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Abstract. Detecting outliers for multivariate data is difficult and does not work by visual 

inspection. Mahalanobis distance (MD) has been a classical method to detect outliers in 

multivariate data. However, classical mean and covariance matrix in MD suffer from masking 

and swamping effects. Masking effects happened when outliers are not identified and 

swamping effects happened when inliers are identified as outliers. Hence, robust estimators 

have been proposed to overcome these problems. In this study, the performance of a new 

robust estimator named Test on Covariance (TOC) is tested and compared with other robust 

estimators which are Fast Minimum Covariance Determinant (FMCD), Minimum 

Vector Variance (MVV), Covariance Matrix Equality (CME) and Index Set Equality (ISE). 

These five robust estimators' performance is being tested on five real multivariate datasets. 

Brain and weight, Hawkins-Bradu Kass, Stackloss, Bushfire and Milk datasets were used as 

these five real datasets are well-known in most outlier detection studies. Results show that 

TOC has proven to be able in detecting outliers, does not have a masking effect and has the 

same performance as other robust estimators in all datasets.  

1. Introduction

The presence of outliers in multivariate data can affect the proper classical multivariate analysis,

misleads the conclusions, make modeling difficult and disrupt measures of mean and covariance matrix.

Outliers could be easily detected in univariate and bivariate data by using graphical presentation.

However, the detection is difficult when the dimension increase [1,2].

One of the ways to detect multivariate outliers is to calculate a distance from each point to the center 

of the data. This method is known as the distance-based method which is based on the Mahalanobis 

distance (MD) [3]. An outlier would then be a point with a distance larger than some cut-off value. MD 

is one of the important tools to detect outliers in multivariate data [4]. MD is given by 

      nid
iii

,....,2,1,, 1 


 
xxSxxSx          (1) 

where  Sx,id  is the MD for i-th observation, x  is the sample mean and S  is covariance matrix [3]. 
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The x  and S used in equation (1) are classical estimators for the sample mean and covariance matrix 

and not robust. A small portion of outliers will affect the estimation of x  and .S  MD depends on the 

sample mean and covariance matrix which are subject to masking and swamping effects  [3–5]. Masking 

occurs when some of the outliers are left unidentified (false negative) and swamping occurs when non-

outlying data are mistakenly identified as outliers (false positive) [6]. 

The outlier detection problems and the disadvantages of classical estimators in contaminated data 

have become a motivation to study robust methods for estimating mean and covariance matrix. A robust 

method is designed specifically to be resistant to outliers [3]. The robust method aims to lessen the effect 

of outliers and allow the majority of data to determine the result of the analysis [7]. A robust estimate 

of mean and covariance matrices are then replaced and used in MD and will yield robust MD or robust 

distance that is less sensitive to outliers [3,8].  

Various robust estimators had been proposed and developed in the previous studies such as S, M, 

MM, Minimum Volume Ellipsoid (MVE), Minimum Covariance Determinant (MCD) and Fast-MCD 

(FMCD) estimators. Among these robust estimators, FMCD that had been developed by [9] is widely 

used because FMCD possesses the desirable properties of robust estimators which are affine equivariant, 

high breakdown point, bounded influence function and has lower computational complexity [2,10–12].  

However, FMCD still has weaknesses which are the computational complexity as the dimension 

increase and singularity problems as FMCD is based on covariance determinant [2]. Therefore, in 2007, 

[2] proposed Minimum Vector Variance (MVV) to overcome the problem of FMCD. MVV can 

overcome the singularity problem as the computation of MVV is based on vector variance [2]. MVV 

was also found to have the same breakdown point as the MCD-based methods, lower computational 

time than FMCD, covariance matrix does not need to be positive definite and can be applied to high 

dimension datasets [2].  

Although MVV can solve problems faced by FMCD, the computational time of MVV is still low 

when the number of variables increases [13]. Hence, [14] proposed Covariance Matrix Equality (CME) 

and Index Set Equality (ISE). The CME and ISE are the tests of equality between two covariance 

structures. These two robust estimators can find the robust mean and covariance matrices [15]. It is also 

found that ISE is simple to compute and has better performance than FMCD, MVV and CME [15].  

