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ABSTRAK 

 

 

Masalah melibatkan aliran lapisan sempadan dan pemindahan haba adalah penting 

disebabkan oleh pelbagai aplikasi praktikal yang terdapat dalam bidang kejuruteraan 

dan perindustrian. Sistem penyejukan, reaktor nuklear, elektronik, proses hidrodinamik, 

penghasilan kertas, dan lapisan sempadan dalam proses pemeluwapan cecair bagi filem 

adalah sebahagian daripada contoh kepelbagaian aplikasi yang berkaitan dengan aliran 

lapisan sempadan dan pemindahan haba. Tesis ini menyelesaikan tiga masalah secara 

penyelesaian berangka bagi masalah aliran lapisan sempadan di titik genangan pada 

permukaan meregang dengan mempertimbangkan bendalir Newtonan (bendalir likat) 

dan bendalir tak Newtonan (bendalir Williamson). Selain itu, tesis ini memberi 

perhatian kepada pengaruh keadaan gelincir, radiasi haba, magnetohidrodinamik 

(MHD) dan kesan pelepasan likat yang berkaitan dengan syarat sempadan suhu malar 

tempatan. Kesemua persamaan separa dijelmakan kepada persamaan pembezaan biasa 

dengan menggunakan penjelmaan keserupaan yang sesuai. Persamaan pembezaan biasa 

yang diperoleh telah diselesaikan secara berangka dengan menggunakan kaedah Luruan 

dalam perisian Maple. Penyelesaian berangka diperoleh untuk nombor Nusselt setempat 

dan pekali geseran kulit serta profil suhu dan halaju. Ciri-ciri aliran dan pemindahan 

haba untuk pelbagai nilai lapan parameter yang berkaitan iaitu nombor Prandtl, 

parameter regangan, nombor Eckert, parameter gelincir halaju, parameter gelincir haba, 

parameter radiasi, parameter magnetik dan parameter bendalir tak Newtonan 

Williamson telah dianalisis dan dibincangkan. Perbandingan juga dibuat dengan 

mengesahkan melalui penyelidikan yang sedia ada supaya keputusan yang diperoleh 

adalah sesuai dan boleh dipercayai. Sebagai kesimpulan, peningkatan nilai nombor 

Prandtl, parameter regangan, haba tanpa dimensi dan halaju tak berdimensi 

menyebabkan penurunan dalam suhu dinding dan juga ketebalan lapisan sempadan 

haba. Sementara itu, peningkatan parameter bendalir tak Newtonan Williamson dan 

parameter radiasi haba, lapisan sempadan halaju juga meningkat.  
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ABSTRACT 

 

 

Problems related to boundary layer flow and heat transfer is important due to its various 

practical applications in engineering and industrial area. Cooling systems, nuclear 

reactor, electronic, hydrodynamics process, paper production and the boundary layer in 

liquid film condensation process are some of the example of various applications related 

to boundary layer flow and heat transfer. Present thesis solved numerically three 

problems of boundary layer flow on stagnation point over a stretching by considering 

the Newtonian fluid (viscous fluid) and non-Newtonian fluid (Williamson fluid). 

Besides, this thesis concern of the influence of slip flow, thermal radiation, 

magnetohydrodynamic (MHD) and viscous dissipation effects associated with constant 

wall temperature as boundary conditions. All gorvening equations in the form partial 

differential equations are transformed into ordinary differential equations by employing 

the suitable similarity transformation. The transformed ordinary differential equations 

obtained are solved numerically using a Shooting method in Maple software. Numerical 

solutions are obtained for the local Nusselt number and skin friction coefficient as well 

as the temperature and velocity profiles. The features of the flow and heat transfer 

characteristics for various values of eight pertinent parameters which are the Prandtl 

number, the stretching parameter, the Eckert number, the velocity slip parameter, the 

thermal slip parameter, the radiation parameter, the magnetic parameter and the non-

Newtonian Williamson fluid parameter are analyzed and discussed. The comparison is 

also done by verifying through existing research so that the results obtained are a good 

agreement and reliable. As conclusion, the increases of Prandtl number, stretching 

parameter, dimensionless thermal and velocity slip parameter result to the decreasing in 

the wall temperature and also thermal boundary layer thickness. Meanwhile, increasing 

the non-Newtonian Williamson fluid parameter and thermal radiation parameter, the 

thermal boundary layer also increases.  
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CHAPTER 1 

 

 

PRELIMINARIES 

 

 

1.1 Introduction 

 

Transition energy is a term used to describe heat transfer. According to 

Incropera (1996) and Ishak (2008), heat is energy in transit due to a temperature 

difference. Heat in the form of energy is related to the movement of atoms, molecules 

and other particles that contain mass. When one system is making contact with another 

system with different temperature, heat flows spontaneously and at the same time, the 

thermal interaction will occur. Heat is also synonymous with thermal transportation 

(heat transfer) which can move between objects or areas within an object. Basically, 

heat transfer may occur in three conditions which are conduction, convection and 

radiation. Heat flow by conduction refers to the transfer of heat in the form of energy 

through direct or physical contact between atoms and molecules within objects that are 

touching. In other words, when adjacent atoms and molecules vibrate against one 

another, the heat will flow. The example of heat conduction is touching a hot iron, 

where the heat will pass from iron to our hands. Solid is a better conductor compared to 

liquid or gas since the array of molecules in solid are very compactly packed together. 

Meanwhile, heat flow by convection refers to heat passes through the movement of 

fluids. Liquids and gases are categorical in fluids. The actual movement or the 

circulation of the up and down motion helps the heat to spread in fluids. An example of 

heat flow by convection is the temperature of the water inside a pool, where it is warm 

at the top of the pool but as we swim deeper, we can feel the water gets colder. Lastly, 

heat flow by radiation refers to the heat in the form of electromagnetic energy which is 

moving in waves through any transparent medium or empty space. Radiation does not 

need any molecules or contact between the heat sources to pass the energy along. The 

sun is the biggest source of heat radiation that transfers energy into the solar system. 

The radiation heat moves through empty space or any transparent medium and we can 
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feel the heat. According to Baehr and Stephen (2006) and Lienhard IV and Lienhard V 

(2011), heat transfer by conduction and radiation from a solid surface to a fluid named 

is called the convective heat transfer process. In this study, the convection heat flow 

will be considered. 

 

1.1.1 Convective Heat Transfer Process 

 

The convective refers to heat transfer that occurs between surfaces with a 

moving fluid when both are at different temperatures (Incopera, 1996; Ishak, 2008). 

Heating can reduce fluid density because when heat transfers from the solid surface into 

fluid, the density of fluid decreases and the molecules will also move, spread out and 

rise. The cold fluid with more density will sink, and these up and down motions create 

circulation movements of heat to spread out. The above phenomena are also described 

as a mechanism from convection where the energy is transferred by movement and 

random motion of molecules (diffusion). This process will continue until both the 

surface and the fluid have the same temperature (Darus, 1994; Ishak, 2008). 

 

Convection can be separated into two types; the forced convection and the free 

convection which is also known as natural convection (Pop and Ingham, 2001; 

Mohamed, 2017). The forced convection occurs when fluid motion circulation is 

generated with the influence of external agents such as fan, blower or nozzle through 

the fluid. The example of forced convection by a fan is a snow machine. While for free 

convection, there is no external agent that influences the heat transfer process, but fluid 

motion circulation is generated by the gravitational field and temperature changes. The 

fluid with different temperatures can cause variation of fluid density. The example of 

free convection is sea-wind formation. 

 

In addition, mixed convection occurs when both free and force convection take 

parts or occur simultaneously. The buoyancy parameter
n

Gr

Re
  as a scalar to measure 

the influence of forced and free convection in a flow with Re as a Reynold‟s number, 

Gr as Grashof number and  0n as a constant. The forced convection is dominant 
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when 0
n

Gr
,

Re
   while free convection take part as

n

Gr

Re
   (Pop and 

Ingham, 2001; Mohamed, 2017). 

 

1.1.2 Boundary Layer Theory 

 

Ludwig Prandtl (1875 – 1953) is the first person to introduce the boundary layer 

theory with a paper entitled “On the Motion of Fluid with Very Little Friction”. 

According to Anderson (2005), based on Prandtl theory, a thin layer (region) is adjacent 

to the plate surface that is embedded in the fluid motion field and this region is known 

as the boundary layer. 

 

Prandtl theory describes the fluid flows past a body can be divided into two 

parts, one is the thin layer adjacent to the plate surface and another one is outside the 

boundary layer (major part), this concept can be delineated in Figure 1.1. Furthermore, 

in thin layer adjacent to the plate surface or known as boundary layer, the effects of 

viscosity and the frictional force should not be neglected and must be considered. The 

outside of the boundary layer (major part) is defined as inviscid. According to 

Schlichting (1979), inviscid flow refers to fluid flow where the viscosity is neglected 

because the frictional force is too small. 

 

 

                                        Inviscid Flow 

 

 

                                                  Boundary Layer 

 

 

 

 

 

Figure 1.1  Inviscid flow and boundary layer 
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Fluid  

Flow 
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There are two types of boundary layer which are the velocity boundary layer and 

the thermal boundary layer (Ozisik, 1985). For boundary layer theory, Figure 1.2 shows 

the consideration of fluid flows past over a plate surface. When the fluid molecule is 

making contact with the plate surface, it is assumed that the velocity of the molecule 

equals zero. The molecule with zero velocity then delays the movement of other fluid in 

the layer next to it. This process will continue until the distance of hy  from the plate 

surface and after that, this effect can be neglected. By increasing the distance from the 

surface in ,y fluid velocity in x component also increases the free stream velocity

U outside the boundary layer. This quantity h is called the velocity boundary layer 

thickness, and usually is defined by .y Meanwhile, the thermal boundary layer is 

formed when the temperature between the fluid flow and plate surface is different. 

Based on Figure 1.2, there is an existence of a region where the temperature changes 

from  T y at 0y  to T which is at a free flow outside the boundary layer. The 

quantity T is representing the thermal boundary layer thickness. This region can be 

characterized by the temperature of gradient and heat transfer (Incropera, 1996; Kreith 

et al., 2010; Mohamed, 2017). 

 

 

 

 

 

Figure 1.2 Velocity and thermal boundary layers 

 

Acceptable only to the boundary layer, Prandtl disclosed that the Navier-Stokes 

equations can be changed to a simpler form and identified as the boundary layer 

 

L 

Tw 
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equations. There are a few assumptions need to be made for the derivation of boundary 

layer equations (Schlichting, 1979; Ishak, 2008; Mohamed, 2017): 

 

i. The viscous effects are limited in a boundary layer only, while for the outside 

boundary layer, the viscous effects are not important so that flow can be 

determined by inviscid solutions such as potential flow or Euler‟s equations. 

ii. The boundary layer is smaller than the plate surface. If  is a boundary layer 

thickness and L is plate surface, hence / 1.L  Also,  x O L and

  ,y O  where O is called as of order. 

iii. The boundary conditions: 

 at boundary layer:  ,0 0u x  and  ,0 0,v x  the fluid obeys the no-

slip condition on plate surface, 

 free stream condition at infinity:  ,u x U  and  , 0,v x   where

u and v are velocity components in x and y directions, respectively 

and U embodies the free stream velocity. 

iv. In the boundary layer,  .u O U  

 

1.1.3 Viscous Fluid 

 

Fluid can be classified into the Newtonian fluid (viscous fluid) and non-

Newtonian fluid. For a Newtonian fluid, it must agree with Newton‟s equation 

(Newton‟s law of viscosity) where the frictional force per unit area, denoted by   

frictional shear stress, is linearly proportional to velocity gradient ,
du

dy
which  

,
du

dy
       1.1  

 

where  is a coefficient of dynamic viscosity (Schlichting, 1979; Mohamed, 2017).  

The examples of Newtonian fluid are water and air. 
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Figure 1.3 portrays the fluid flow on a flat plate, where u is a fluid velocity in a 

boundary layer, U is a stream velocity (free flow outside of boundary layer) and ,x y

are Cartesian coordinates.  

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Laminar velocity profile on a flat plate 

 

In addition, inviscid flow refers to fluid flow where, if the viscosity is neglected 

and   in Equation 1.1 is set to 0. However, in real life, the inviscid flows with zero 

viscosity do not exist. Furthermore, some other fluids can be classified as a non-

Newtonian fluid since their equations do not satisfy Equation 1.1. In non-Newtonian 

fluids, the viscosity can change when it is under force. The examples of non-Newtonian 

fluid are paint and polymer (Ishak, 2008). 

 

1.1.4 Viscous Dissipation 

 

The irreversible process by means of which the work done by a fluid on adjacent 

layers due to the action of shear forces is transformed into heat is defined as viscous 

dissipation  (Reddy et al., 2015). In other words, the viscosity from a viscous fluid flow 

will take energy from the motion (kinetic energy) and transform it into thermal energy. 

Viscous dissipation is also called internal friction and it is important to study in order to 

understand the behavior of temperature distributions when internal friction is not 

neglected. According to Gebhart (1962), the effects of viscous dissipation in free 

convection flow with large decelerations from high rotating speeds, high-velocity flow 

and highly viscous flow with moderate velocity. Meanwhile, Soundalgekar (1972) 

U

U

 

u  

y 

x 

du

dy
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found the outcome in modeling boundary layer flow and heat transfer where the effects 

of viscous dissipation into the energy equation are neglected.  

