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Abstract. In the early 2020, Indonesia experienced flooding in several areas. This disaster 

caused a lot of damage and losses. One of the causes of flooding in Indonesia is due to high 

rainfall. This was not anticipated beforehand so there was a flood. Therefore, research on rainfall 

in Indonesia is very important to anticipate floods. If it is predicted that rainfall is very high and 

conditions do not allow it to accommodate, the government can prepare watersheds so that 

rainwater can flow and not be trapped. In this research, the rainfall data were obtained from 

Meteorological, Climatological, and Geophysical Agency (BMKG Indonesia), then the analysis 

of rainfall data in Indonesia was carried out. There are several statistical methods that can be 

used. There are ARIMA and Neural Network. In this research, the results of ARIMA model are 

used as input variables in the Neural Network model. Then there are several numbers of hidden 

layer in the Neural Network model that are compared. The results of ARIMA model and Neural 

Network model showed that Neural Network model is better than ARIMA model, because the 

mean square error (MSE) value of Neural Network model is smaller than ARIMA model. 

1. Introduction 

Floods are events that have occurred in Jakarta for a long time, even before Indonesia's independence. 

Some actions were even taken to overcome it, but it seems that it has not been successful. The 

construction of several canals could not prevent the flood at that time. The Governor of DKI Jakarta, Mr 

Ali Sadikin, had worked with foreign parties to build reservoirs in the city and the construction of new 

waterways. However, major floods still occurred in early 1976. During the leadership of Mr Sutiyoso, 

Jakarta experienced severe floods that caused casualties. There are 80 people died, 320,000 were 

displaced, as well as substantial material losses. Major floods then occurred again in 2015 and 2020. For 

rainfall, Meteorological, Climatological and Geophysical Agency (BMKG) noted that the rainfall that 

occurred in early 2020 was the highest rainfall since 1996 [1]. 

According to the National Disaster Management Agency (BNPB), floods in Jakarta in early 

2020 submerged 308 urban communities with a maximum water level reaching six meters. While the 

death toll reached 60 people, with a total of 92,621 refugees scattered in 189 points. Such a large flood 

is not new in Jakarta. Prior to this, there were at least five major floods at DKI Jakarta in 2002, 2007, 

2013 and 2014. The impacts of this such as death tolls, the distribution of flood points to the number of 

refugees, then it can be called 2007 to be the worst flooding in Jakarta [2].  

 

mailto:syarifah.permai@binus.ac.id


Simposium Kebangsaan Sains Matematik ke-28 (SKSM28)
Journal of Physics: Conference Series 1988 (2021) 012040

IOP Publishing
doi:10.1088/1742-6596/1988/1/012040

2

 
 
 
 
 
 

Meteorological, Climatological and Geophysical Agency (BMKG) Indonesia explained that the 

occurrence of climate change increases the risk and opportunities of extreme rainfall so that it triggers 

floods in Jakarta. In addition, there was a repetition of high rainfall for several years. The cause of 

flooding in Jakarta is not only a matter of extreme rainfall and meteorological phenomena. However, 

there are several other factors such as the large amount of water runoff from the upstream area, the 

reduction in reservoirs and lakes where flood waters are stored. In addition, the problem of narrowing 

and the river’s shallowness due to sedimentation and full of garbage, tidal soaking due to sea level and 

ground subsidence factors that increase the risk of standing water [3]. 

 The negative impact caused by the flood needs to be done in prevent flooding. The problem is 

that there is no rainfall prediction that can be used to anticipate flooding. One of the efforts that can be 

done is to forecast rainfall data. Because if high rainfall can be predicted, action can be taken to 

overcome it. Therefore, in this research rainfall forecasting is done in Indonesia. There are several time 

series analysis methods that can be used for forecasting. The most commonly used method is ARIMA. 

But along with the development of technology and science, several new methods have emerged, one of 

which is Machine Learning. Because of this rainfall forecasting is done using the Neural Network. This 

study aims to perform daily rainfall modelling in Indonesia using several methods, namely ARIMA and 

Neural Network. Then the results of rainfall forecasting using ARIMA and Neural Network will be 

compared. 