However, ISE does not involve any arithmetical computation and it is still open to finding the test of 

equality between two covariance structures [13]. This motivates [16] to propose the test of equality 

between two covariance structures and named the new robust estimator with Test on Covariance (TOC). 

Details of TOC are discussed in [16].  

A simulation study had been done in [16] to investigate the performance of TOC. Results from [16] 

show that TOC is applicable and a promising approach to detect outliers for multivariate data. Hence, 

in this study the performance of TOC will be investigating further by using real multivariate datasets. 

Multivariate datasets that will be used are Brain and Weight, Hawkins-Bradu Kass, Stackloss, Bushfire 

and Milk datasets. These five datasets had been used in most of the multivariate outlier detection 

literature and had become a benchmark to measure the performance of the proposed methods. The 

performance of TOC will be compared with other robust estimators (FMCD, MVV, CME and ISE) to 

detect outliers in these five datasets. 

2. Robust Estimators   

MVV, CME, ISE and TOC are modifications of the FMCD estimator. All these estimators differed at 

Step 6 in the FMCD algorithm. FMCD algorithm is given as follows [15]. 

Step 1: Select an arbitrarily subset 
old

H  containing h  different observations, where h  is the smallest 

             integer   21pn  , where p is the number of variables and n is the sample size. 

Step 2: Compute the mean vector 
oldH

X and covariance matrix 
oldH

S of all observations belonging to           

old
H . 

Step 3: Compute      
oldoldoldold HiHHiH

XXSXXid 


 12
 for ni ,,2,1  . 
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Step 4: Sort  id
oldH

2
 for ni ,,2,1   in increasing order         nddd

oldoldold HHH
 222 21     

            where  is a permutation on  n,,2,1  .  

Step 5: Define       
hnew

XXXH  ,,,
21
  and then calculate ,

newH
X

newH
S and  id

newH

2
 for            

ni ,,2,1  . 

Step 6FMCD: If   ,0det 
newH

S repeat Step 1 – Step 5. Otherwise, if    ,detdet
oldnew HH

SS   let   

newold
HH : ,

newold HH
XX :  and 

newold HH
SS : . Then go to Step 3. Otherwise, the 

process is stop and    
oldnew HH

SS detdet   is obtain. 

The procedures of MVV, CME and ISE can be done by replacing Step 6FMCD with the following step 

as given in [13,15].  

Step 6MVV: If   ,02 
newH

STr repeat Step 1 – Step 5. Otherwise, if    ,22

oldHnewH
STrSTr   let  

 
newold

HH : ,
newold HH

XX : and 
newold HH

SS : . Then go to Step 3. Otherwise, the process  

                   is stopped and    22

oldHnewH
STrSTr   is obtained.  

Step 6CME: If   ,0
2


oldnew HH
SSTr  calculates 

newH
X and let 

newold
HH : , 

newold HH
XX : and 

newold HH
SS : . Then go to Step 3. Otherwise, the process is stop.     

Step 6ISE: If ,
oldnew

II   let 
newold

HH : , calculate 
newH

X and let  
newold

HH : ,
newold HH

XX : and 

                
newold HH

SS : . Then go to Step 3. Otherwise, the process is stop.   

A new robust estimator named TOC had been proposed by [16]. The idea of TOC is coming from 

CME and ISE which test the equality of covariance structure for old subset and new subset in the 

algorithm. The equality of two covariance structures is tested by using equation (2) with the hypothesis 

newold
H :

0
 versus 

newold
H :

1
.  

  







 



pu
p

i

ii

1

ln                                          (2) 

where 1 n , p is the number of variables and p
 ,,,

21
  are the eigenvalues of .1

oldnew 0
H  is 

rejected if  







 1

2

1
,2 ppu   as given in [17]. Step 6 for TOC is given below. 

Step 6TOC: If 
0

H  is rejected, calculate 
newH

X and let 
newold

HH : ,
newold HH

XX : and 
newold HH

SS : . Then  

                 go to Step 3. Otherwise, the process is stop.   

