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Abstract: Customer requirements are vital information prior to the early stage of autonomous vehicle (AV) development processes. In
the development process of AV many decisions have been made concerning customer requirements at the first stage. The development
of AV that meets customer requirements will increase the global consumer and remain competitive. Safety and regulation are one of
crucial aspect for customers that requires to be concerned and evaluated at the early stage of AV development. If safety and regulation
related requirements did not well identified, AV developer could not develop the safest vehicles due to the huge compensation of
accidents. To efficiently classify customer requirements, this study proposed an approach based on natural language processing method.
For classification purpose, the customer requirements are divided into six categories that the concept are come from the quality
management system (QMS) standard. These categories will be as input for the next process development in making the best decision.
Most of conventional algorithms, such as, Naive Bayes, MAXENT, and support vector machine (SVM), only use limited human
engineered features and their accuracy for customized corpus in sentences classification are proven low which is less than 50 percent.
However, in literature, convolution neural networks (CNN) have been described efficiently to overcome the customized corpus of
sentence classification problems. Therefore, this study implements CNN architecture in customized corpus classification operations. As
the results, the accuracy of CNN classification has improved at least 6 percent compared to the conventional algorithms.

Keywords: Convolution Neural Network, Autonomous Vehicle, Natural Language Processing, Quality Management, Sentence
Classification, Customer Requirements

1. INTRODUCTION
Autonomous vehicles (AV) is the future of transporta-

tion that it is driverless, fully automated, and coming
to roadways around the world [1]. Several pioneer AV’s
industries, for example, Tesla, Uber, and Waymo are most
of them under trial stage in developing AV and need for
more road testing. This technology is forecasted profoundly
impact the transportation system of the world in this decade
[2]. Therefore, it gains more attention from government
agencies, universities, and as well as many automotive
industries.

The hazards of autonomous vehicles should be con-
sidered according to functional safety standards in auto-
motive and AV industries. Quality management method
is a systematically approach to add value on the process
development of AV that needs more consideration on safety
and regulations. In general, customer requirements on safety
and regulations have to be identified at the early stage,
and then classify them accordingly for further procedures

[3]. Incorporating artificial intelligence (AI) in innovative
way on the process development of AV are crucially
needed to assist facilitate the complex and sophisticated of
conventional AV’s process development. A review on the
existing methods that integrated between AI and process
development and the proposed of the processes specifically
for AV can be found in our previous study [3]. However, it
may difficult and a challenge to find ways to effectively
integrate AI that fit for every process and to make it
satisfy with the classification performance. Therefore, in
preliminary research, this study focuses on the process of
collecting customer requirements that incorporating with
AI.

Customer requirements can be divided into six cate-
gories according to the information extracted from literature
[3]. Those categories are 1) environment, energy, and costs,
2) function, 3) perception, 4) privacy and security, 5) safety,
and 6) social, legal, and ethics. Development of the AV
technology should be based on quality management frame-
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work to ensure the safety of the AV’s service and system
[3][4]. All of these are required to focus on the analyzing
the customer requirements and experiences on AV because
most of the customers have perception that AV are not safe.
Many researchers contribute a lot on customer concerns
that related with autonomous vehicles. They contribute on
the area of the motivation, demand, and perception on au-
tonomous vehicles. Comparing to previous research works
[1][2][5][6][7][8][9], this study comprehensively covers the
wide area of research field on development of AV. Some
existing research works focus in dedicate area, for ex-
ample, safety [4][10][11][12][13][14][15][16][17][18], pri-
vacy and security [19][20][21][22][23], energy consum-
ing and costs [24][25][26][27], legal and regulatory
[28][29][30][31][32][33][34][35][36][37][38][39][40]. Our
previous study has collected the most of the latest research
works on specific area and make the database on customer
requirements more comprehensive including almost all of
the aspects [41]. Therefore, investigating the customer’s
opinions on AV become more and more important to ensure
the highest quality of service and system for AV that will
be developed and delivered to customers [8].

AI is well developed and used in automotive indus-
tries recent years. Although our previous research work
introduced different kind of algorithms, for example, Naive
Bayes, MAXENT, and support vector machine (SVM) to
improve the efficiency of customer requirements classi-
fication via natural language processing (NLP) [41], the
accuracy has maintained in the low level that lower than
44 percent. Some researchers have introduced convolution
neural networks (CNN) to text classification to improve
the accuracy recent years [41][42][43][44][45]. Several re-
searchers have introduced CNN and optimized CNN in fake
news and offensive language identification [46][47][48].
CNN is not only useful for traditional data classification,
however it is also used in sentence classification, recently
[49][50][51][52][53][54][55]. Most of the researches focus
on question classification and the corpus in which have
been published on websites for many years. A new hybrid
approach of spotted hyena optimization integrated with
quadratic approximation developed for training wavelet
neural network [56]. The latest deep multi-model CNN de-
veloped for multi-instance multi-label image classification
[57]. A combined loss-based multiscale fully convolutional
network created for high-resolution remote sensing image
change detection recently [58]. Many higher-level methods
developed for optimize the algorithms also created recently
[59][60][61]. There is only a few evidence that this kind
of method works well on customer defined corpus. In this
study, the customer defined corpus is created based on
our previous research work [41]. This study introduces the
implementation of CNN algorithm to classify the customer
requirements on AV. The hyperparameters are optimized to
improve the accuracy of the results.