 

Viscous dissipation is represented as an Eckert number, Ec in an energy 

equation and it is the ratio of the kinetic energy over the boundary layer which shows 

differences in enthalpy. Viscous dissipation changes the temperature distribution by 

playing a role like an energy source, which leads to affected heat transfer rates. 

 

1.1.5 Williamson Fluid 

 

In this study, Williamson fluid (pseudoplastics fluids) has been chosen into 

consideration. Williamson (1929) was the first to discuss the flow of pseudoplastic 

materials and developed a model equation to illustrate the flow of pseudoplastic fluids. 

From the outcome of his study, there are similarities among the flow properties of this 

fluid and plastic fluid in certain aspects. In addition, this fluid cannot be molded and 

there is no influence of yield stress on fluid behavior. This fluid is categorized as non-

Newtonian fluid. A Newtonian fluid is a fluid that follows Newton‟s equation 

(Newton‟s law of viscosity), but as for non-Newtonian, the fluids are not in accordance 

with Newton‟s equations. According to Metzner (1965), the non-Newtonian fluid can be 

separated into three types which are viscoelastic, time-dependent viscosity and purely 

viscous fluid. The behavior of non-Newtonian fluid is shear thinning, where the 

viscosity decreases under shear stress and it is synonymous with pseudoplastic fluid. 

The viscosity of pseudoplastic fluid decreases instantaneously under shear rate but stays 

constant in the end. The examples of this kind of fluid are blood, paint and whipped 

cream. 

 

There are other studies that consider Williamson fluid. This includes a study by 

Hayat et al. (2016a) who analyzed the effect of an inclined magnetic field on the 

peristaltic flow of Williamson fluid in an inclined channel with convective boundary 

conditions. The effect of chemical reaction on MHD boundary layer flow and melting 

heat transfer of Williamson nanofluid in porous medium has been elaborated by 

Krishnamurthy et al. (2016). Amanulla et al. (2018) investigated numerical exploration 

of thermal radiation and Biot number effects on the flow of a non-Newtonian MHD 

Williamson fluid over a vertical convective surface. Thermal radiation effects on 
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Williamson fluid flow due to an expanding/contracting cylinder with nano materials: 

dual solutions were presented by Hamid et al. (2018b). Jain and Parmar (2018) analyzed 

radiation effect on MHD williamson fluid flow over stretching cylinder through porous 

medium with heat source. 

 

1.1.6 Slip Condition 

 

 In no-slip conditions, a solid body will not be having any velocity relative to the 

body at the control surface of the moving fluid in contact (Prabhakara and Deshpande, 

2004). According to Bhattacharyya et al. (2011), the no-slip assumptions are not 

applicable for all cases of fluid flow. It is due to some situations where the no-slip 

conditions may be replaced with partial or slip conditions. The slip condition is the 

action when the fluid at the plate surface will have non-zero velocity. Martin and Boyd 

(2006) analyzed the momentum and heat transfer in a laminar boundary layer with slip 

flow. Furthermore, Aman et al. (2011) studied the slip effects in mixed convection 

boundary layer flow on the vertical surface near the stagnation-point while Sahoo 

(2010) considered partial slip on stretching sheet embedded in the non-Newtonian fluid. 

Moreover, Raisi et al. (2011) investigated forced convection laminar flow of nanofluid 

through a microchannel in the presence as well as in the absence of slip effects. 

Recently, Mahmoud and Waheed (2012) as well as Nandy and Mahapatra (2013) 

observed the slip and heat generation/absorption effects on MHD stagnation flow past a 

stretching surface in nanofluid and micropolar fluid, respectively. 

 

 Other related works that focus on slip condition include Ellahi et al. (2016) that 

analyzed the numerical study of magnetohydrodynamics generalized Couette flow of 

Eyring-Powell fluid with heat transfer and slip condition. Next, Imran et al. (2018) 

studied the boundary layer flow of MHD generalized Maxwell fluid over an 

exponentially accelerated infinite vertical surface with slip and Newtonian heating at the 

boundary. Sobamowo et al. (2018) studied magnetohydrodynamic squeezing flow 

analysis of nanofluid under the effect of slip boundary conditions using variation of 

parameter method. Majeed et al. (2019) analyzed the impact of the magnetic field and 

second-order slip flow of Casson liquid with heat transfer subject to suction/injection 

and convective boundary conditions. Thermal radiation and slip effects on MHD 
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stagnation point flow of non-Newtonian nanofluid over a convective stretching surface 

were observed by Besthapu et al. (2019). 

 

1.2 Research Objectives 

 

 This study investigates numerically the flow and heat transfer on the stagnation 

point with several effects and the main objectives are as follows: 

 

i. to improve by adding the new related parameter for selected problem and solve 

numerical algorithms for the computations by using shooting method in Maple 

software. 

ii. to analyze the influences of Prandtl number, Eckert number, stretching 

parameter, Williamson fluid parameter, thermal and velocity slip parameter, 

viscous dissipation parameter, magnetic parameter, thermal radiation parameter 

on the velocity and temperature profiles, the skin friction coefficient as well as 

the local Nusselt number.  

 

1.3 Research Scope 

 

The research is limited to the problems which involve a steady, two-dimensional 

stagnation point flow over a stretching sheet immersed in an incompressible viscous and 

Williamson fluid. The governing boundary layer equations which occupy ordinary 

differential equations for these problems are formulated using the similarity 

transformation and will be solved numerically using shooting method. Three (3) 

problems have been considered in this study which are: 

 

i. Flow and heat transfer analysis of viscous fluid on the stagnation point over a 

stretching surface with viscous dissipation and slip conditions. 

ii. Flow and heat transfer analysis of Williamson fluid on the stagnation point over 

a stretching surface with viscous dissipation and slip conditions. 

iii. Flow and heat transfer analysis of Williamson fluid on MHD stagnation point 

flow over a stretching surface with thermal radiation effects. 
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1.4 Research Significance 

 

This study can increase the understanding and promote the development of 

boundary layer flow on a stagnation point over a stretching sheet with the presence of 

slip flow, thermal radiation, magnetohydrodynamic (MHD) and viscous dissipation 

effects in a viscous and Williamson fluid. Numerical solutions for each mathematical 

model are obtained and completely analyzed. The importance of applications of fluid 

flow in both areas of technology and engineering is mentioned in this chapter. 

 

The outcomes of this study are in terms of modeling, theoretical predictions, 

numerical formulations and solutions. There are no physical outcomes or products 

produced in this study and the important finding regarding the temperature and fluid 

flow behavior including the effects of several parameters will help to explain and to 

validate numerical results as well as verify the experimental results in the future. 

 

1.5  Literature Review 

 

1.5.1 Stagnation Point Flow 

 

Stagnation point flow is an attractive topic in the research area due to its 

applications in both the industrial and sciences areas. A point in a flow field where the 

local velocity of the fluid is zero is called the stagnation point (Abu Bakar et al., 2019). 

Hiemenz (1911) was the first to propose a problem involving stagnation point and come 

up with the exact solution for Navier-Stokes equations. Chao and Jeng (1965) 

investigated the unsteady stagnation point heat transfer while Mahapatra and Gupta 

(2002) investigated the stagnation point flow with heat transfer and solved using a finite 

difference method known as Thomas algorithm. Nazar et al. (2004a) extended the same 

problem of  Mahapatra and Gupta (2002) by considering micropolar fluid. The Keller-

box method was used to solve the system of nonlinear ordinary differential equations 

and as a matter of fact, it was incredibly concurrence with Mahapatra and Gupta (2002) 

for a resultant Newtonian fluid. In addition, Ishak et al. (2006) considered the mixed 

convection stagnation-point flow towards a vertical stretching sheet. The transformed 

ordinary differential equations are solved numerically by using the Keller-box method. 

Furthermore, Bachok et al. (2012) investigated the stagnation-point boundary layer heat 
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transfer flow over an exponentially stretching/shrinking sheet in a nanofluid. Three 

types of nanoparticles, especially copper, alumina and titanium were solved numerically 

by the transformation of the governing mathematical equations. The conclusion of an 

increase in the skin friction and heat transfer coefficients was produced from 

nanoparticles into the water-based fluid. The copper water nanofluid‟s skin friction 

coefficient and the local Nusselts number are higher compared to the others. 

Additionally, Suali et al. (2012) analyzed the numerical solutions of unsteady two-

dimensional stagnation point heat transfer flow towards a shrinking or stretching surface 

with prescribed heat flux. They discussed the special effects of stretching/shrinking 

parameter, Prandtl number and unsteadiness parameter on the skin friction and local 

Nusselt number. Mohamed et al. (2013) studied the effects of convective boundary 

conditions on stagnation point flow instead of prescribed heat flux. In addition, a steady 

two-dimensional heat transfer stagnation point flow over a nonlinearly moving plate 

with partial slip condition was discussed by Roşca et al. (2014). In this work, dual 

solutions obtained for some values of the governing parameter and compared to the 

results of Weidman et al. (2006) which have strong excellent agreement. 

 

 Other related works focusing on the stagnation point flow include Mansur et al. 

(2015) who have analyzed the magnetohydrodynamic stagnation point flow of a 

nanofluid over a stretching/shrinking sheet with suction where boundary value problem 

- fourth order method (bvp4c) in MATLAB has been used to solve the boundary layer 

problem. The numerical results show that dual solutions exist for the shrinking case, 

while for the stretching case, the solution is unique. Non-aligned MHD stagnation point 

flow of variable viscosity nanofluids past a stretching sheet with radiative heat was 

studied numerically by Khan et al. (2016). The transformed equations are numerically 

integrated using the fourth–fifth order Runge–Kutta–Fehlberg (RKF45) method. 

Mehmood et al. (2018) examined the non-aligned stagnation point flow of radiating 

Casson fluid over a stretching surface. The comparison with previously published 

literature that has reached an excellent agreement is reported. Kamal et al. (2019) 

investigated the numerical study of a stability analysis of MHD stagnation-point flow 

towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions 

effect by using bvp4c in MATLAB software to solve the boundary layer problem. Abu 

Bakar et al. (2019) examined a stability analysis of boundary layer stagnation-point 

flow over a stretching/shrinking cylinder in a nanofluid. A shooting method in Maple 
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software and a bvp4c method in MATLAB software are applied to solve this boundary 

layer problem. The result shows that non-unique (dual) solutions exist for a shrinking 

cylinder and a unique solution exists for a stretching cylinder. 

 

Motivated by the above-cited works, this study considers the flow and heat 

transfer analysis on the stagnation point over a stretching surface. In addition, the 

effects of slip conditions and viscous dissipation had been taken into account for further 

investigation. 

 

1.5.2 Stretching Surface 

 

Due to numerous applications of fluid over a stretching sheet in the industrial 

manufacturing and engineering process, many researchers have great interest to explore 

this area and theoretical studies have increased. According to Salleh et al. (2010), the 

fluid dynamics due to a stretching sheet is important in extrusion processes. In addition, 

there is an extrusion of a polymer sheet from the die, the boundary layer in liquid film 

condensation process and emulsion coating on photographic films, and these application 

examples of stretching sheet flows in engineering part (Nadeem et al., 2013). Crane 

(1970) was the first to examine the flow past a stretching plate. In his investigation, 

there are certain similarities with Hiemenz (1911) which the main velocity in the outer 

flow is proportional to the distance from the stagnation point. Later, theoretical studies 

have been carried out such as by Gupta and Gupta (1977), where they studied the heat 

and mass transfer on a stretching sheet with suction or blowing. Buoyancy effects on 

MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated 

stretching/shrinking sheet were examined by Makinde et al. (2013). They were using 

the Runge-Kutta fourth-order (RKF45) method with shooting technique to solve 

coupled nonlinear ordinary differential equations. They also found both the skin friction 

coefficient and local Sherwood number had decreased while the local Nusselt number 

had increased with the expansion intensity of the buoyancy force. Next, Ibrahim and 

Shankar (2013) analyzed MHD boundary layer flow and heat transfer of a nanofluid 

past a permeable stretching sheet with velocity, thermal and solutal slip boundary 

conditions. The comparison has been made with the previous literature and excellent 

agreement has been reached. Pal et al. (2014) presented the flow and heat transfer of 
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nanofluids at a stagnation-point flow over a stretching/shrinking surface in a porous 

medium with thermal radiation. 

 

 Other studies considering a stretching sheet include the investigation by Abbas 

et al. (2015) on the stagnation-point flow of a hydromagnetic viscous fluid over 

stretching/shrinking sheet with generalized slip condition in the presence of 

homogeneous–heterogeneous reactions. Next, Abd El-Aziz (2015) numerically 

analyzed dual solutions in hydromagnetic stagnation point flow and heat transfer 

towards a stretching/shrinking sheet with non-uniform heat source/sink and variable 

surface heat flux. The thermal radiation and slip effects on MHD stagnation point flow 

of nanofluid over stretching sheet have been elaborated by Haq et al. (2015). They used 

the Runge-Kutta fourth-order (RKF45) method along with the shooting technique to 

solve coupled ordinary differential equations. Sandeep et al. (2016) presented a  

stagnation-point flow of a Jeffery nanofluid over a stretching surface with the induced 

magnetic field and chemical reaction and the Runge-Kutta scheme has been used to 

solve this problem. Next, Rehman et al. (2018) investigated thermo physical analysis for 

three-dimensional MHD stagnation-point flow of nano-material influenced by an 

exponentially stretching surface. They found the best example where the flow caused by 

a  stretching plate near stagnation point could be detected through spinning, floating and 

blowing of fiber glass. Their study concluded that the stagnation point parameter 

increases produced velocity and thermal profile whereas decreases induced boundary 

layer thickness. 

