more reliable results. The momentum, which acts as
an additional factor to decide how quickly the SGD algorithm converges to the optimal
point, is set at 0.9. The accuracy curve is indicated, as shown in Fig. 8 with the number of
training iterations in the X-axis and corresponding Y-axis shows the training accuracy.
The comparison of test accuracies of different pre-networks (VGGNet-16, ResNet-50,
ResNet-101, MobileNet3 and Faster R-CNN) are defined in terms of accuracy curve, as
shown in Fig. 8. The VGGNet-16 networks have higher convergence speed but lower
accuracy. On the other hand, from the figure, it is evident that the Faster R-CNN model
shows high accuracy on the RLDD as compared to other pre-trained models.

Confusion matrix
When dealing with multiple classes of similar shape, classifiers may be confused. Infected
rice leaf images on different levels or backgrounds can cause high complexity which leads
to lower performance for the patterns displayed in the same class. The classification
accuracy of a model can be visually tested using a confusion matrix. The entire dataset of
our study is split into a training set and a testing set randomly in order to train and test
the model. To evaluate the proposed model, the 50% dataset is used to train and the
remaining 50% dataset is used to test. Total 8,400 observations are utilized for training the
model, whereas another 8,400 observations are utilized for testing the model. Figure 9
displays the final test results confusion matrix. The deeper the color in the visualization

Figure 7 Types of detection results (real field image). (A) Rice Blast. (B) Healthy.
Full-size DOI: 10.7717/peerj-cs.432/fig-7
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results, the greater the model’s accuracy in the respective class. All correct predictions are
located diagonally, whilst all wrong predictions are off diagonal. The classification
accuracy can be visually assessed based on these findings.

The study shows that for the above three diseases and healthy leaf. Brown spot and hispa
diseases are significantly differentiated from other diseases by their features and by their
identification rates with 98.85% and 99.17%, respectively. In the healthy leaf study, the
accuracy is achieved by 99.25%. According to the confusion matrix, it is apparent that the
detection model is more prone to confusion in distinguishing rice blast and brown spot
compared with other classes. Among 2,100 images in the testing set of rice blast spot,
31 images have been detected incorrectly as brown spot. On the other hand, among
2,275 images in the testing set of brown spots 20 images have been detected incorrectly as

Figure 8 Performance comparison with other pre-trained model.
Full-size DOI: 10.7717/peerj-cs.432/fig-8

Figure 9 Confusion matrix of the proposed approach. Full-size DOI: 10.7717/peerj-cs.432/fig-9
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rice blast spots. This misclassification may be caused by the geometrical feature similarities
between the two diseases. However, other classes are well distinguished. The confusion
matrix describes the low inaccuracies in the identification of different classes in the
present investigation.

Loss analysis of the proposed model
The research seeks to mitigate the loss of function, thereby reducing errors in the model.
In doing so, every machine learning algorithm repeats calculations several times, until
the loss is plateaued. The learning rate plays a significant role in order to minimize the
loss function. In the proposed study, the learning rate is set to 0.0002. TensorBoard is a
fantastic tool for viewing these metrics and finding possible problems. TensorBoard
frequently upgrades the measurements and provides the outcomes to the user. In this
purpose, the model trained with 50,965 iterations with the help of a training dataset.
Figure 10 depicts the generated loss analysis by the TensorBoard, indicating that the total
loss is withing the vicinity of 0.1.

DISCUSSION
Comparison of the proposed model with other related studies
The comparison of the proposed model with existing related studies is represented in
Table 2.

Most of the studies listed in Table 2 have used either utilized publicly available dataset or
own captured dataset to validate their methods. The models validated with publicly
available dataset always do not ensure the stability of the model’s performance in a
real-time approach. To address this issue, our proposed method is validated with both
publicly available and own dataset. Moreover, the total observation of our proposed study
is higher than other studies tabulated in Table 2. Despite these facts, the performance of

Figure 10 The classification loss of the proposed system.
Full-size DOI: 10.7717/peerj-cs.432/fig-10
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Table 2 Comparison of the proposed model with other related studies.

Researchers Methods Dataset (own or
publicly
available)

Camera to
capture data

Number of
observation

Learning
rate

Number
of iteration

Performance (%)

Zhou et al. (2019) FCM-KM and
Faster R-CNN
fusion

Rice field of the
Hunan Rice
Research
Institute,
China

Canon EOS R
(pixel: 2,400 *

1,600)

3,010 0.001 15,000 Rice blast: 96.71
Bacterial blight: 97.53
Blight: 98.26

Sethy et al. (2020) Faster R-CNN Farm field Smartphone
camera (48
Megapixel)

50 0.001 5 Initial steps to make a
prototype for
automatic detection
of RFS Rice false
smut

Phadikar, Sil &
Das (2012)

Bayes’ and SVM
Classifier

Rice field images
of East
Midnapur,
India

Nikon
COOLPIX P4
digital camera

1,000 – – Normal leaf image: 92
Brown spot image: 96.4
Blast image: 84
Bayes’ classifier: 79.5
SVM: 68.1

Ramesh & Vydeki
(2020)