The remaining part is organized as follows: Objectives
are presented in Section 2. CNN models, materials and

method are presented in Section 3. The results are shown
in Section 4. The discussion for the research is shown
in Section 5. Finally, the conclusion is summarized and
discussed in Section 6.

2. OBJECTIVES
Different from other research work that more focused on

open-source database, this study creates a specific corpus
that elaborate the customs demands on AV. This kind of
corpus is named as customized corpus. The objectives of
this research are focus on improving the accuracy of the
customer requirements on autonomous vehicle that based
on customized corpus.

A. Getting Comparison of Different Algorithms
Previous research provides results of classification for

customer requirements on autonomous vehicles. This paper
aimed to compare the result with former research on the
accuracy under specific training set ratio.

B. Improving the Accuracy of the Classification
Another objective is aimed to improve the accuracy of

customer requirements classification by introducing CNN
method.

3. METHOD
Nowadays, data is increasing quickly and many of

them are archived in textual format. Such as webpage,
email, documents. NLP could help people for their daily
works. CNN has reached a level that higher than human
performance in some NLP tasks. The CNN has already
shown the advantages than other conventional machine
learning because they learn more features from raw data.
CNN have achieved excellent performance in computer
vision and NLP [55]. CNN can learn from two-dimensional
data. It is a powerful deep model that could leverage the
spatial structure of an input to learn from data, for example
CNN can process images in a two-dimensional form. In
this research we will investigate how to employ the CNN
method to classify customer requirements related sentences
for AV. CNN is made up of layers, for example convolution
layers, pooling layers, and fully connected layers. Then
CNN allows people to create deeper models and obtain a
better performance. In this research, we use CNN via NLP
approach to classify customer requirements of AV into six
groups and then improve the accuracy by optimizing the
hyperparameters.

A. Customer Requirements Classification Flow Chart
To ensure the quality of automotive development, it

should follow the predefined procedures of work according
to the quality management system (QMS). Our previ-
ous study provides a systematic procedure for customer
requirements classification, in which under the proposed
autonomous vehicle development process [3]. Referring to
Figure 1, it starts from collect customer requirements, via
text file preparation, set training data, create custom corpus,
and classify all of them. Finally, we exhibit the result via
qualitative analysis.
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Figure 1. Customer Requirements Classification Flow Chart within
the Proposed Autonomous Vehicle Development Process

B. CNN Architectures for Sentence Classification
The CNN for sentence classification is different from

image classification because it is with only one dimension.
In this Section, we introduce data structure, convolution
operation, pooling operation first and then connect all above
together.

All customer requirements are collected with the format
of sentence. We assume that a sentence has t words, If
the length of the sentence less than m, we set the length
of the sentence to m words. Here m¿t. Then we use a
vector of size f to represent the word in the sentence. Next,
we put the sentences in to a batch with size d. Then the
batch of sentences is represented by a d×m×f matrix. For
example, the three sentences of customer requirements in
this research:

• Cost savings.

• Getting on at designated places.

• Getting off at designated places.

Here d=3, the maximum number of words of the three
sentences is 5, then we get m=5, The three sentences have
totally eight distinct words, so we put f=8. Now we get a
3×5×8 matrix shown in Figure 2.

Then we define convolution weight matrix with size
n× f , here n is the filter size for one-dimensional convo-
lution operation. Now we have a n× f size weight matrix.

Figure 2. Sentence Matrix

Consume the input x with size m× f . Next we create an
output named h with 1×m size by convolving x. We define
wi j as the (i, j)th element of W, i j is the number of row and
column of the element. Then we pad x with zeros. Now we
have:

n∑
j=1

f∑
l=1

w j,lxi+ j−1,l

and

h = W ∗ x + b

Next, we define d as the bias, q as the number of parallel
layers. Then we can go into the pooling operation. The
output of the last convolution layer with size q×m, the
pooling layer could create an output h′ with q×1 size. The
formula is shown as below:

h′ = {max(h(i), 1 ≤ i ≤ q}

and

hi = W i ∗ x + b

Here, h(i) created by the i(th) convolution layer. W (i)

are the weights of correspondence layer. Therefore, the
maximum element of the convolution layers is transferred to
vectors accordingly. The whole convolution neural network
architecture is created by combining all these operations. It
is shown in Figure 3.

C. Source Preparation
Different from our previous study [41], we put all corpus

in one file with the labels of each categories. The label’s
name are abbreviations of the categories, they are ‘ENV’,
‘FUN’, ‘PER’, ‘PRI’, ‘SAF’, and ‘SOC’. Then, we split
them into two sets one is training set, another one is test set.
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Figure 3. CNN Architecture for Customer Requirements Classifica-
tion

Figure 4. Data Format for Customer Requirements Classification

The training set ratio in this research is 75%. The training
set format is shown in Figure 4.