 

 Inspired by the above literature, the present study aims to analyze the problems 

regarding boundary layer flow over a stretching surface. The investigation in this study 

will consider several effects. 

 

1.5.3 Radiation and Magnetohydrodynamic (MHD) 

 

The interaction of conducting fluids with electromagnetic waves is referred to as  

Magnetohydrodynamics (MHD) (Reddy et al., 2015). Due to the wide application of 

fluid affected by a magnetic field in technology and engineering, many researchers have 

investigated such study.  Reddy et al. ( 2015) and Hayat et al. (2016b) have listed MHD 

power generation, MHD flow meters and MHD pump as well as plasma studies and 
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petroleum industries, as application examples of MHD in various areas of technology 

and engineering. Alfven (1942) was the first to explore and find electromagnetic-

hydrodynamic waves in his study. On the other hand, literature on the effect of radiation 

on the flow and heat transfer has attracted the attention of researchers because of its 

important applications in rocket combustion chamber, power plants for interplanetary 

flight, gas-cooled nuclear reactors (Reddy et al., 2015), electrical power generation, 

solar power technology and astrophysical flows (Hayat et al., 2016b). 

 

Other studies consider MHD and radiation, while Hayat and Qasim (2010) 

considered the influence of thermal radiation and Joule heating on MHD flow of a 

Maxwell fluid in the presence of thermophoresis. Khan et al. (2012) solved the problem 

of unsteady MHD free convection boundary layer flow of a nanofluid along a stretching 

sheet with thermal radiation and viscous dissipation effects. Slip effects on MHD 

boundary layer flow over an exponentially stretching sheet with suction/blowing and 

thermal radiation have been noticed by Mukhopadhyay (2013). Rashidi et al. (2014) 

have noticed the buoyancy effects on MHD flow of nanofluid over a stretching sheet in 

the presence of thermal radiation. Sheikholeslami et al. (2016) have studied MHD free 

convection of Al2O3–water nanofluid considering thermal radiation: a numerical study, 

the results show that the enhancement in heat transfer has a direct relationship with 

Hartman number, viscous dissipation parameter and radiation parameter but it has 

reversed relationship with Rayleigh number. Bhatti et al. (2016a) deliberated on the 

numerical simulation of entropy generation with thermal radiation on MHD Carreau 

nanofluid towards a shrinking sheet. The basic equations are solved numerically with 

the help of the successive linearization method and Chebyshev spectral collocation 

method. It is observed that the influence of the magnetic field and fluid parameters 

oppose the flow. It is also analyzed that thermal radiation effects and the Prandtl 

number show opposite behavior on the temperature profile.  

 

Nayak (2017) numerically analyzed MHD 3D flow and heat transfer analysis of 

nanofluid by shrinking the surface inspired by thermal radiation and viscous dissipation. 

Thermal radiation of Ferro fluid in the existence of Lorentz forces considering variable 

viscosity has been investigated by Sheikholeslami and Shehzad (2017). Daniel et al. 

(2018) obtained the impact of thermal radiation on the electrical MHD flow of 

nanofluid over a nonlinear stretching sheet with variable thickness. Numerical study of 
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unsteady MHD flow of Williamson nanofluid in a permeable channel with heat 

source/sink and thermal radiation was examined by Hamid et al. (2018c). Babu et al. 

(2018) solved the problem of thermal radiation and heat source effects on MHD non-

Newtonian nanofluid flow over a stretching sheet. Thermal management of MHD 

nanofluid within the porous medium enclosed in a wavy shaped cavity with square 

obstacle in the presence of a radiation heat source was analyzed by Alkanhal et al. 

(2019). Raju et al. (2019) investigated MHD viscoelastic fluid flow past an infinite 

vertical plate in the presence of radiation and chemical reaction. 

 

Motivated from the above literature, the present study will focus on the problems 

regarding MHD and radiation as one of the parameters. Besides, constant wall 

temperature will be considered as a boundary condition. 

 

1.6 Thesis Outline 

 

This thesis is divided into six chapters. In Chapters 3 to 5, three problems have 

been investigated and the obtained solutions are analyzed and discussed by observing 

the temperature with velocity distribution, skin friction coefficient and Nusselt number. 

The descriptions for all chapters are as follows: 

 

Chapter 1: The first chapter begins by preliminaries with general introduction 

such as convective heat transfer process, boundary layer theory, 

viscous fluid,  viscous dissipation, Williamson fluid and slip 

condition. The literature reviews are briefly elaborated which include 

stagnation point flow, stretching surface and radiation as well as 

MHD. Next, the objectives,  scope and significance of research are 

explained to increase the understanding towards the purpose of the 

research. 

 

Chapter 2: This chapter discusses problem formulation and numerical procedure. 

The shooting method in Maple software has been used to solved 

numerically all the problems. This method is suitable and flexible to 

deal with all the problems discussed in this thesis. In addition, 
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regarding the governing equations which are in the form of elliptical 

non-linear partial differential equations are reduced to hyperbolic 

form and this is done by the order of magnitude analysis. Next, the 

similarity transformation is applied and lastly, the transformed 

ordinary differential equations obtained are solved numerically using 

the shooting method. 

 

Chapter 3: The flow and heat transfer analysis of viscous fluid on the stagnation 

point over a stretching surface with viscous dissipation and slip 

conditions are considered in this chapter. This chapter is divided into 

four section which include an introduction, mathematical 

formulation, results and discussion as well as a conclusion. The 

temperature and velocity field are elucidate by tables and graphs. The 

influence of Prandtl number, stretching parameter, Eckert number, 

thermal and velocity slip parameter on the flow and heat transfer 

characteristics are analyzed and discussed. 

 

Chapter 4: This chapter discusses the second problem that is the flow and heat 

transfer analysis of Williamson fluid on the stagnation point over a 

stretching surface with viscous dissipation and slip conditions. 

Williamson fluid is chosen as a medium fluid problem with a similar  

discussion in the previous problem.  

 

Chapter 5: Flow and heat transfer analysis of Williamson fluid on MHD 

stagnation point flow over a stretching surface with thermal radiation 

effects are discussed in this chapter. In addition, magnetic and 

thermal radiation are considered in this problem. The influence 

related parameter will be discussed in this chapter. 

 

Chapter 6: Lastly, this chapter  includes a summary, contributions of the research 

and suggestion for future studies based on the present solutions. The 

list of references is attached at the end of this chapter.  
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CHAPTER 2 

 

 

PROBLEM FORMULATION AND NUMERICAL PROCEDURE 

 

 

2.1 Introduction 

 

The main discussion in this chapter will be on the mathematical formulation and 

derivation of the governing equations of steady forced convection on the stagnation 

point flow of a viscous fluid over a stretching surface with slip effects as given in 

Section 2.2. Next, the shooting method in Maple software is carried out to solve the 

numerical procedures. 

 

2.2 Governing Equations 

 

 Governing equations consist of three basic equations, i.e. continuity equation, 

momentum equation and energy equation. All three basic equations will be briefly 

discussed in the following sub-topic. 

 

2.2.1 Basic Equations 

 

According to Bejan (1984), the basic continuity equations can be expressed as 

 

Continuity equation: 

.( ) 0,u
t





 


                 2.1 

Momentum equation: 
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Du
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                          2.2 
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Energy equation: 
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where
D

Dt
   denotes the material derivative,  (del) is the vector operator and  

is the viscous dissipation function, while u and F are velocity component and force, 

respectively,  is a fluid density, p for pressure,   is dynamic viscosity, t  is time,

T is temperature, pC  is specific heat at constant pressure, k is thermal conductivity, 

and lastly x and y represent the Cartesian coordinates along the surface and normal 

to the surface, respectively. 

 

 In discussing the mathematical model considered in Chapter 3, the flow and heat 

transfer analysis of viscous fluid on the stagnation point over a stretching surface with 

viscous dissipation and slip conditions, derivatives with respect to t is neglected 

because it is a steady flow. In this study, it is assumed that the flow is steady and two-

dimensional in an incompressible viscous fluid where the fluid properties such as 

specific heat, thermal conductivity and viscosity are constant. From the above 

considerations, Equations 2.1 to 2.3 becomes 
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where u and v are the velocity in x and y  direction, respectively. xF and yF  

are the components of the body force per unit volume,





 as the kinematic 

viscosity, 
p

k

C



 is the thermal diffusivity. In the case of free convection, it is 

found that xF g  and 0.yF  The term xF g  on the right hand side in 

momentum equations represents the body force on the negative x direction (Ishak, 

2008; Mohamed, 2017). For this case, which is the case of forced convection, the body 

force is considered 0.x yF F 
 

 

2.2.2 Boundary Layer Approximation 

 

Equations 2.7 to 2.10 are non linear partial differential equations which are 

elliptical. These equations can be transformed into parabolic nature by eliminating the 

second derivatives with respect to x or .y The parabolic partial differential equations 

are easier to solve (Tannehill et al., 1997; Ishak, 2008; Mohamed, 2017). 
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Regarding the transformation of the elliptic equations to the parabolic equations, 

one of the second derivative terms must be eliminated by the analysis of the magnitude 

and the smallest term compared to the others in the same equation will also be 

eliminated (Ahmad, 2009). This is because the small values give a small effect which 

can be neglected from the boundary layer flow. 

 

2.2.3 Order of Magnitude Analysis 

 

Considering the assumptions of boundary layer flow state in Section 1.1.2, 

(Bejan, 2013) suggested that  

 

                 
       , , , ,x O L y O T O T u O U     

    
2.11 

 

where L is the length of the plate,  is the boundary layer thickness, U is the 

free stream velocity and T is the temperature of fluid. 

From continuity Equation 2.7, 
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 Now, the process of order of magnitude analysis for the x and y components 

of momentum Equations 2.8 and 2.9 are detailed in Tables 2.1 and 2.2 using Equations 

2.11 and 2.12. 
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Table 2.1 Order of magnitude analysis for x component of the momentum 

equation  

 

Terms of 
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Used Equations 
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 From Table 2.1, the magnitude for 
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exist 

in the same order as described in the Bernoulli equation (Darus, 1994; Ishak, 2008) 

where the pressure in the boundary layer is equal to the pressure at the boundary. Every 

terms are multiplied with
2

.
L

U

Since the last two terms represent the viscosity, one of 

the terms will be eliminated due to the size being smaller than the others. The 

comparison can be done as follows: 
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Therefore, the term 
2

2

u

x




in the x component of the momentum Equation 2.8 can be 

ignored, but not the term
2

2
.

u

y




If both terms are eliminated, Equation 2.8 will 

become the momentum equation for the inviscid flow. As the remaining terms in the 

momentum equations becomes  1 ,O then 
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where   can be defined as 
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 Next, the order of magnitude analysis for the y component of the momentum 

Equation 2.9 is conducted in Table 2.2. 

 

Table 2.2 Order of magnitude analysis for y component of the momentum 

equation   
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 From Table 2.2,  each terms is multiplied with
2

,
U





and followed with a similar 

process as in Table 2.1. Since L  and Reynolds number
U L

Re

 tends to 

become infinity Re ,  (note that the boundary layer approximation is only valid 

when Re ), all of the terms except the pressure term, can be neglected due to very 

small values compared to the pressure term (stated as  1O in the above equation). 

 

Presently, the process of the order of magnitude analysis for energy Equation 

2.10 is completed out as in Tables 2.3. 

 

Table 2.3 Order of magnitude analysis for the energy equation 

 

Terms of 

equation 

Used Equation 

2.10 

Magnitude Order 

L

U T 

  

Decision 

L   

T
u

x




 

T
U

L




  1O  remain 

T
v

y




 

U T

L




    1O  remain 

2

2

p

k T

C x

 
 
   

2

T

L

  
1

O
U L

 
 
 

 
can be negligible

( 0)  

2

2

p

k T

C y
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1
O

U 

 
 
 

 remain 

u

x
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1

O
T

 
 
 

 
can be negligible

( 0)  

v
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U

L

  
1

O
T

 
 
 

 
can be negligible

( 0)  

u
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U


  

1 L
O
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x




 

2

U

L

  
1

O
T L





 
 
 

 
can be negligible

( 0)  
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 From Table 2.3, all terms are multiplied with .
L

U T 

Similar to the previous, 

each term on the right-hand side of the energy Equation 2.10 will be eliminated due to 

its small size compared to the other terms. The comparison can be made as follows: 

 

2 2

2 2
1,

LT T
O T

y x 


   
  

     

2

1,
Lu v

O
y x 

   
  

   
 

1,
Lu u

O
y x 

   
  

     

1.
Lu v

O
y y 

   
  

     

 

Therefore, the term

2

2
, ,

p

k T u v

C x x y

  

  
and

v

x




in the energy Equation 2.10 will be 

neglected, but not the term

2

2

p

k T

C y




and .

u

y




 

  

By this boundary layer approximation, Equations 2.7 to 2.10 can now be written 

as 

 

     

0,
u v

x y

 
 

 
 

 

          

2

2

1
,

u u p u
u v

x y x y




   
   

   
       2.16 

 

              

1
0 ,

p

y


 


                            2.17 

                  

                  

22

2
.

p p

T T k T u
u v

x y C y C y



 

    
    

                  

2.18 
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 The discussions on the derivation of boundary layer equations can be found in 

many books related to boundary layer, convection heat transfer or fluid dynamic such as 

Schlichting (1979), Bejan (1984), Baehr and Stephen (2006), Lienhard  IV and Lienhard 

V ( 2011), Kreith et al. (2010), Rathore (2011) and Favre-Marinet and Tardu (2013) and 

Mohamed (2017). 