3. Illustrative Examples and Performance Measures 

In this study, five real multivariate datasets will be used as illustrative examples to identify outliers in 

multivariate data. The datasets are Brain and Weight, Hawkins-Bradu Kass, Stackloss, Bushfire and 

Milk datasets. These datasets have become a standard for most of outlier detection studies in multivariate 

data such as in [1], [18 – 22]. Table 1 shows a summary of the datasets. 
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Table 1. Summary of the datasets. 

No. 

 

Data set n p Number of 

Outliers 

Percentage 

of outliers 

Remarks 

1 Brain and weight 

data (BW) dataset 

28 2 3 11% Observations 6th, 16th and 25th 

are outliers [3,18,23,24].  

2 Hawkins-BraduKass 

(HBK) dataset 

75 3 14 19% Observations 1-14 are outliers 

[1,18–20,25,26]. 

3 Stackloss dataset 21 3 4 19% Observations 1st  – 3rd  and 21st 

are outliers [19].   

4 Bushfire dataset 38 5 13 34% Observations 7th – 11th and 31st – 

38th are outliers [20,21,27,28]. 

5 Milk dataset 86 8 17 20% Observations 1st - 3rd, 12th, 13th - 

17th, 27th,  41st, 44th, 47th, 70th, 

74th, 75th and 77th  are outliers 

[20,21,29]. 

 Robust mean and covariance matrices from FMCD, MVV, CME, ISE and TOC will be obtained and 

were used to identify outliers in the datasets. The steps to identify outliers are given as follows, 

Step 1: Compute the distance      xxSxxSx 


 
iiid 1,  for ni ,,2,1  . 

Step 2: Use the cut-off value 2

975.0,p
 to detect outliers. If   ,, 2

975.0,pid Sx
i

x is an outlier. 

The performance of each robust estimator for each dataset will be measured by three measurements. 

i. Number of outliers successfully detected.  

The number of outliers detected by each robust estimator will be counted. Observations that 

are outliers from each dataset have already been identified in the previous study (refer to Table 

1). Each robust estimator will be investigated either it can detect the outliers or not.  

 ii.  Number of outliers falsely detected as inliers (masking effect).  

Any outliers that are not identified as outliers will be counted as having a masking effect. Each 

robust estimator will be investigated either it misclassifies outliers as inliers. 

 iii.  Number of inliers falsely detected as outliers (swamping effect).  

Any inliers that are not identified as inliers will be counted as having a swamping effect. Each 

robust estimator will be investigated either it misclassifies inliers as outliers. 

4. Results and Discussion 

In this section, we compare and discuss the performance of  FMCD, MVV, CME, ISE and TOC on 

multivariate outlier detection by using five real multivariate datasets. 

4.1 Brain and Weight data 

Brain and weight (BW) dataset contain two variables which are body weight and brain weight for 28 

species of animals. According to [18] and [19], this dataset is part of a larger dataset in [30]. [1] used 

Minimum Volume Ellipsoid (MVE) in their study and found that observations 6th,14th, 16th, 17th and 25th 

are outliers. Observations 6th, 16th and 25th are dinosaurs with a small brain and heavy body, while 

observations 14th and 17th are human and rhesus monkey with high brain weight [1]. However, the 

method used by [1] tends to detect too many outliers [31]. According to [18,19,23], it is believed that 

this dataset only has three outliers which are observations 6th, 25th and 16th.   
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Table 2 shows the results for each robust estimator. At the cut-off value of 716.22

975.0,2
 , all five 

robust estimators successfully detect outliers in the datasets and do not misclassify outliers as inliers. 

This shows all robust estimators do not have a masking effect for this dataset. However, all robust 

estimators misclassified observations 2nd, 7th, 14th, 15th and 24th as an outlier and hence have a swamping 

effect. 

Table 2. Results for Brain and Weight dataset. 