 

2. Rainfall 

Indonesia has two types of seasons, that are rainy season and dry season. The problem that occurs in 

Indonesia during the rainy season is the occurrence of floods in several locations. One of the reasons is 

due to high rainfall in several locations, in addition to high altitude conditions in the area. Rainfall 

measurement is a measurement of the amount of rainwater that fall on a flat surface at a certain period 

in millimeters (mm) with the assumption that the collected rainwater in the flat does not evaporate, does 

not sink in and does not flow [4]. The rainfall of one mm means that a flat area of one square meter is 

accommodated by one millimeter or one liter of rainwater [5]. 

 

3. Autoregressive Integrated Moving Average (ARIMA) Model 

Autoregressive Integrated Moving Average (ARIMA) is one of the time series methods that can use to 

forecast the value for next period. ARIMA models also known as Box-Jenkins models [6]. The 

stationarity of a time series is related to its properties in time. The definition of stationarity or weal 

stationarity are as follows. 

● The expected value of the time series does not depend on time. 

● The autocovariance function defined as 𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡+𝑘) for any lag k is only a function of k is only 

a function of k and not time: that is 𝛾𝑦(𝑘) = 𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡+𝑘). 

For a time-invariant and stable linear filter and a stationary input time series 𝑥𝑡 with 𝜇𝑥 = 𝐸(𝑥𝑡) and 

𝛾𝑘(𝑘)= 𝐶𝑜𝑣(𝑥𝑡, 𝑥𝑡+𝑘), the output time series 𝑦𝑡 is also a stationary time series 

 𝐸(𝑦𝑡) = 𝜇𝑦 = ∑∞
−∞ 𝜓𝑖𝜇𝑥 (1) 

      𝐶𝑜𝑣(𝑦𝑡 , 𝑦𝑡+𝑘) = 𝛾𝑦(𝑘) = ∑∞
𝑖=−∞ ∑∞

𝑗=−∞ 𝜓𝑖𝜓𝑗𝛾𝑘(𝑖 − 𝑗 + 𝑘)     (2) 

General model of ARIMA(p,d,q)×(P,D,Q,)S as follows. 

    𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝛷𝑃(𝐵𝑆)(1 − 𝐵𝑆)𝐷𝑌𝑡 = 𝜃𝑞(𝐵)𝛩𝑞(𝐵𝑆)𝑎𝑡  (3) 

where 𝐵 is the backshift operator, p is the order of non-seasonal AR, d is the differencing of non-seasonal 

and q is the order of non-seasonal MA. While S is time span of repeating seasonal pattern, P is the order 

of seasonal AR, D is the differencing of seasonal and Q is the order of seasonal MA. 

            𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝  (4) 

𝛷𝑃(𝐵𝑆) = 1 − 𝛷1𝐵𝑆 − 𝛷2𝐵2𝑆 − ⋯ − 𝛷𝑝𝐵𝑃𝑆  (5) 

𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞  (6) 
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𝛩𝑄(𝐵𝑆) = 1 − 𝛩1𝐵𝑆 − 𝛩2𝐵2𝑆 − ⋯ − 𝛩𝑄𝐵𝑄𝑆  (7) 

where 𝜙𝑝(𝐵) and 𝜃𝑞(𝐵) are the non-seasonal component of ARIMA model. Then 𝛷𝑃(𝐵𝑆) and 𝛩𝑄(𝐵𝑆) 

are the seasonal component of ARIMA model. 𝜙1, … , 𝜙𝑝 and 𝛷1, … , 𝛷𝑝 are the parameters of AR for 

non-seasonal and seasonal component that must be estimated. While 𝜃1, … , 𝜃𝑞 and 𝛩1, … , 𝛩𝑄 are the 

parameters of MA for non-seasonal and seasonal component that must be estimated. 

 

4. Artificial Neural Network 
Artificial Neural Network (ANN) is a nonlinear data processing that is built from an interconnected or 

connected which called a neuron and there is a weight for each connection. ANN was applied for data 

pattern identification analysis or data classification [7]. In this research, the data used is time series data, 

then the input layer in the Neural Network model is the lag of the time series at the target output.  

 

 

Figure 1. Single Hidden Layer of Neural Network 

 

Figure 1 shows a single hidden layer of Neural Network. There are three layers namely input layer, 

hidden layer, and output layer [8]. 

𝐼𝑗 = ∑

𝑝

𝑖=1

𝛽𝑗 + 𝑤𝑖𝑗 𝑦𝑖 

where 𝑝 is the number of nodes in input layer, 𝛽𝑗 is the threshold value of hidden layer, 𝑤𝑖𝑗 is the 

connection weight of input layer and hidden layer, and 𝑦𝑖 is the lag of the time series in the input layer. 