 

From Equation 2.17 it is clear that the pressure p is constant in y  direction. 

p is only varied with x which is  .p p x Since p is constant in y  direction, 

the pressure distribution in the boundary layer is equal to the outside of the boundary 

layer for the same values of .x Hence, the term
p

x




in Equation 2.16 can be written in 

the ordinary differential form and becomes 

 

    
2

2

1
.

u u p u
u v v

x y p x y

   
   

   
      2.19 

 

 As pressure p does not depend on y in the boundary layer as shown in 

Equation 2.17, the pressure distribution along the boundary layer is similar to the 

outside of the boundary layer, then in this case, the Bernoulli equation is considered 

 

     

21
0.

2

p
U


          2.20 

 

The Equation 2.20 is obtained by differentiating with respect to x which becomes, 

 

    

1
0,

p u
U

x x

 
 

 
     2.21 

and can be written as 

 

                 

1
.

p u
U

x x

 
 

 
       2.22 
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By substituting Equation 2.22 into Equation 2.19, it becomes 

 

    

2

2
.

u u u u
u v U

x y x y


   
  

   
    2.23 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic diagram for flow and heat transfer analysis of viscous fluid on 

the stagnation point over a stretching surface with viscous dissipation and slip 

conditions  

 

The steady two-dimensional flow of a viscous fluid over a stretching plate is 

shown in Figure 2.1. It is assumed that the external and stretching velocities are

  eu x ax and   ,wu x cx where a and c are constant. It is further assumed that 

the plate is subjected to obey the slip conditions. Recall the governing equation 

analyzing the two-dimensional boundary layer equation systems is rewritten as follows; 

 

Continuity Equation 

0
 

 
 

u v

x y  

Momentum Equation 

2

2

u u u u
u v U

x y x y
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Energy Equation 

22

2

p p

T T k T u
u v

x y C y C y



 

    
    

      

 

subject to the boundary conditions (Salleh et al., 2009; Aziz, 2010) are as follows: 

               

             , 0,w w

u T
u u x v T T

y y
    

    
 

 at 0y          2.24 

                          ,eu u x T T   as  y   

                   

where u and v are the velocity in the x and y  axes, respectively, 

  2

wT x T bx  is the wall temperature ( b is a positive constant), v is the kinematic 

viscosity, T is the fluid temperature,   is the dimensional velocity slip parameter, 

 
is the dimensional thermal slip parameter, k is the thermal conductivity,  is the 

fluid density, pC is the specific heat and  is the dynamic viscosity. 

 

2.2.4 Similarity Transformation 

 

A dimensional governing equation contains many dependent/independent 

variables which make the equation difficult to solve. In order to reduce the number of 

dependent/independent variables, the similarity transformation is applied. 

 

The similarity transformation was first introduced by Blasius (1908). The main 

idea of this transformation is to eliminate at least one independent variable in the 

governing equation hence transform the governing partial differential equation to an 

ordinary differential equation. The similarity transformation is not applicable to all. The 

similarity variable is different for different types of geometry and boundary conditions.  

 

The similarity transformation for Equations 2.7, 2.23 and 2.18 subjected to the 

boundary condition 2.24 can be written as follows (Merkin, 1994; Lesnic et al., 1999; 

Salleh et al., 2010; Yacob and Ishak, 2011; Mohamed 2017) 
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1 2

1 2
, , ,

w

T Tc
y c xf

T T
     






 
   

     

2.25

   

where  and    are dimensionless variables, while  is the stream function. 

Then, u and v can be defined as 

 

       

, ,u v
y x

  
  
   

    2.26    

 

which satisfy the continuity Equation 2.7. Then, u and v can be derived as  

 

  
       

1 2 1 2
,v c xf c f

x x


   

        
          

2.27

    

   

     

1 2
1 2

1 2
1 2

,

c
u c xf y

y y y

c
c xf cxf

  
 

  

  


                        

                   

2.28 

  

with     
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u
cxf

x x

cf
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1 2
1 2

1 2
1 2

.

v v c
c f y

y y y

c
c f cf


 

  

  


                        

                  

2.30

 

  

By substituting Equations 2.25 to 2.30 into continuity Equation 2.7, we obtain 

     

     0
 

 
 

u v

x y
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0
  

  
  

u v

x y



        

2.31 

  

      
1 2

1 2
0

  
      

   

c
cf c f  


        

2.32

                
    0  cf cf                                                2.33

 
 

and Equation 2.7 is identically satisfied. 

 

 The same procedure is repeated for the case of momentum equation and it is 

found that 
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u c u

c f a
x y x
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2
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y y
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By substituting Equations 2.34, 2.35 and 2.36 into momentum Equation 2.23, then 

 

2

2

u u u u
u v U

x y x y


   
  

     

 

         

      

1 2
1 2
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c
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2
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f f f f
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2 2f ff f                 2.39 

   

 

    
2 2 0f ff f     

        2.40 

 

where
a

c
  is the stretching parameter, Equation 2.40 is a dimensionless momentum 

equation. 

 

 Next, for energy equation, 
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2 2, , ,
T c

T T bx bx
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 2 ,

T
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1 2 1 2

2 2 ,
T T c c

bx bx
y y


   

  

      
        

             

2.43 

 

 

     
1 2 1 22

2 2

2
.

T

yT c c c
bx bx

y y


   

   

 
                        

                       

2.44 

 

 

By substituting Equations 2.41, 2.42, 2.43 and 2.44 into energy Equation 2.18, then 

 

22

2

p p

T T k T u
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x y C y C y
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1 2
1 2 2

2
1 2

2

2

p p

c
cxf bx c f bx

k c c
bx cxf

C C

      



  

   

                       

     
       

              

2.45 

 

  

3 2
2 2 22

p p

k c x f
f bcx bcx f bcx

C C
  




    

      

2.46

 

 

  

 

 

2

21
2

Pr

w

p w

U
f f f

C T T
  



     


       

2.47 

 

   

21
2

Pr
f f Ec f       

          
2.48

 

  

 
  2Pr 2 Pr 0f f Ec f        

       
2.49 

      
 

 

where Pr 
pC

k

 
is the Prandtl number,

 

 

2






w

p w

U
Ec

C T T
is the Eckert number 

which represents the viscous dissipation and Equation 2.49 is a dimensionless energy 

equation. 

 

 The boundary conditions 2.24 for the variables are carried out as follows when

0y  and details are given in Table 2.4 
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Table 2.4 Formulation of boundary conditions 

 

Boundary 

condition 

Transformed Boundary Condition 
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u u x
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Table 2.4 (continued) 

Boundary 

condition 

Transformed Boundary Condition 

0v   

   

 
 

 

1 2

1 2

0

0 0

0
0

0 0

v

c f

f
c

f







 






 

 eu u x

 

 

 

 

 



  

  

  

eu u x
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T T x

bx T T
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T T

T T













 

  







  

  

  

 


 

 

 

In summary, Equations 2.23 and  2.18 which formulate to ordinary 

differentiation Equations 2.40 and 2.49 are subject to boundary conditions 2.50 as 

follows:  

 

  
         0 0, 0 1 0 , 0 1 0f f f        

       
2.50

      , 0f       as    
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The boundary layer equation described in this chapter will be solved numerically 

by using the shooting method. The numerical solution procedures are discussed in 

details in Section 2.3, while the numerical results will be discussed completely in 

Chapter 3. 

 

2.3 Numerical Method: Shooting Method 

 

In this thesis, we used the shooting method as numerical method to overcome 

the fluid mechanics problem from partial differential equation reduces to the non-linear 

ordinary differential equations. In addition, with this method, we have to determine the 

initial values that satisfied the boundary conditions at the endpoint. Furthermore, this 

method was applied in Maple programming language based on “dsolve” command and 

“shoot” implementation. The reasons for using this method were that; it could attempt 

to diagnose the applicable initial conditions for a related initial value problem (IVP) 

which brought the accurate solution to boundary value problem (BVP), easier to apply, 

reliable result could be obtained as well as very helpful when solving the boundary 

layer problems. 

 

The researchers who used the shooting method to solve the boundary layer 

problems include Aman et al. (2013), Ibrahim et al. (2013), Dessie and Kishan (2014), 

Abbas et al. (2015), Paland Mandal (2015), Bhatti et al. (2016b), Dash et al. (2016), 

Raju and Sandeep (2017), Agbaje et al. (2018), Bilal et al. (2018) and many more.  

 

The shooting method takes advantage of the speed and adaptivity for initial 

value problems. However, it is not as robust as collocation or finite difference methods. 

For example, even though the boundary value problem may look quite well-posed and 

stable but the growing modes of initial value problems may inherently be unstable and 

unnoticed. Therefore, the comparison of works was necessary.  

 

According to the literature review, it could be seen that the shooting method has 

been used frequently to determine the numerical solutions for Newtonian or non-

Newtonian flows problems, especially in science and engineering fields to solve the 

differential equations. Thus, in this thesis, we „shoot‟ out trajectories in different 

direction until we managed to set a trajectory that has appropriate boundary value. 
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Shooting method is a method to overcome a boundary value problem by reducing it to 

the initial value problem solution. Linear problems can be described as follows 

 

         

          

 

0 0

1 2 0 1 1 2 2
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c c c
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N c n
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G X t X t X t G G X t G X t

G X t

   

  

 

  2.51

          

where  J t is represented as a matrix,  0F t is defined as vector possibly depending 

on ,t 0G is a constant vector and 1 2, ,..., nG G G are constant matrices. Let

 
,

c

c

X t
Y





then differentiating both the initial value problem (IVP) and boundary 

conditions with respect to c gives 
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Since G is linear and a function of ,c we also have    0 0 ,c

G
G G c c c

c


  


hence 

the value of c for which   0G c  is satisfied is 

 

     

 
1

0 0

G
c c G c

c


 

   
                     

2.53

   

 

for any particular initial condition of 0.c
 

 

 On the other hand, for a non-linear problem, by assuming  J t as the Jacobian 

for the non-linear ordinary differential equation system and let iG be the Jacobian of 

the
thi boundary condition, the computation of

G

c




for the linearized system with a 
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particular initial condition given by Jacobian for the non-linear system leads to a 

Newton iteration, 

   

   
1

1n n n n

G
c c c G c

c





 
   

         

2.54

 

     

 The solutions are written in the form of a partial differential equation and then 

transformed into an ordinary differential equation. Besides, the solutions do not 

calculate the complicated integrals either analytically or numerically. Furthermore, 

these solutions are obtained by the shooting method which satisfies all the imposed 

boundaries and initial conditions as well as governing equations.   

   

The procedure of shooting method for case flow and heat transfer analysis of 

viscous fluid on the stagnation point over a stretching surface with viscous dissipation 

and slip conditions is given below. The result analysis is discussed in Chapter 3. 

 

The first step is to reduce the third-order system for the momentum equation to a 

first-order system, 
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                                2.55 

  

Next, reduce the second-order system to a first-order system for the respective 

energy equation, 

      

0

1

2

 

 

 



 

 
         

2.56 

 

where prime is referred to the derivative with respect to . Therefore, the new equation 

of momentum and energy is formed and illustrated as below: 
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                2.57 

 

the new boundary conditions for the above three equations are given as follow: 

 

 
         0 1 2 0 10 0, 0 1 0 , 0 1 0f f f      

    
2.58 

    
   1 0, 0f      as    

     

 

By using trial and error and the fourth-order Runge-Kutta method (RKF45), the 

solutions  2 0f and  1 0 are obtained. The initial value problem (IVP) result is 

obtained by using the shooting method on a set of parameters appearing in the 

governing equations with a known value of  2 0f and  1 0 . The convergence 

criterion largely depends on good guesses of the initial conditions in the shooting 

method. The iterative process is terminated until the relative difference between the 

current iterative values of  2 0f matches with the previous iterative value of  2 0f up 

to a tolerance of 510 .  