Performance Measures FMCD MVV CME ISE TOC 

Number of outliers successfully 

detected 

3 

(100%) 

3 

(100%) 

3 

(100%) 

3 

(100%) 

3 

(100%) 

Number of outliers falsely detected 

as inliers (masking effect) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Number of inliers falsely detected as 

outliers (swamping effect) 

5 

(20%) 

5 

(20%) 

5 

(20%) 

5 

(20%) 

5 

(20%) 

4.2 Hawkins-Bradu Kass (HBK) data 

Hawkins-Bradu-Kass (HBK) dataset is an artificial dataset generated by [32]. This dataset was generated 

to show some of the merits of robust methods and the effectiveness of the robust methods to identify 

outliers [18]. This dataset has 75 observations and four variables (one response and three explanatory 

variables). For this study, only three explanatory variables will be used. Observations 1 – 14 are known 

to be outliers for this dataset [1,18–20].  

By using the cut-off value of 058.32

975.0,3
 , all robust estimators are successfully detect the 

outliers and do not misclassify outliers as inliers. All robust estimators do not have a masking effect for 

this dataset. For the swamping effect, only MVV misclassified observation 53rd as an outlier. 

Table 3. Results for Hawkins-Bradu Kass dataset. 

Performance Measures FMCD MVV CME ISE TOC 

Number of outliers successfully 

detected 

14 

(100%) 

14 

(100%) 

14 

(100%) 

14 

(100%) 

14 

(100%) 

Number of outliers falsely detected 

as inliers (masking effect) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Number of inliers falsely detected as 

outliers (swamping effect) 

0 

(0%) 

1 

(1.6%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

4.3 Stackloss data 

Stackloss data is a dataset obtained from an experiment for the oxidation of ammonia into nitric acid, 

measured on 21 consecutive days [22]. The dataset has three explanatory variables (rate of incoming 

ammonia, cooling water temperature and acid concentration) and one response variable (stackloss) 

[19,22]. In this study, only three explanatory variables are used. Observations 1st, 2nd, 3rd and 21st are 

outliers [18,19].   

From Table 4, all robust estimators successfully detect the outliers and do not misclassify outliers as 

inliers at the cut-off value of 058.32

975.0,3
 . All robust estimators do not have a masking effect for 

this dataset as well. However, all robust estimators misclassified observation 17th as an outlier. 
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Table 4. Results for Stackloss dataset. 

Performance Measures FMCD MVV CME ISE TOC 

Number of outliers successfully 

detected 

4 

(100%) 

4 

(100%) 

4 

(100%) 

4 

(100%) 

4 

(100%) 

Number of outliers falsely detected 

as inliers (masking effect) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Number of inliers falsely detected 

as outliers (swamping effect) 

1 

(5.9%) 

1 

(5.9%) 

1 

(5.9%) 

1 

(5.9%) 

1 

(5.9%) 

4.4 Bushfire data   

Bushfire data is a dataset used to locate bushfire scars and was taken from [33]. The dataset contains 

satellite measurements on five frequency bands, corresponding to each of 38 pixels with 13 outliers 

which makes the percentage of outliers is 34%. According to [20,21], observations 7th – 11th and 31st – 

38th are classified as outliers.  

Only FMCD, ISE and TOC have successfully detected all outliers in Bushfire dataset. MVV only 

can detect 84.6% of outliers, while CME can only detect 53.8% of outliers. Therefore, MVV and CME 

misclassify outliers as inliers (masking effect) with the rate of 15.4% and 46.2% respectively. Table 5 

shows that all robust estimators misclassify inliers as outliers (swamping effect). CME has the highest 

percentage which is 40%, while FMCD only misclassifies 8% of inliers as outliers. Meanwhile, TOC 

and ISE has a similar performance. 

Table 5. Results for Bushfire dataset. 

Performance Measures FMCD MVV CME ISE TOC 

Number of outliers successfully 

detected 

13 

(100%) 

11 

(84.6%) 

7 

(53.8%) 

13 

(100%) 

13 

(100%) 

Number of outliers falsely detected 

as inliers (masking effect) 

0 

(0%) 

2 

(15.4%) 

6 

(46.2%) 

0 

(0%) 

0 

(0%) 

Number of inliers falsely detected 

as outliers (swamping effect) 

2 

(8%) 

5 

(20%) 

10 

(40%) 

3 

(12%) 

3 

(12%) 

4.5 Milk data 

Milk dataset provided by [34] is a composition of 86 containers of milk with 8 variables. The 8 variables 

are density, fat content, protein content, casein content, cheese dry substance measured in factory, cheese 

dry substance measured in laboratory, milk dry substance and cheese produced. There are 17 outliers in 

this dataset which makes the percentage of outliers is 20%. Observations 1st-3rd, 12th-17th, 27th,  41st, 44th, 

47th, 70th, 74th, 75th and 77th are classified as outliers by [20] , [21] and [29]. 