D. Software for Calculation
TensorFlow is a powerful tool for artificial intelligence

related calculation. It is an open source distributed nu-
merical computation framework which released by Google.
It is mainly intended to reduce the complicated details
when implementing a neural network. The computation in
TensorFlow mostly in dot product method through many
matrices and vectors. We call a tensor that in the format
of one-dimensional or a two-dimensional matrix or vector.
In this research, we select Python as the basic environment
and select TensorFlow as the technical tool. The results will
be compared with former research under traditional method
with NLTK.

4. RESULT
At the beginning, the CNN did not show the better

results. After optimizing the super parameters, we finally
get the results that shows the advantages of the Convolution

Figure 5. Comparison of Accuracy by Different Algorithms

TABLE I. COMPARISON OF ACCURACY BY DIFFERENT AL-
GORITHMS

Algorithm Training set ratio
0.5 0.75

NaiveBayes 0.43 0.38
Maxent-gis 0.43 0.38

SVM-LinearSVC 0.40 0.44
CNN 0.40 0.50

Neural Networks. Please see the classification results in
Figure 5 and Table I. Under training set 0.5, the result
calculated by CNN is not better than other algorithms such
as Naive Bayes, Maxent-gis, SVM-LinearSVC. When we
add the training set ratio to 0.75. The accuracy result from
CNN become more higher than other traditional algorithms.
At least 6% better than SVM-LinearSVC, 12% better than
Naive Bayes and Maxent-gis.

5. DISCUSSION
The training set ratio is an important factor that impact

the accuracy of the calculation. Normally the accuracy
increases along with the training set ratio. From Table I we
can see that the result from SVM and CNN, when training
set ratio increase from 50% to 75%, the accuracy improved
4% and 10% respectively. But the accuracy results from
NaiveBayes and Maxent all decrease 5%. It proves that the
unsupervised learning from CNN provide better result than
other algorithms. The better results from CNN because it is
made up of layers that allows people create deeper models.
SVM also show better result because it equipped with loss
function to deal with the data that not linearly separable.
The disadvantage of NaiveBayes and Maxent is they are
more suitable for linear data. But the results should be
improved even from NaiveBayes and Maxent along with
the training set increasing. The decrease caused by limited
dataset. The corpus used in this study is unique due to
no previous research that focus on creating a comprehen-
sive customer requirements corpus for autonomous vehicle.
Therefore, it is difficult to create a large database in this
area in a short time.
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TABLE II. TESTING ACCURACY FROM DIFFERENT BATCH
SIZE

Batch Size Accuracy

6 0.37
12 0.46
18 0.50
24 0.38
30 0.30

Optimization are necessary for the Convolution Neural
Networks because many hyperparameters exist. Here author
provide the example of how batch size impact on the
accuracy. Please refer to Table II.

The batch size defines the number of samples that
will be propagated through the network. The advantage
of using a batch size smaller than number of all samples
is that it requires less memory and quicker. However, the
disadvantage of using smaller batch size is low accuracy.
So, we must find a best batch size value to obtain the
best accuracy. From Table II we can see that the accuracy
reaches top value 50% at batch size 18. Increasing and
decreasing batch are all led to lower accuracy. That means
hyperparameters such as batch size, filter size, number of
steps are impact heavily on the accuracy results.

The results show advantage of Convolution Neural Net-
works, but there are many works need to be done in the
future. The accuracy still not good enough for a customer
defined corpus about customer requirements on autonomous
vehicle. It is only with 50% of accuracy. That means people
still could not relay on computer for this task. Even no
clear standard for accuracy in our system, we still need
to set a target to improve the result in future research.
Hyperparameters such as batch size, filter size, number
of steps are impact heavily on the accuracy results. We
still need further study on how to automatic detect the
best hyperparameters. Furthermore, the calculation results
not stable, more works need to be done in the future to
investigate stability of the CNN calculation. The volume of
corpus(dataset) should be expanded in the future to provide
enough training set as well as obtain better accuracy.

6. CONCLUSION
This study proposes a CNN method for classifying

customer requirements of autonomous vehicle. The unique
customized corpus is adjusted to feed into CNN in Tensor-
Flow. The results of the CNN and traditional NLP method
are compared. Even 3% lower than traditional algorithms
under 0.5 training set ratio, CNN shows advantage under
0.75 training set ratio in this study. This research illustrates
that the accuracy of sentence classification by CNN at
least 6% higher than traditional algorithms in NLTK when
deal with the customized corpus under specific training set
ratio. The limited training data sets is the key impact on
the accuracy. The stability of the calculation needs to be

improved. The accuracy value should be improved in the
future research to meet industry requirement. Although the
results in this research are not good enough, it could be a
useful reference for the AV problems.
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