 

From the obtained solution, we see either the solution satisfies the boundary 

condition at the endpoints or by checking the velocity and temperature profiles graph. If 

the profiles have satisfied the boundary conditions at the endpoints asymptotically, it 

means the solution obtained is valid and very useful for the current study. The same 

procedure is repeated for another guessing value for the same values of parameters 

used. The programming works are shown in Appendix B by using Maple software.
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CHAPTER 3 

 

 

FLOW AND HEAT TRANSFER ANALYSIS OF VISCOUS FLUID ON THE 

STAGNATION POINT OVER A STRETCHING SURFACE WITH VISCOUS 

DISSIPATION AND SLIP CONDITIONS  

 

 

3.1 Introduction 

 

The boundary layer stagnation-point flow is the most interesting topic to explore 

due to its numerous applications in industries and engineering areas such as cooling, 

nuclear reactor, electronic, many hydrodynamics processes (Abu Bakar et al., 2019), 

melt-spinning processes, glass blowing and paper production (Nasir et al., 2019). 

 

Hiemenz (1911) was the first to propose the problem that involved stagnation 

point and solve the exact value for Navier-Stokes equations. Next, Chao and Jeng 

(1965) investigated the unsteady stagnation point heat transfer. Chiam (1994) examined 

stagnation-point flow towards a stretching plate. Recent studies on this problem are by 

Abu Bakar et al. (2019), who investigated a stability analysis of boundary layer 

stagnation-point flow over a stretching/shrinking cylinder in a nanofluid and Nasir et al. 

(2019) investigated stagnation point flow and heat transfer past a permeable 

stretching/shrinking Riga plate with velocity slip and radiation effects. Both problems 

have been solved numerically using the shooting method in Maple software and a bvp4c 

in MATLAB software. Abu Bakar et al. (2019) found that dual solution exists for 

shrinking cylinder cases and a unique solution exists for stretching cylinder cases but 

Nasir et al. (2019) found a dual solution for both stretching and shrinking cases.  

 

Furthermore, the stagnation point heat transfer flow over a stretching sheet in the 

presence of viscous dissipation and slip conditions are considered in this chapter. The 
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main idea for specific cases in this problem is from Mahapatra and Gupta (2002), 

Mohamed et al. (2012) and Mohamed et al. (2017). Mahapatra and Gupta (2002) have 

shown that, the rate of heat transfer at the stretching surface gives the best quality for 

the end product and for a fluid of small kinematic viscosity, a boundary layer is formed 

when the stretching velocity exceeds the free stream velocity. While Mohamed et al. 

(2012) have used the shooting method technique to solved the boundary layer problems 

generated by Newtonian heating in which the heat transfer from the surface is 

proportional to the local surface temperature. Mohamed et al.(2017) considered slip 

effect on stagnation point flow past a stretching surface with the presence of heat 

generation/absorption and Newtonian heating for boundary conditions. They used 

Runge-Kutta-Fehlberg method in Maple software to analyze the numerical solution. 

 

Motivated from related studies, the aim of the present work is to investigate the 

stagnation point heat transfer flow over a stretching sheet in the presence of viscous 

dissipation and slip conditions. The solvable model of this problem is presented in 

Section 3.2, with the introduction of similarity transformations to governing equations 

which has been formulate in Chapter 2 before the shooting method is used numerically. 

Numerical results for the local Nusselt number and skin friction coefficient as well as 

the temperature and velocity field are elucidated through tables and graphs. The 

influence of Prandtl number, stretching parameter, Eckert number, thermal and velocity 

slip parameters on the flow and heat transfer characteristics are analyzed and discussed. 

 

3.2 Mathematical Formulation 

 

Consider the steady two-dimensional flow of a viscous fluid over a stretching 

plate as shown in the previous chapter in Figure 2.1. The external and stretching 

velocities are  eu x ax and   ,wu x cx where a and c are constants. It is 

further assumed that the plate is subjected to obey the slip conditions.  

 

 After substituting transformations, the systems equations in ordinary differential 

equations term are in the form of 3.1 and 3.2 subject to the boundary conditions 3.3, 

which have been discussed in detail in the previous chapter under Section 2.2.4.  
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2 2 0f ff f                3.1 

 

 
  2Pr 2 Pr 0f f Ec f        

          3.2                      

 

The boundary conditions 

 

              0 0, 0 1 0 , 0 1 0      f f f           3.3 

        , 0f       as     

     

 In Equations 3.1and 3.2, the parameters of Prandtl number, Pr, Eckert number 

(represent the viscous dissipation parameter) ,Ec stretching parameter ,

dimensionless velocity parameter  and thermal slip parameter , can be defined as 
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3.4 

 

 It is noticed that 0  is when the wall temperature remains constant (CWT).  

The skin friction coefficient fC and the local Nusselt number xNu are given as 
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The surface shear stress w and heat flux wq are defined as 
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              0
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y

T
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         3.8       

 

Using the similarity variables in Equations 3.9 to 3.11,  
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y


 
  
 

            

3.9

   

      
1 2
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3.10
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3.11 

 

the outcomes are 

 

      

 1 2Re 0 ,f xC f 

    

                            3.12 

    

     

 1 2Re 0 ,x xNu              3.13 

    
 
 

    

where Re w
x

u x


 is the local Reynolds number.  

 

3.3 Results and Discussion 

 

Equations 3.1 and 3.2 with corresponding boundary conditions 3.3 were solved 

numerically with the aid of the shooting method using Maple software. To study the 

flow behavior, we considered different parameters, namely the Prandtl number, Pr, the 

dimensionless velocity slip parameter, , the stretching parameter, , the 

dimensionless thermal slip parameter,  and the Eckert number, .Ec In order to 

validate the efficiency of the method used, the comparison values of reduced skin 

friction coefficient
1 2Ref xC have been made with previously published paper. 
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Table 3.1 shows the comparison of the present results to those obtained in 

previous works by Ishak et al. (2006) for different values of . In addition, the results 

from Ishak et al. (2006) are generated from Keller-box method with the aid of 

MATLAB software. The result obtained were in accordance with previous studies, 

therefore, the method that was used work efficiently in this problem. 

 

Table 3.2 presents the various values of the viscous dissipation parameter Ec

when Pr 1    and 3.  It is found that as Ec increases the
1 2Rex xNu 

decreases which implies the reducing in ability of the convective heat transfer. Next, 

from the numerical calculation, there exist only unique solution for the skin friction 

coefficient, that is  0 1.45373.f    

 

Table 3.3 presents the values of  0 and
1 2Rex xNu 

for the various values of 

Pr when 1, 3Ec     and 0, 1, 7.  It is observed that when the dimensionless 

thermal slip parameter is not considered  0 ,  an increased Pr makes value of

 0 remains constant (CWT) by referring to the boundary conditions in Equation 3.3 

while
1 2Rex xNu 

increases. For the case of 1  and 7  an increase of Pr makes

 0 decreases while
1 2Rex xNu 

increases. When Pr is fixed and  increases, then

 0 and
1 2Rex xNu 

decreases. 

 

 Table 3.4 presents the values of
1 2Ref xC for the various values of  when

Pr 1Ec    and 0, 1, 7.  It is observed that when the dimensionless velocity 

slip parameter is not considered  0 ,  an increased  makes
1 2Ref xC increases as 

well as for the case of 1  and 7.  When  is fixed with an increase of ,

1 2Ref xC decreases. 

 

Figure 3.1 points the temperature profiles for various values of Pr. The value of

Pr rises, but the value of the wall temperature and the thickness of the thermal 
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boundary layer drop. Physically, its means when we increase Pr, the thermal 

diffusivity decreases and these phenomena lead to the decrease in the ability of the 

energy and finally decreases the thermal boundary layer. 

 

Figure 3.2 demonstrates the temperature profiles for various values of . The 

data found that when  rises, the temperature profile increase, but the value of the 

thickness of thermal boundary  layer drop. Figure 3.3 shows the velocity profiles for 

various values of  which produce  f    as .  The data found the 

thickness of the boundary layer increases with the increase of .  

 

Figure 3.4 presents the temperature distribution for different values of .Ec Note 

that 0Ec  refers to the case when viscous dissipation is not present. From Figure 3.4, 

the temperature profiles increases as Ec increases. This is due to large viscous 

resistance, there is more accumulation of heat energy in the fluid particles near the 

boundary. Also, it is noticed that Ec only gives a small effect for boundary layer 

thickness. 

 

Next, Figures 3.5 and 3.6 elucidate the temperature profile for various values of

 and , respectively. Similar trends occurred between both figures where the 

temperature profiles and boundary layer thickness decrease as  or  increases. 

Physically, we can conclude that the presence of both velocity and thermal slip 

parameter reduce the temperature and the boundary layer thickness. In addition, it is 

noticed that the velocity gradient is not affected by various values of , and the excuse 

for this phenomena can be seen from the boundary conditions in Equation 3.3. 

 

Figure 3.7 illustrates the velocity profile and skin friction coefficient for several 

of the velocity slip parameter . From Figure 3.7, it is found that the velocity gradient 

decreases as  increases.  
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Table 3.1 Comparison between the present results of the
1 2Ref xC or a different 

values of  when 0Ec     and Pr 1  

 

  
Ishak et al. (2006) Present 

1 2Ref xC  
1 2Ref xC  

0.1 - 0.9694 - 0.96945 

0.2 - 0.9181 - 0.91811 

0.5 - 0.6673 - 0.66726 

2 2.0175 2.017502 

3 4.7294 4.729282 

 

 

Table 3.2 Values of
1 2Rex xNu 

for the various values of Ec when Pr 1   

and 3   

 

Ec  
1 2Rex xNu 

 

0.1 0.71353 

1 0.63887 

2 0.55591 

3 0.47296 

5 0.30705 

 

Table 3.3 Values of  0 and
1 2Rex xNu 

for the various values of Pr when 

1, 3Ec     and 0, 1, 7   

 

Pr  

0   1   7   

 0  
1 2Rex xNu 

  0  
1 2Rex xNu 

  0  
1 2Rex xNu 

 

0.1 1 0.50464 0.66461 0.33539 0.22063 0.11134 

1 1 1.59577 0.38524 0.61476 0.08217 0.13112 

3 1 2.76395 0.26568 0.73432 0.04915 0.13584 

5 1 3.56824 0.21890 0.78110 0.03850 0.13736 

7 1 4.22208 0.19150 0.80850 0.03273 0.13818 
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Table 3.4 Values of 
1 2Ref xC for the various values of  when Pr 1Ec   

and 0, 1, 7   

 

  

0   1   7   

1 2Ref xC  
1 2Ref xC  

1 2Ref xC  

1.5 0.90953 0.32812 0.06654 

2 2.01750 0.68599 0.13430 

3 4.72928 1.45373 0.27158 

5 11.75199 3.09847 0.54930 

7 20.49788 4.81812 0.82894 

 

 

 

Figure 3.1 Temperature profiles  0 for various values of Pr  when

1Ec       
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Figure 3.2 Temperature profiles  0 for various values of   when 

Pr 1Ec    and 0.1   

 

 

 

Figure 3.3 Velocity profiles  f  for various values of   when Pr 1Ec   

and 0.1 
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Figure 3.4 Temperature profiles  0 for various values of Ec  when 

Pr 1       

 

 

Figure 3.5 Temperature profiles  0 for various values of  when

Pr 1Ec       
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Figure 3.6 Temperature profiles  0 for various values of   when

Pr 1Ec    and 3   

 

 

 

Figure 3.7 Velocity profiles  f  for various values of  when Pr 1Ec   
 

and 3   
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3.4 Summary 

 

In this study, the flow and heat transfer analysis of viscous fluid on the 

stagnation point towards a stretching sheet with viscous dissipation and slip conditions 

are numerically studied. The presented analysis leads to the following main results: 

 

i. the increase of Prandtl number, dimensionless thermal and velocity slip 

parameter result in the decreasing in the wall temperature and also thermal 

boundary layer thickness.  

ii. the presence of viscous dissipation and stretching parameter results in the 

increase of the wall temperature. 

iii. the presence of velocity slip parameter is decreased by the skin friction 

coefficient while the Prandtl number, the stretching parameter, the thermal slip 

parameter and Eckert number have no effect on the skin friction coefficient. 

 

 

 Table 3.5 show the summarized mathematical formulations in this problem. The 

governing equations are first transformed into ordinary differential equations via 

similarity analysis and then, these resulting equations are solved using the transformed 

boundary conditions. 

 

Table 3.5 Solution procedure for mathematical formulation flow and heat transfer 

of viscous fluid on stagnation point over stretching surface with viscous  dissipation 

and slip conditions 

 

Steps Equations 

Governing 

Equations 

                  

0
u v

x y

 
 

 
   

 

2

2

u u u u
u v U

x y x y


   
  

   
 

22

2

p p

T T k T u
u v

x y C y C y
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Table 3.5 Continued  

Steps Equations 

 

Boundary conditions  
                   , 0,w w

u T
u u x v T T

y y
    

    
 

 at 0y    

 

                    ,eu u x T T 
 
as  y    

Similarity 

transformation 
                

     
1 2

1 2
, ,

w

T Tc
y c xf

T T
     






 
   

 
 

Ordinary differential 

equations 
                                        

2 2 0f ff f        

        2Pr 2 Pr 0f f Ec f        
  

Transformed 

boundary conditions 

              
         0 0, 0 1 0 , 0 1 0 ,f f f        

 

                         
   , 0f       as     
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CHAPTER 4 

 

 

FLOW AND HEAT TRANSFER ANALYSIS OF WILLIAMSON FLUID ON 

THE STAGNATION POINT OVER A STRETCHING SURFACE WITH 

VISCOUS DISSIPATION AND SLIP CONDITIONS 

 

 

4.1 Introduction 

 

 In recent years, the study of non-Newtonian fluids has attracted the attention of 

many researchers. There are many theoretical and technical applications in both the 

industries and engineering processes such as in the aerodynamic extrusion of plastic 

sheets, glass fiber, paper production, manufacturing of polymer sheets (Nadeem et al., 

2009), oil recovering and food processing (Das et al., 2015). In view of their difference 

with Newtonian fluids, many models of non-Newtonian fluid have been proposed such 

as the second-grade fluid (Nadeem et al., 2010), the micropolar fluid (Borrelli et al., 

2012), the Williamson fluid (Nadeem et al., 2013), the Jeffrey fluid (Das et al., 2015) 

and the Casson fluid (Ramesh and Devakar, 2015). 