As can be seen from Table 6, all robust estimators successfully detect 17 outliers and do not 

misclassify outliers as inliers (masking effect). However, all robust estimators have a swamping effect. 

FMCD, MVV and ISE show the lowest swamping effect with 5.8%, while CME and TOC have 7.2%.  

Table 6. Results for Milk dataset. 

Performance Measures FMCD MVV CME ISE TOC 

Number of outliers successfully 

detected 

17 

(100%) 

17 

(100%) 

17 

(100%) 

17 

(100%) 

17 

(100%) 

Number of outliers falsely detected 

as inliers (masking effect) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Number of inliers falsely detected as 

outliers (swamping effect) 

4 

(5.8%) 

4 

(5.8%) 

5 

(7.2%) 

4 

(5.8%) 

5 

(7.2%) 
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Table 7 shows a summary of the best robust estimators for each dataset. It can be seen that all robust 

estimators successfully detected outliers for four datasets (BW, HBK, Stackloss and Milk). For Bushfire 

dataset, only FMCD, ISE and TOC successfully detected all outliers. The same results can be seen for 

the masking effect. All robust estimators do not have a masking effect for four datasets except for the 

Bushfire dataset. Only FMCD, ISE and TOC do not misclassify outliers as inliers (masking effect) for 

Bushfire dataset. For the swamping effect, all robust estimators misclassify inliers as outliers for four 

datasets (BW, Stackloss, Bushfire and Milk) except HBK dataset. For HBK dataset, only MVV has a 

swamping effect. 

Table 7. Summary of the best robust estimators for five datasets. 

Datasets All outliers 

successfully 

detected 

No outliers falsely 

detected as inliers  

(No masking effect) 

No inliers falsely 

detected as outliers  

(No swamping effect) 

Brain and weight 

(BW)  
All All None 

Hawkins-

BraduKass (HBK)  
All All FMCD, CME, ISE, TOC 

Stackloss  All All None 

Bushfire  FMCD, ISE, TOC FMCD, ISE, TOC None 

Milk  All All None 

5. Conclusions 

In this study, the performance of a new robust estimator by [16] named Test on Covariance (TOC) to 

detect outliers in real multivariate datasets is being tested and compared with other robust estimators. 

The performance of TOC is compared with Fast Minimum Covariance Determinant (FMCD), Minimum 

Vector Variance (MVV), Covariance Matrix Equality (CME) and Index Set Equality (ISE). These five 

robust estimators' performance is being tested on five real multivariate datasets which are Brain and 

weight (BW), Hawkins-Bradu Kass (HBK), Stackloss, Bushfire and Milk datasets. The performance of 

each robust estimator measured by the number of outliers successfully detected, number of outliers 

falsely detected as inliers (masking effect) and number of inliers falsely detected as outliers (swamping 

effect). 

Ideally, the best robust estimator would be a robust estimator that can detect all outliers, has the 

lowest masking and swamping effect. It is found in this study that all robust estimators successfully 

detected outliers in BW, HBK, Stackloss and Milk datasets. The same result was also obtained for the 

masking effect. However, only FMCD, ISE and TOC successfully detect outliers and do not have a 

masking effect for Bushfire dataset. For the swamping effect, all robust estimators misclassify inliers as 

outliers for BW, Stackloss, Bushfire and Milk dataset. Meanwhile FMCD, CME, ISE and TOC do not 

have the swamping effect of HBK dataset. This means that FMCD, CME, ISE and TOC did not 

misclassify inliers as outliers for HBK dataset. From these results, TOC has proven to be able to detect 

outliers, does not have a masking effect and has the same performance as other robust estimators in five 

real multivariate datasets. This shows that TOC is applicable and a promising approach for outlier 

detection in multivariate data. Hence, TOC can be used when outliers are existed in multivariate datasets. 
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