Then using the activation function that has been determined in the hidden layer, the values in the hidden 

layer are obtained as follows. 

𝑍𝑗 = 𝑓(𝐼𝑗)   (9) 

 The function for 𝑍𝑗 is called an activation function of hidden layer. There are linear and nonlinear 

activation functions. Some activation functions in ANN are follows [9]. 

● An identity or linear function 

● The binary step function 

● The binary sigmoid function or S-shaped curve 

● The bipolar sigmoid function  

 Furthermore, the value of output layer can be calculate based on the activation function that has 

been determined in the output layer as follow [8]. 

𝐻 = ∑

ℎ

𝑗=1

𝛼 + 𝑣𝑗 𝑍𝑗 

(8) 

(10) 
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𝑦𝑡 = 𝑓(𝐻)   (11) 

where ℎ is the number of nodes in hidden layer, 𝛼 is the threshold value of output layer, 𝑣𝑗 is the 

connection weight of hidden layer and output layer, and 𝑦𝑡 is the forecast value of point t. To get the 

thresholds and weights in the Neural Network model, the backpropagation algorithm is used to update 

these values. Backpropagation architecture is presented in the figure 2. 

 

 
Figure 2. Backpropagation Architecture 

 

In the backpropagation algorithm there are forward and backward phases. The straight arrow line in 

figure 2 shows the forward phase, while the dashed arrow line shows the backward phase. In the forward 

phase, weights are calculated starting from the input layer to the output layer using the specified 

activation function. Then the error value is obtained which is the difference between the forecast value 

with the target value. While in the backward phase, the error is propagated backward starting from the 

output layer to the input layer, then get new weights that minimize the error [9]. 

 

5. Criteria for selecting the best model 

In this research, ARIMA and NN are used to model rainfall. Based on the two models, the best model 

will be chosen to the most appropriate model. In determining the selection of the best model, several 

criteria are needed. There are several criteria for selecting the best model including AIC, RMSE and 

MAE. AIC (Akaike Information Criteria) is one of the methods that used to select the best regression 

model found by Akaike and Schwarz [10]. According to Wei (2018), calculations for AIC can be 

calculated with the following formula [11]. 

follows. 

 AIC = n ln |∑p| + 2 pm2 (12) 

n  : number of observations 

|∑p|  : determinant value of variance covariance matrix  

p : number of input variables  

m : number of output variables 

 

According to Enders (2004), it is necessary to determine the appropriate number of lag 

dependent variables [12]. In determining the optimal lag there are several fairly efficient ways, such as 
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Akaike Information Criterion (AIC) and Schwarz 'Bayesian Information Criterion (SBC). The best 

model is the one that gives the smallest residual or error rate.  

Root Mean Square Error (RMSE) is a popular method for assessing machine learning 

algorithms, including algorithms that are far more sophisticated than linear regression [13]. The RMSE 

value is used to distinguish the performance of the model in the trial period and the validation period 

[14]. Besides that, the Mean Absolute Error (MAE) can also be used to choose the best model. The MAE 

is the average of the absolute values of the difference between the forecast value and the observed value 

[15]. The RMSE and MAE value defined by the following formula. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑

𝑛

𝑡=1

(𝑦𝑡 − �̂�𝑡)2𝑀𝐴𝐸 =
1

𝑛
∑

𝑛

𝑡=1

|𝑦𝑡 − �̂�𝑡| 

where  

n : number of observations 

𝑦𝑡 : observed value 

�̂�𝑡 : forecasting value 

 

6. Data and Methodology 

The data that used in this research were obtained from the Climatology, Meteorology and Geophysics 

Agency (BMKG) Indonesia [16]. The variable that be used in this research is rainfall data at Region I, 

which is the western region of Indonesia. The rainfall data used is the daily rainfall from January 2008 

to December 2019. This data is time series data, then the analysis carried out is time series analysis. The 

stages of analysis to achieve the research objectives are as follows. 

1. Estimating the parameters of rainfall model using ARIMA method with the following steps 

a. Identifying patterns on rainfall data 

b. Identifying ARIMA models 

c. Estimating the parameters of the ARIMA model 

d. Test the significance of parameters in the ARIMA model 

e. If the parameters are not significant, then back to step c 

f. Test the assumptions of the ARIMA model, which are the residuals have to white noise and 

normally distributed. 