 

 Williamson (1929) proposed the flow of pseudoplastic materials and developed 

a model equation to illustrate the flow of pseudoplastic fluid. Next, Nadeem et al. 

(2013) investigated the flow of a Williamson fluid over a stretching sheet. The 

homotopy analysis is used to solve the non-linear differential equation. After that, Khan 

et al. (2014) and Nadeem and Hussain (2014) investigated the boundary layer flow and 

heat transfer of Williamson fluid with chemically reactive species using scaling 

transformation approaches. It is found that the Williamson fluid model is very much 

similar to blood and almost completely describes the blood flow. 
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 Current studies with Williamson fluid such as Salahuddin et al. (2016) 

considered MHD flow of Cattaneo–Christov heat flux model for Williamson fluid over 

a stretching sheet with variable thickness using a numerical approach. Numerical 

solution of Williamson fluid flow past a stretching cylinder and heat transfer with 

variable thermal conductivity and heat generation/absorption was studied by Malik et al. 

(2016). They were using the shooting method in conjuction with Runge-Kutta- Fehlberg 

(RKF45) to find the solution of the problem. Kumaran and Sandeep (2017) presented 

thermophoresis and Brownian moment effects on the parabolic flow of MHD Casson 

and Williamson fluids with cross-diffusion. The results show that the heat and mass 

transfer performance of Casson fluid is comparatively higher than Williamson fluid. 

Shah et al. (2018) addressed the radiative MHD thin film flow of Williamson fluid over 

an unsteady permeable stretching sheet. The unsteady stagnation-point flow of 

Williamson fluid generated by stretching/shrinking sheet with Ohmic heating was 

reported by Hamid et al. (2018a). Simultaneous solutions for MHD flow of Williamson 

fluid over a curved sheet with nonuniform heat source/sink were explored by Kumar et 

al. (2019). They found that the curvature parameter enhances the velocity field while the 

reverse trend is detected due to the Williamson fluid and magnetic field parameters. 

Bhuvaneswari et al. (2019) described cross-diffusion effects on MHD convection of 

Casson-Williamson fluid over a stretching surface with radiation and chemical reaction. 

Arifin et al. (2019) computed and analyzed the two-phase mixed convection flow of 

dusty Williamson fluid with the aligned magnetic field over a vertical stretching sheet. 

Their study suggests that dust particle influencing the Williamson fluid flow which 

resulted to decrease the velocity of fluid. 

 

 The aim of the present work is to investigate the flow and heat transfer analysis 

of Williamson fluid on the stagnation point past a stretching surface in the presence of 

viscous dissipation and slip conditions. A similar transformation is first used to 

transform the governing non linear partial differential equations into an ordinary 

differential equations system before the shooting method is used numerically. The 

present problem has not been studied before, and then the results reported here are new. 
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4.2 Mathematical Formulation 

 

 For this part of the study, a steady two-dimensional flow of Williamson fluid 

over a stretching plate has been carried out. The physical flow of this study can be 

viewed in the Cartesian coordinate system as shown in Figure 4.1. The axes of x and

y are directed in the same direction of the plate and perpendicular to it. The flow is 

originated from the stretched sheet which is produced by the two equal forces along the

x axes. Keeping the origin fixed, the sheet is stretched with a velocity of  wu x cx  

( c is a positive constant) and is subjected to obey the slip conditions. Furthermore, for 

external velocities is  eu x ax ( a is a positive constant) and boundary layer 

equations are (Salleh et al. 2009) are as follows 

 

 

 

 

 

 

 

 

                                                                        
 wu x cx

 
 

 

 

Figure 4.1 Schematic diagram for flow and heat transfer analysis of Williamson 

fluid on the stagnation point over a stretching surface with viscous dissipation and slip 

conditions 
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2 32

2

1

2p p

T T k T u u
u v

x y C y C y y



 

        
        

         

        4.3 

  

corresponds to the following conditions 

  , 0,w w

u T
u u x v T T

y y
    

    
 

 at 0y    4.4 

            ,eu u x T T     as  y   

         

where u and v are the velocities in the x and y  axes, respectively, 

  2

wT x T bx  is the wall temperature (b is equal to positive constant),  is the 

kinematic viscosity, T is the fluid temperature, 


is the dimensional velocity slip 

parameter,  
is the dimensional thermal slip parameter, k is the thermal 

conductivity,  is the fluid density, pC is the specific heat,  is the time constant 

and  is the dynamic viscosity. 

 

 Now, we introduce the following similarity variables (Salleh et al. 2010) as 

follows 

        

1 2

,
c

y


 
  
 

          4.5 

   

            
  ,

w

T T

T T
  






  
          4.6  

 

       

   
1 2

,c xf                            4.7 

   

where  and    are dimensionless variables, while  is the stream function. 

Then, u and v can be defined as 

 
u

y





 and .v
x


 

     4.8 
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By using the above functions, Equation 4.1 is identically satisfied.  

Thus, we obtain 

              
1 2

, ,u cxf v c f               4.9

     

where prime represents differentiation with respect to . By using Equations 4.5 to 4.7 

and 4.9, Equations 4.2 and 4.3 are transformed and becomes 

 

    
2 2 0,f ff f f f                       4.10 

 

     2 1
Pr 2 Pr 0,

2
f f Ec f f   

 
         

 
      4.11

                  

where Pr
pC

k

 
  is the Prandtl number,

2

p

c
Ec

C b
 is the Eckert number which 

represent the viscous dissipation parameter,
32c

x


  is the  non-Newtonian 

Williamson fluid parameter and
a

c
  is the stretching parameter. 

 

 Based on derivative by using Equations 4.5 to 4.7 and 4.9 into boundary 

conditions 4.4 become 

 

         0 0, 0 1 0 , 0 1 0f f f                              4.12 

        
   , 0f        as     

 

Furthermore,  
1 2

c    and

1 2
c

 


  
  

 
are the dimensionless velocity and 

thermal slip parameter, respectively and it is noticed that 0  when the wall 

temperature remains constant (CWT).  
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 The skin friction coefficient fC and the local Nusselt number Nu are given 

as 

2
,w

f

w

C
u




                                                   4.13   

 

       0

.
w y

x T
Nu

T T y 

 


 
       

4.14                          

        

The surface shear stress w is defined as  

 

                 
1

1 .
2

w

u u

y y
 

  
  

  
       4.15

       

Using the similarity variables in Equations 4.5 to 4.7 give  

 

         
21 2Re 0 0 ,

2
fC f f


           4.16 

   

     
 1 2Re 0 ,x xNu   

 
        4.17 

    

where

2

Rex

c x


 is the local Reynolds number.  

 

4.3 Results and Discussion 

 

 The system of ordinary Equations 4.10 and 4.11 under the boundary conditions 

4.12 are solved numerically with the help of the shooting method and the computation is 

performed in the Maple software. To study the influence on velocity, as well as 

temperature of fluid, we considered different parameters, namely the Prandtl number 

Pr, the dimensionless velocity slip parameter , the dimensionless thermal slip 

parameter , the stretching parameter , the non-Newtonian Williamson fluid 

parameter  and the Eckert number .Ec The maximum finite boundary layer 
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thickness 1.3  and 5 is computed to statisfy the boundary conditions 

asymptotically.  

 

 To determine the correctness of the findings, comparison values of  0f   have 

been made. Table 4.1 shows the comparison with  Nadeem et al. (2013) and Nadeem 

and Hussain (2014). Both solved analytically with the aid from the Homotopy Analysis 

technique (HAM) and it is found  to be in good agreement, therefore we are confident 

with the accuracy of the results in this problem. 

 

 Table 4.2 presents the values of
1 2Rex xNu 

and
1 2Ref xC for various values of 

non-Newtonian Williamson fluid parameter  when Pr 7, 3  and

1.Ec    It can be seen that, the increase of  make
1 2Rex xNu 

decreases while

1 2Ref xC increases. 

  

 Table 4.3 shows the values of  0 and
1 2Rex xNu 

for various values of the 

dimensionless thermal slip parameter  when Pr 7, 3, 1Ec     and 0,1.   

It is noted that when the non-Newtonian Williamson fluid parameter  is not 

considered 0  (viscous fluid), an increase of  results in the decreases of  0 and 

1 2Rex xNu 
 as well as when 1  (Williamson fluid). When  is fixed and 

increases, this result in the increases of  0 while
1 2Rex xNu 

decreases. 

 

 Table 4.4 presents the values of  0 , 1 2Rex xNu 
and

1 2Ref xC for various 

values of dimensionless velocity slip parameter , when Pr 7, 3,  1Ec   and

0,1.  It can been seen that, when the non-Newtonian Williamson fluid parameter 

is not considered 0  (viscous fluid), an increase of  makes the values of  0

and
1 2Ref xC decreases while

1 2Rex xNu 
increases. The same trend occurs when 1 

(Williamson fluid). When  is fixed, an increase of  result in the increases of  0

and
1 2Ref xC while

1 2Rex xNu 
decreases. 
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 Figure 4.2 illustrates the temperature profiles for various values of Pr. It can be 

observed that the temperature profile decreases with the increases  of Pr. The cause of 

this phenomenon due to the reduction of thermal boundary layer thickness indicated by 

the increase of Prandtl number which leads to the decreases of the energy ability. 

 

 Figures 4.3 and 4.4 demonstrate the temperature  0 profiles for various values 

of  and  respectively. As  increase,  the value of  the wall temperature 

increases, but the value of thickness of thermal boundary layer decreases, while as 

increase, the value of the wall temperature decreases. 

 

Figure 4.5 presents the temperature  0 profiles for various values of the 

viscous dissipation parameter .Ec It is observed that the values of Ec increases as the 

temperature profiles increases. Ec is defined as the connection between the kinetic 

energy and the enthalpy of a fluid. The fluid viscosity receives energy from fluid motion 

(kinetic energy) and converts it into the fluid internal energy, which heats up the fluid. 

In addition, the temperature gradient is not only the main source of change in 

temperature, but with the dissipative effects emerging from the internal friction of the 

fluid leads to this phenomenon. Next, Figures 4.6 and 4.7 illustrate the temperature

 0 profiles for various values of  and . It is found that as  and  increases, 

the temperature profiles and boundary layer thickness decrease for  in contras with

 the temperature profiles and boundary layer thickness increase. 

 

 Figure 4.8 presents the velocity profiles  f  for various values of . It is 

observed that the velocity gradient decreases as  increases. While Figure 4.9, 

illustrates the velocity profiles  f  for various values of . It is found that as the 

velocity gradient increases,  is decreases.  

 

 Figure 4.10 shows the variation of temperature  0 with  for several values 

of Ec when Pr 7, 3  and 1.   It is seen from this figure that the 

temperature profiles increases as Ec increase and temperature profiles also increases as
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 increase for a fixed values of .Ec Figure 4.11 illustrates the variation of 

temperature  0 with Pr for several values of  when 1Ec     and 3. 

The result found is similar to Figure 4.10 where it shows that the temperature profiles 

increases as  increases while the temperature profiles increases with as Pr  increases 

for a fixed value of .  

 

 Figure 4.12 shows the variation Nusselt number
1 2Rex xNu 

with  for several 

values of  when 1Ec    and Pr 7. It is seen from this figure that the 

Nusselt number increases as  increases but when 1  the value of  Nusselt number 

decrease as  increases and when 7  the Nusselt number increases as 

increases. Figure 4.13 shows the variation of Nusselt number
1 2Rex xNu 

with  for 

several values of Ec when Pr 7, 3  and 1.   From this figure, it is found 

that the Nusselt number increases as Ec decreases, the Nusselt number decreases as 

increases for a fixed values of .Ec Similar result is obtained in Figure 4.14 where the 

Nusselt number increases as  decreases, while Nusselt number decreases as Pr

increases for a fixed values of .
 

 

 Figure 4.15 shows the variation of temperature profiles  0 with Ec for 

several values of  when Pr 7, 3  and 1.   The result observed from this 

figure is the temperature profiles increases as  decreases, while temperature profiles 

increases as Ec increases for a fixed values of . The same result is obtained in 

Figure 4.16 where the temperature profiles increase as  decreases, while temperature 

profiles increase as  increases for a fixed values of .  