Optimized Deep
Neural Network
with Jaya
Optimization
Algorithm
(DNN_JOA)

Farm field High resolution
digital camera

650 – – Rice blast: 98.9
Bacterial blight: 95.78
Sheath rot: 92
Brown spot: 94
Normal leaf: 90.57

Li et al. (2020) Faster-RCNN Rice field in
Anhui, Jiangxi
and Hunan
Province,
China

Mobile phone
camera
(iPhone7 &
HUAWEI
P10) and Sony
DSC-QX10
camera

5,320 0.002 50,000 Rice sheath blight: 90.9
Rice stem borer: 71.4
Rice brown spot: 90

Prajapati, Shah &
Dabhi (2017)

SVM Farm field NIKON D90
digital SLR
(12.3
megapixels)

120 – – For SVM:
93.33 (training)
73.33 (testing)
5-fold cross-validation:
83.80

10-fold cross-validation:
88.57

Narendra Pal
Singh Rathore
(2020)

CNN Kaggle dataset – 1,000 – – Prediction accuracy:
99.61 (healthy and
leaf blast)

Rahman et al.
(2020)

Simple CNN Rice fields of
Bangladesh
Rice Research
Institute
(BRRI)

Four different
types of
camera

1,426 0.0001 100 Mean validation
accuracy: 94.33

Proposed Model Faster-RCNN Both on field
data and
Kaggle dataset

Smartphone
camera
(Xiaomi
Redmi 8)

16,800 0.0002 50965 Rice blast: 98.09
Brown spot:98.85
Hispa: 99.17
Healthy rice leaf: 99.25
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the proposed model is higher than the other models for rice leaf diseases identification.
The detection accuracy achieved by Narendra Pal Singh Rathore (2020) is slightly higher
than our proposed method, as their dataset consists of only one type of rice leaf disease
(leaf blast), hence the discrepancies are acceptable. Therefore, by considering the strong
dataset, real-time disease detection ability and detection accuracy, our proposed method is
somewhat superior to that of other related approaches for rice leaf disease identification
reported in the literature.

Uncertainties and limitations
Although the proposed model outperforms state-of-art rice leaf diseases detection
methods, some of the drawbacks are also identified. Some limitations of this study with the
prospective solution to address these challenges are as follows:

� The network looks at the whole image, and not in just one go but sequentially
concentrates on part of the image. Thus, the algorithm requires many passes to extract
all objects through a single image which is time-consuming. To address this issue, a
network should be recommended which can extract objects of an image in a single pass.

� Since several processes have been conducted one after the other, the performance of
the further system depends on how the previous system performed. Thus, a model
should be trained carefully with appropriate datasets to achieve the desired performance.

� The misclassification issues could occur as a result of the geometrical feature similarities
between the diseases. To overcome this obstacle, it should be required to train the
network with more datasets which have similar geometrical features. It also
recommended addressing more efficient deep learning algorithm which can classify the
diseases containing small dissimilarities in features.

� In a real-time approach, the rice leaves conditions vary with the season having different
humidity, temperature, and illuminance. Hence, some overfitting problem may emanate
when random noise or errors occurs rather than the underlying relationship, as
previously described (Heisel et al., 2017). During the training stage, the overfitting
problem is expected to occur randomly due to the lack of proper images with various
conditions. To overcome these problems, in this study we have used data augmentation
in the process of the training stage of Faster R-CNN. During the training, the
proposed model can learn huge irrelevant patterns through the large amounts of images
which is generated by the data augmentation process. This phenomenon helps to
reduce the overfitting problem and achieve the higher performance. More approaches
such as saturation, hue and Generative Adversarial Networks (GANs) (Bowles et al.,
2018) can be employed to overcome this issue.

CONCLUSIONS
The signs of infection appear in various sections of the plant, and leaves are widely used
to diagnose the plant disease. The advanced computer vision technology encourages
researchers around the world to carry out extensive experiments on plant disease
recognition using leaf image analysis techniques. In the past few years, deep learning
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methods have notably been utilized to recognize plant leaf infection. This paper proposes a
real-time rice leaf disease diagnosis framework based on the Faster R-CNN technique.
The rice leaf infected image database consists of healthy leaf and three diseases, including
rice blast, brown spot, and hispa. In order to enhance the robustness of the proposed
system, our own captured rice leaf image is combined with a publicly available online
database. Moreover, we have used several image augmentations schemes to enrich the
dataset, which familiarizes the model with the different possible conditions of the image.
This strategy also enhances the model’s performance and generalization capability.
The obtained results of the proposed study are very encouraging to diagnose healthily and
the different types of infected leaves in both laboratory-based images and real-field images.
However, an additional study should be carried out to make segmented the infected
portions of the leaf image by minimizing the surrounding interference. The existing rice
leaf disease diagnosis systems are designed using laboratory-based captured images.
Although we have implemented real-time disease recognition architecture using real field
rice leaf images, the proposed system is still not fully automated. Therefore, further study
should be carried out to implement a dynamic and automatic system to recognize
large-scale rice leaf diseases. This system could be made up of a mobile terminal processor
and agricultural Internet of Things that may be favorable to modernize the agricultural
industry.
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