2. Estimation the parameters of rainfall model using Neural Network with Backpropagation algorithm, 

this is the following steps. 

a. Determine Feed Forward Neural Network (FFNN) architecture on rainfall data. 

b. Determine input for Neural Network architecture based on the best ARIMA model. 

c. Set the maximum epoch, target error and learning rate (α). 

d. Initialization parameters (thresholds and weights) in NN model. 

e. Make Network function on each node in hidden layer. 

f. Calculate the value of activation function at each node in hidden layer. 

g. Create a Network function on each node in output layer. 

h. Calculate the value of linear activation function at each node in output layer. 

i. Calculate the error values. 

j. Update parameters (thresholds and weights) using backpropagation algorithm. 

k. Repeat from step e and stop until the maximum number or target error is reached. 

l. Calculate the criteria of the best model selection for each model 

m. Choose the best NN model 

3. Do forecasting of rainfall for testing data using the ARIMA and NN methods. 

4. Determine the best model by comparing the AIC, MAE and RMSE values between ARIMA and 

NN model. 

 

 

(13) 

(14) 
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7. Results and Discussion 

Before the modelling was performed to the rainfall dataset, data exploration was carried out using the 

autocorrelation function (ACF) plot and the partial autocorrelation function (PACF) plot. Figure 3 is the 

ACF and PACF plot of the rainfall data.  

 

      
Figure 3. ACF and PACF plot 

 

 The identification results from the ACF and PACF plots showed that visually the data is stationary 

because the data is cut off at a certain lag. But to ensure stationarity in the rainfall data, the test was 

carried out using the Augmented Dickey-Fuller (ADF) test. The result of test statistics is -8.9025 and p-

value is 0.01. The hypothesis of stationary test as follows. 

H0 : Data is not stationary 

H1 : Data is stationary 

 Because the p-value less than 𝛼 = 10% then H0 is rejected. It means that the data is stationary. 

Then there is no need for transformations or differencing on the data. Furthermore, ARIMA modeling 

is carried out on rainfall data because the data is stationary. Then the ARIMA model does not use a 

difference (d = 0) because the data is stationary.  

 Based on the significant lag in the ACF and PACF plots, there are several ARIMA models as p 

and q value that can be tried. Because there is no indication of seasonal pattern then s = 0. Then ARIMA 

models only uses regular ARIMA which is ARIMA(p,d,q). There are several ARIMA models that have 

been applied on rainfall data that have significant parameters, including those presented in table 1. 

 

Table 1. Comparison of ARIMA models. 

Model AIC RMSE MAE 

ARIMA(0,0,1) 11048.73 14.85602 9.919381 

ARIMA(1,0,0) 11048.3 14.85364 9.912884 

ARIMA(1,0,1) 11048.88 14.84576 9.898771 

ARIMA(2,0,1) 11048.24 14.83112 9.878218 

 

 If the orders of p and q increase, then the parameters are not significant in the model. Based on 

the result in table 1, it can be concluded that the best model is ARIMA(2,0,1) because this model has 
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the minimum AIC, RMSE and MAE values. Furthermore, the results of ARIMA(2,0,1) modelling is as 

follow. 

 

Table 2. ARIMA(2,0,1). 

Variable Coefficient Z test p-value 

AR1 0.960017 10.4527 <2e-16 

AR2 -0.060654 -1.8875 0.0591 

MA1 -0.862557 -9.8904 <2e-16 

Intercept 8.135321 14.7300 <2e-16 

 

 Based on the parameter estimation results in table 2, the ARIMA model is obtained as follows. 

𝑌�̂� = 8.135321 + 0.960017 𝑌𝑡−1 − 0.060654 𝑌𝑡−2 + 0.862557 𝑎𝑡−1 + 𝑎𝑡 (15) 

The hypothesis of testing the significance of the parameters. 

H0 : 𝛽𝑖 = 0 

H1 : 𝛽𝑖 ≠ 0 

 Table 2 showed that the p-values of all parameters less than 𝛼 = 10%. It means that all of 

parameters are significant in the ARIMA model. Furthermore, the residuals in the ARIMA model must 

meet the assumptions. Residuals have to follow the white noise process and residuals must be normally 

distributed. Ljung-box test is used to test the residuals follow white noise process and Kolmogrov 

Smirnov test is used to test the residuals following normally distribution.  