 

 Figure 4.17 shows the variation of skin friction coefficient number
1 2Ref xC

with for severalvalues of  when 1Ec    and Pr 7. The result observed 

form this figure is the skin friction coefficient number increases as  decreases,  while 

temperature profiles increases as  increases for a fixed values of .  
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Table 4.1 Comparison between the present results of  0f  for a different values 

of Williamson fluid parameter,  when 0Ec       and Pr 3  

 

  
Nadeem et al. (2013) 

Nadeem and 

Hussain (2014) 

 

Present 

 0f    0f    0f   

0.1 -1.03446  -1.034981 

0.2  -1.076 -1.076786 

 

 

Table 4.2 Values of
1 2Rex xNu 

and
1 2Ref xC for the various values of  when

Pr 7, 3  and 1Ec     

 

  
1 2Rex xNu 

 
1 2Ref xC  

0.1 0.67705 1.53831 

1 0.57429 2.18834 

3 0.40741 3.26958 

5 0.28130 4.11212 

7 0.17789 4.82299 

 

 

Table 4.3 Values of  0 and
1 2Rex xNu 

for the various values of  when

Pr 7, 3, 1Ec     and 0,1   

 

 

  

Viscous fluid  0   Williamson fluid  1   

 0  
1 2Rex xNu 

  0  
1 2Rex xNu 

 

0.1 0.68081 3.19190 0.73799 2.62008 

1 0.30939 0.69061 0.42571 0.57429 

3 0.24425 0.25192 0.37010 0.20997 

5 0.22972 0.15406 0.35766 0.12847 

7 0.22332 0.11095 0.35218 0.09255 
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Table 4.4 Values of  0 , 1 2Rex xNu 
and 

1 2Ref xC for the various values of   

when Pr 7, 3, 1Ec     and 0,1   

 

  

Viscous fluid 0   Williamson fluid 1   

 0  
1 2Rex xNu 

 
1 2Ref xC   0  

1 2Rex xNu 
 

1 2Ref xC  

0.7 0.43634 0.56366 1.85165 0.64236 0.35764 2.88171 

1 0.30939 0.69061 1.45373 0.42571 0.57429 2.18834 

3 0.15146 0.84854 0.59397 0.16180 0.83820 0.75257 

5 0.13311 0.86689 0.37278 0.13585 0.86415 0.43831 

7 0.12745 0.87255 0.27158 0.12856 0.87144 0.30702 

 

 

 

Figure 4.2 Temperature profiles  0 for various values of Pr when

1Ec         
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Figure 4.3 Temperature profiles  0 for various values of  when

1Ec      and Pr 7  

 

        

Figure 4.4 Temperature profiles  0 for various values of  when Pr 7, 3   

and 1Ec     
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Figure 4.5 Temperature profiles  0 for various values of Ec when Pr 7, 3 

and 1      

 

 

                        

Figure 4.6 Temperature profiles  0 for various values of 
 when

1Ec      and Pr 7
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Figure 4.7 Temperature profiles  0 for various values of  when Pr 7, 3 

and 1Ec     

 

                       

Figure 4.8 Velocity profiles  f  for various values of  when Pr 7, 3   

and 1Ec     
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Figure 4.9 Velocity profiles  f  for various values of  when Pr 7, 3   

and 1Ec     

 

         

Figure 4.10 Variation of temperature  0 with  for several values of Ec when

Pr 7, 3  and 1  
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Figure 4.11 Variation of temperature  0 with Pr for several values of  when 

1Ec     and 3   

 

      

Figure 4.12 Variation of Nusselt number
1 2Rex xNu 

with  for several values of 

when 1Ec    and Pr 7
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Figure 4.13 Variation of Nusselt number
1 2Rex xNu 

with  for several values of

Ec when Pr 7, 3  and 1    

 

        

Figure 4.14 Variation of Nusselt number
1 2Rex xNu 

with Pr for several values of 
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Figure 4.15 Variation of temperature profiles  0 with Ec for several values of   

when Pr 7, 3  and 1  
    

 

Figure 4.16 Variation of temperature profile  0 with  for several values of 

when 1Ec    and Pr 7  
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Figure 4.17 Variation of skin friction coefficient number
1 2Ref xC with  for 

several values of  when 1Ec    and Pr 7
 

 

 

4.4 Summary  

 

This study solved the flow and heat transfer analysis of Williamson fluid on the 

stagnation point towards a stretching surface with slip conditions and viscous 

dissipation and Table 4.5 show the summarized mathematical formulation in this 

problem. The presented analysis leads to the following main results: 

 

i. the increase of Prandtl number, dimensionless thermal and velocity slip 

parameter result in the decrease in the wall temperature and thermal boundary 

layer thickness. While, the presence of stretching parameter, viscous dissipation 

and non-Newtonian Williamson fluid parameter increase the wall temperature. 

ii. the increase of Ec results in the increase in wall temperature and heat transfer 

coefficient as well as the increase in the range of  for which the solutions 

exists.  
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iii. The Nusselt number increases as velocity slip parameter  increases while the  

trend is observed for Eckert number and non-Newtonian Williamson fluid 

parameter. The increase in skin friction coefficient leads to the decrease in 

velocity slip parameter, while the stretching, while stretching parameter 

increases. 

 

 

Table 4.5 Solution procedure for the mathematical formulation flow and heat 

transfer of Williamson fluid on stagnation point over a stretching surface  with viscous 

dissipation and slip conditions 

 

Steps Equations 
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CHAPTER 5 

 

 

FLOW AND HEAT TRANSFER ANALYSIS OF WILLIAMSON FLUID ON 

MHD STAGNATION POINT OVER A STRETCHING SURFACE WITH 

THERMAL RADIATION EFFECTS 

 

 

5.1 Introduction 

 

 The electrical components specifically deal with magnetic effects. The 

interaction of the fluid motion and the dynamics of fluids as good conductors of 

electricity with any ambient magnetic field coin as magnetohydrodynamic (MHD) 

effects (Batchelor et al., 2002). Meanwhile, the thermal radiation effects play an 

important role in engineering applications such as high-temperature plasmas, cooling of 

nuclear reactors and liquid metal fluids. Furthermore, the radiation heat transfer flow 

effects are also applied in space technology and processes involving high temperatures 

(Ali et al., 2013). Bataller (2008) and Mukhopadhyay (2009) studied the effects of 

radiation in both Blasius and Sakiadis flows and unsteady mixed convection flow and 

heat transfer over a porous stretching surface in a porous medium. Other researchers 

who considered the MHD and thermal radiation effects are Chen (2010), Hayat et al. 

(2010), Salleh et al. (2012), Anwar et al. (2012) and Elbashbeshy et al. (2012). Also, 

Makinde and Olanrewaju (2010), Makinde and Aziz (2010) and Olanrewaju et al. 

(2011) considered MHD and thermal radiation effects in heat and mass transfer, mixed 

convection over a vertical plate in a porous medium and viscous dissipation effects for 

Blasius and Sakiadis flow with convective boundary conditions. Thermal radiation and 

slip effects on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid 

over a convective stretching sheet were examined by Raza (2019). It was found out that, 

there was an inverse relationship between magnetic parameter and stream wise velocity. 

Narayana and Babu (2016) analyzed the numerical study of MHD heat and mass 
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transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal 

radiation. The result shows the effects of thermal radiation have caused an increase in 

the temperature of the thermal boundary layer and the reverse effect is seen by 

increasing the Prandtl number. Hayat et al. (2017) addressed the simultaneous effects of 

heat generation/absorption and thermal radiation in magnetohydrodynamics (MHD) 

flow of Maxwell nanofluid towards a stretched surface. It was seen that, the thermal 

radiation parameter enhanced the temperature field and heat transfer rate. Gupta et al. 

(2018)  observed MHD mixed convection stagnation point flow and heat transfer of an 

incompressible nanofluid over an inclined stretching sheet with chemical reaction and 

radiation. 

 

 The aim of this study is to investigate the flow and heat transfer analysis of 

Williamson fluid on MHD stagnation point flow over a stretching surface with thermal 

radiation effects. With the help of similarity transformation, the governing equations are 

converted to nonlinear ordinary differential equations and then solved numerically by 

the shooting method technique. Numerical results for the reduced Nusselt number and 

reduced skin friction coefficient as well as the temperature and velocity profiles are 

elucidated through tables and graphs. The influence of Prandtl number, stretching 

parameter, Williamson fluid parameter, thermal radiation parameter and magnetic 

parameter are analysed and discussed. From the literature studies, this problem has not 

been considered before, therefore, the results reported here are new. 

 

5.2 Mathematical Formulation 

 

 The steady two-dimensional flow of a non-Newtonian Williamson fluid over a 

stretching plate, whose physical model is illustrated in Figure 5.1 is considered in this 

study. The external and stretching velocities are  eu x ax and   ,wu x cx

respectively, where a and c are constants. The boundary layer equations are (Salleh 

et al., 2009; Nadeem et al., 2013) are as follows: 
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Figure 5.1 Schematic diagram flow and heat transfer analysis of Williamson fluid 

on MHD stagnation point over a stretching surface with thermal radiation effects 
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corresponds to the following conditions 

 

      
  , 0,w wu u x v T T     as 0y                     5.4 

          ,eu u x T T     as  y   

 

where u and v are the velocity in the x and y  axes, respectively,
 

  2

wT x T bx  is the wall temperature with b as constant,  is the kinematic 

viscosity,
 

T is the fluid temperature, oB is the uniform magnetic field strength,  is 

 wu x cx  
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the electric conductivity, k is the thermal conductivity,  is the fluid density, pC is 

the specific heat,  is the time constant and  is the dynamic viscosity. Using 

Rosseland approximation for radiation (Bataller, 2008), the radiative heat flux rq in 

Equation 5.3 may be simplified as  

 

44

3
r

T
q

k y

 




 


,          5.5

  

where  
and k

are the Stefan-Boltzmann constant and the mean absorption 

coefficient, respectively. We assume that the temperature differences within the flow 

region, namely, the term
4T can be expressed as a linear function of temperature. 

Hence, expanding
4T in a Taylor series about T and neglecting higher-order terms, 

we get 

 
4 3 44 3 .T T T T  

          
5.6 

 

Using Equations 5.5 and 5.6, Equation 5.3 is reduced to  

 

                                           

3 2

2

16 *

*p

TT T k T
u v

x y C k y






   
                  

5.7 

 

From the Equation 5.7 it is seen that the effect of radiation is to enhance the thermal 

diffusivity. If we take

34 pT C
Nr

k k

 




 as the radiation parameter, Equation 5.7 

becomes  

                                 

2

2

4
1

3p

T T k T
u v Nr

x y C y

   
   

              

5.8 

 

Note that thermal radiation effects are absent when 0.Nr  Now, we introduce the 

following similarity variables     

           
 

                                            

1 2

,
c

y


 
  
 

               5.9 
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                                           ,
w

T T

T T
  







         5.10 

 

                                                 
1 2

,c xf           5.11 

 

where  and    are dimensionless variables and  is the stream function defined 

by u
y





 and v
x


 


, which satisfies the Equation 5.1. Furthermore, notice that 

 

    
     

1 2
, ,u cxf v c f    

       
5.12 

  

where prime represents differentiation with respect to . By substituting Equations 5.9 

to 5.12, into Equations 5.2 and 5.8, the transformed ordinary differential equation is 

obtained as follows:  

 

                                    
 2 2 0f ff f f f M f             

                 
5.13 

                                          
4

1 Pr 2 0
3

Nr f f  
 

      
 

                           5.14

  

where Pr
pC

k

 
 is the Prandtl number,

32c
x


  is the non-Newtonian 

Williamson fluid parameter,
 

2

oB
M

c




 is the magnetic parameter and

a

c
  is the 

stretching parameter. 

 

 Based on derivative by using Equations 5.9 to 5.12 into boundary conditions 5.4, 

the outcomes are   

 

     
     0 0, 0 1, 0 1f f    at 0         5.15

          , 0f       as      
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The skin friction coefficient fC and the local Nusselt number xNu are given as 

  
2

,w
f

w

C
u




                                                   5.16   

 

       
,w

x

w

xq
Nu

k T T




        

5.17

 

  

where, w is the surface shear stress and wq is the heat flux defined as    

              

 

  

       

1
1 ,

2
w

u u

y y
 

  
  

                     

5.18

 

 

                                      

,w r

T
q k q

y


  

                             

5.19 

     

 

Using the similarity variables in Equations 5.9 to 5.11, the outcomes are   

 

              
    

21 2Re 0 0 ,
2

f xC f f


                     5.20 

 

            
 1 2 4

Re 1 0 ,
3

x xNu Nr   
   

         
5.21 

 

where

2

Rex

c x


 is the local Reynolds number.   

    

5.3 Results and Discussion 

 

 Equations 5.13 and 5.14 with boundary conditions 5.15 were solved numerically 

by the shooting method using the Maple software. In order to study the flow 

characteristic, pertinent parameters, namely the Prandtl number Pr, the stretching 

parameter , the magnetic parameter ,M the non-Newtonian Williamson fluid 
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parameter  and the thermal radiation parameter Nr are considered. The validation 

for the efficiency of the method used are shown in Tables 4.1 in the previous chapter. It 

is found that the results presented are in an excellent agreement, therefore, we are 

confident with the accuracy of the result in this problem. 