The hypothesis of the Ljung-box test as follows. 

H0 : Residuals are white noise. 

H1 : Residuals are not white noise. 

 The result of Ljung-Box test showed that test statistics is 0.0013502 and p-value is 0.9707. 

Because the p-value greater than 𝛼 = 10% then do not reject H0. It means that the residuals are white 

noise. Then the assumption of ARIMA model is fulfilled.  

The hypothesis of the Kolmogorov Smirnov test as follows. 

H0 : Residuals are normally distributed. 

H1 : Residuals are not normally distributed. 

 The result of Kolmogorov Smirnov test showed that test statistics is 0.24235 and p-value = 2.2 x 

10-16. Because the p-value less than 𝛼 = 10% then reject H0. It means that the residuals are not normally 

distributed. Then the assumption of ARIMA model is not fulfilled.   

 Since the ARIMA model did not fulfilled the assumption that residuals are normally distributed, 

then as an alternative to the ARIMA model, the Neural Network model can be used. In this research, the 

NN model uses a non-linear model, then the activation function used is logistic function or binary 

sigmoid function. Neural network modelling is very important in determining the number of inputs in 

the NN model. The input variables on NN model based on the significant lag in the ARIMA model. In 

this NN model, the input variables are Yt-1 and Yt-2. This is based on the AR parameters in ARIMA 

model showing that the best ARIMA model is ARIMA(2,0,1). Then the next step is to determine the 

number of nodes in hidden layer. There are several numbers of nodes in hidden layer that have been 

tried in the Neural Network model to get the optimum number of nodes in the hidden layer. The 

comparison of Neural Network model for different number of nodes in the hidden layer can be seen in 

table 3. 
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Table 3. Comparison of Neural Network models. 

Number of nodes in Hidden layer AIC RMSE 

3 nodes 7240.006 14.80992 

4 nodes 7246.006 14.80992 

6 nodes 7238.144 14.700485 

 

 The others number of nodes in hidden layer does not converge then the parameters in the NN 

model are not obtained. Based on the optimum nodes in hidden layer that show in table 3, there are 6 

nodes in hidden layer. Figure 4 show the best Neural Network model with 2 nodes in input layer, 6 

nodes in hidden layer and 1 node in output layer. It can be written as NN(2,6,1). 

 

 
Figure 4. The result of neural network model with backpropagation algorithm 

   

Table 4. Comparison of ARIMA and Neural Network model 

Model AIC RMSE MAE 

ARIMA(2,0,1) 11048.24 14.83112 9.878218 

NN(2,6,1) 7238.144 14.700485 9.8505714 

 

 Based on the results in table 4 showed that Neural Network model better than ARIMA model. It 

can be concluded that NN model better than ARIMA model because the AIC, RMSE and MAE value 

of NN model is smaller than ARIMA model. The AIC, RMSE and MAE value is an error value of the 

model, then the best model is the model that has a smaller value of AIC, RMSE and MAE. 
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8. Conclusion 

There are several methods that can be used to analyze time series data. The Autoregressive Integrated 

Moving Average (ARIMA) model is one of the most frequently used methods for analyzing time series 

data. But this method can be use if the data is stationary and the model have some assumptions. The 

result of ARIMA model for rainfall data in this research showed that data is stationary but the 

assumption of residuals are normally distributed do not met in the ARIMA model. Therefore, the 

analysis is carried out using the neural network method as an alternative to the ARIMA model. The 

input variable of Neural Network model is determined from the significant lag in the ARIMA model. 

Then the input variables of NN model are Yt-1 and Yt-2. Based on the experimental results, the number 

of nodes in the hidden layer concluded that the optimum number of nodes is 6 nodes in the hidden layer. 

Then in the NN model are determined 2 nodes in the input layer, 6 nodes in the hidden layer and 1 node 

in the output layer. The comparison between ARIMA model and NN model showed that NN model is 

better than ARIMA model. Because the RMSE and MAE value of NN model is smaller than ARIMA 

model. Based on this analysis, if we want to forecast the daily rainfall for today, we must consider the 

rainfall of yesterday and 2 days ago. There are some limitations in this research such as the number of 

nodes in the input layer, the activation function which only uses a logistic function, and the data is 

univariate time series. Then in the future research, we can use more nodes in the input layer, use other 

activation functions and try to use multivariate time series analysis. 
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