 

 Table 5.1 presents the  values of  the reduced Nusselt number 
1 2Rex xNu 

and 

the reduced skin friction coefficient
1 2Ref xC for the various values of the non-

Newtonian Williamson fluid parameter  when Pr 7, 3, 1Nr   and 0,1.M   

It is found that, when the MHD effect is not considered 0M  an increase of  leads 

to a decrease of 
1 2Rex xNu 

while values of
1 2Ref xC increases the same trend occurs 

when 1.M  When  is fixed, an increase of M leads to the increase of both

1 2Rex xNu 
and

1 2Re .f xC It is found that the huge changes in  has small effect on

1 2Rex xNu 
while it has huge effect on

1 2Re .f xC
 

Furthermore, the increase of 

promotes to a decrease in convection capabilities in Williamson fluid. 

 

 Table 5.2 presents the values of 
1 2Rex xNu 

and
1 2Ref xC for various values of 

the stretching parameter  when 1Nr M    and Pr 7,10,12. It is observed 

that, when Pr 7, an increase of  leads to the increase of
1 2Rex xNu 

and
1 2Ref xC  

for all values of Pr. Meanwhile, when  is fixed, an increase of Pr results in the 

increase of 
1 2Rex xNu 

and
1 2Re .f xC Realistically, the increase of the stretching 

parameter increases the velocity difference between fluid and the plate surface, which 

therefore results in the increase in velocity gradient as well as the skin friction 

coefficient. 

 

 Table 5.3 presents the values of 
1 2Rex xNu 

and
1 2Ref xC for various values of 

the magnetic parameter M when Pr 7, 3, 1    and 0,1,7.Nr  An increase of

M lead to the increase of 
1 2Rex xNu 

and
1 2Re .f xC Meanwhile, it is noticed that the 

increase of Nr leads to the increase of 
1 2Rex xNu 

and
1 2Re .f xC  
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 Figure 5.2 represents the temperature profiles for various values of Pr. Since 

the value of Pr rises, it is found that the value of the wall temperature and the 

thickness of the thermal boundary layer drop. Physically, the Prandtl number indicates 

the ratio of momentum diffusivity to thermal diffusivity. Larger values of Pr have 

higher momentum diffusivity while smaller in thermal diffusivity. This higher 

momentum diffusivity corresponds to the thinning of thermal boundary layer thickness. 

Figure 5.3 presents the velocity profile and skin friction coefficient for several values of 

. It is found that the velocity gradient increases as  increases which denotes the rise 

of the skin friction coefficient. Next, the velocity boundary layer thickness decreases as 

 increases. 

 

 Figure 5.4 presents the temperature profile for various values of the non-

Newtonian Williamson fluid parameter . It is observed that the changes of  have a 

very small effect on the thermal boundary layer thickness. Figure 5.5 presents the 

temperature profile for various values of thermal radiation parameter .Nr From this 

figure, it is found that the temperature profiles and boundary layer thickness increase a

Nr increases. The thermal radiation emits energy which raises the temperature, 

therefore, enhances the energy spreading far away from the plate surface. This increases 

the thickness of the thermal boundary layer.  

  

 Figure 5.6 illustrates the variation of Nusselt number 
1 2Rex xNu 

with M for 

several values of  when Pr 7 and 1.Nr   It is observed that the Nusselt 

number increases with the increase values of , while the Nusselt number increases 

with the increase of M for a fixed values of . Similar result is obtained in Figure 

5.7 in which the Nusselt number increases with the increase of ,Nr while the Nusselt 

number increases with the increase of Pr for a fixed values of .Nr  
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 Figure 5.8 presents the variation of skin friction coefficient number
1 2Ref xC

with M for several values of  when Pr 7 and 1.Nr   It is found that the 

skin friction coefficient number increases with the increase of , while the skin 

friction coefficient number increases with the increase of M for a fixed values of .  

 

Table 5.1 Values of 
1 2Rex xNu 

and
1 2Ref xC for the various values of  when

Pr 7, 3, 1Nr   and 0, 1M   

 

  

0M   
1M   

1 2Rex xNu 
 

1 2Ref xC  
1 2Rex xNu 

 
1 2Ref xC  

0.5 8.66127 5.98899 8.74162 6.71948 

1 8.53415 6.76869 8.60367 7.62752 

3 8.31837 8.70585 8.37247 9.86503 

5 8.22098 9.97445 8.26885 11.32340 

7 8.15969 10.96364 8.20378 12.45849 

 

Table 5.2 Values of 
1 2Rex xNu 

and
1 2Ref xC for the various values of  when

1Nr M    and Pr 7, 10, 12  

 

  
Pr 7  Pr 10  Pr 12  

1 2Rex xNu 
 

1 2Ref xC  1 2Rex xNu 
 

1 2Ref xC  1 2Rex xNu 
 

1 2Ref xC  

0.5 7.47424 0.10496 8.94838 0.14244 9.80769 0.16188 

1 7.69706 0.74641 9.16790 0.77580 10.02533 0.79023 

3 8.60040 7.59112 10.10785 7.60808 10.98352 7.61564 

5 9.32551 21.43984 10.88287 21.45303 11.78427 21.45875 

7 9.92813 42.32314 11.53398 42.33457 12.46078 42.33945 
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Table 5.3 Values of 
1 2Rex xNu 

and
1 2Ref xC for the various values of M when

Pr 7, 3, 1    and 0, 1, 7Nr   

 

M  

0Nr   1Nr   7Nr   

1 2Rex xNu 
 

1 2Ref xC  
1 2Rex xNu 

 
1 2Ref xC  

1 2Rex xNu 
 

1 2Ref xC  

0.5 4.74218 7.17957 8.56787 7.17957 21.56548 7.18817 

1 4.75753 7.59112 8.60040 7.59112 21.68010 7.60808 

3 4.81422 9.24307 8.72026 9.24307 22.09911 9.29144 

5 4.86480 10.90265 8.82683 10.90265 22.46765 10.97967 

7 4.91061 12.56830 8.92309 12.56830 22.79763 12.67173 

 

 

 

 

              

Figure 5.2 Temperature profiles  0 for various values of Pr when

1Nr M    and 3   
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Figure 5.3: Velocity profiles  f  for values of  when 1Nr M    and

Pr 7  

 

 

 

Figure 5.4 Temperature profiles  0 for various values of  when Pr 5, 3 

and 1Nr M   
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Figure 5.5 Temperature profiles  0 for several values of Nr when Pr 7, 3 

and 1M    

 

 

 

Figure 5.6 Variation of Nusselt number
1 2Rex xNu 

with M for several values of 

 when Pr 7 and 1Nr    
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Figure 5.7 Variation of Nusselt number
1 2Rex xNu 

with Pr for several values of

Nr when 3  and 1M    

 

Figure 5.8 Variation of skin friction coefficient number
1 2Ref xC with M for 

several values of  when Pr 7 and 1Nr    
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5.4  Summary 

 

 In this study, flow and heat transfer of Williamson fluid on MHD stagnation 

point over a stretching surface with thermal radiation effects are numerically studied 

and Table 5.4 show the summarized mathematical formulation in this problem.  The 

presented analysis leads to the following main results: 

 

i. The values of Nusselt number decrease and the skin friction coefficient 

increases, as a  non-Newtonian Williamson fluid parameter  increases. 

ii. The values of Nusselt number and skin friction coefficient increase, as the 

stretching parameter  and magnetic parameter M increase.  

iii. The increase of Prandtl number Pr has resulted in a decrease of thermal 

boundary layer as well as skin friction coefficient. 

iv. As stretching parameter  increases, the velocity profile increases while the 

velocity boundary layer thickness decreases.  

v. As a non-Newtonian Williamson fluid parameter  and thermal radiation 

parameter Nr increase, the thermal boundary layer also increases. The energy 

obtained from the thermal radiation has raised the temperature and led to the 

increase in energy spreading far from the plate surface. 
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Table 5.4 Solution procedure for the mathematical formulation flow and heat 

transfer analysis of Williamson fluid on MHD stagnation point over a stretching surface 

with thermal radiation effects 

 

Steps Equations 

Governing 

equations 

                                          
0

u v

x y
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Boundary 

conditions 
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Similarity 
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CHAPTER 6 

 

 

CONCLUSION 

 

 

6.1 Research Summary 

 

The study was conducted to obtain the numerical solution to the stagnation point 

flow and heat transfer with several effects. All problems that considered the constant 

wall temperature and resulting nonlinear ordinary differential equations are successfully 

solved via the shooting method with the aid of Maple software. The whole thesis is 

assembled in Chapter 6 with a list of references in the last chapter. 

 

Chapter 1 is an introductory chapter containing the general research background, 

research objectives, research scope, an overview with existing literature related to the 

problem in this study, research significance and thesis outline. The detailed governing 

equations and numerical method namely the shooting method are thoroughly discussed 

in Chapter 2. 

 

In Chapter 3, the flow and heat transfer analysis of viscous fluid on the 

stagnation point over a stretching surface with viscous dissipation and slip conditions is 

studied which is the first problem. With the help of similarity transformation, the 

governing equations are converted to nonlinear ordinary differential equations and then 

solved numerically using the shooting method. Numerical results for the local Nusselt 

number and skin friction coefficient, as well as the temperature and velocity field, are 

elucidated through tables and graphs. The influence of Prandtl number, stretching 

parameter, Eckert number, thermal and velocity slip parameter on the flow and heat 

transfer characteristics are analyzed and discussed. 
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The flow and heat transfer analysis of Williamson fluid on the stagnation point 

over a stretching surface with viscous dissipation and slip conditions is studied in 

Chapter 4. With the help of similarity transformation, the governing equations are 

converted to nonlinear ordinary differential equations and then solved numerically by 

the shooting method. Numerical results of the local Nusselt number and skin friction 

coefficient, as well as the temperature and velocity field, are elucidated through tables 

and graphs. The influence of Prandtl number, stretching parameter, non-Newtonian 

Williamson fluid parameter, Eckert number, thermal and velocity slip parameter on the 

flow and heat transfer characteristics are analyzed and discussed. 

 

Chapter 5 considers the flow and heat transfer analysis of Williamson fluid on 

MHD stagnation point over a stretching surface with thermal radiation effects which is 

the third problem. Like the previous problem, the governing equations are converted to 

nonlinear ordinary differential equations and then solved numerically by the shooting 

method. Numerical results for the reduced Nusselt number and reduced skin friction 

coefficient, as well as the temperature and velocity profiles, are elucidated through 

tables and graphs. The influence of Prandtl number, stretching parameter, Williamson 

fluid parameter, thermal radiation parameter and magnetic parameter are analyzed and 

discussed. It is found that, as Prandtl number and magnetic parameter increase, the 

temperature profiles decrease. Meanwhile, as Williamson fluid parameter and thermal 

radiation parameter decrease, the temperature profile increase. 

 

Chapter 6 includes the research contributions and conclusion. The problems 

discussed in this thesis are new and the results are presented in the form of tables and 

figures. The numerical results obtained are very important as it can be used as a 

reference and for a comparison purpose in the future. Furthermore, some of the 

problems studied in this thesis have been published and the list of publications is 

presented in Appendix A. 
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6.2 Research Contribution 

 

 This thesis solved numerical solution of the stagnation point flow and heat 

transfer with several effects. Numerical results for the reduced Nusselt number and 

reduced skin friction coefficient, as well as the temperature and velocity profiles, are 

elucidated through tables and graphs. The influence of Prandtl number, stretching 

parameter, Williamson fluid parameter, thermal radiation parameter and magnetic 

parameter are analyzed and discussed. The present thesis has developed numerical 

algorithms for the computations for each problem considered. The authors acknowledge 

that there is no physical outcome or product resulted from this study, and this thesis 

built numerical algorithms or modeled the equations as well as made computations for 

every problem considered. The results of this study will also be used in providing theory 

predictions, numerical formulas and references to future experiments. 

 

6.3  Research Future Studies 

 

 The present thesis only considered solved numerical solution on the flow and 

heat transfer on the stagnation point with several effects. All problems assumed a 

constant wall temperature. Therefore, there is a lot of study areas that may be 

considered in the future. The suggestions are as follows:  

 

i. The use of different types of fluids like Maxwell fluid, Walter‟s fluid, second-

grade fluid, Casson fluid, Jeffrey‟s fluid and Burger‟s fluid. 

ii. Include other physical effects like heat generation and absorption, chemical 

reaction as well as porosity effect. 

iii. Other geometrices such as elliptic circular cylinder and solid sphere. 

iv. Consider an unsteady boundary layer flow and stability analysis for dual 

solutions results usually occur on the stretching/shrinking geometries. 

v. Other boundary conditions such as Prescribed Heat Flux (PHF), Newtonian 

Heating (NH), Convective Boundary Condition (CBC) and Mixed thermal 

condition. 



89 

REFERENCES 

 

 

Abbas, Z., Sheikh, M. and Pop, I. (2015). Stagnation-point flow of a hydromagnetic 

viscous fluid over stretching/shrinking sheet with generalized slip condition in 

the presence of homogeneous–heterogeneous reactions. Journal of the Taiwan 

Institute of Chemical Engineers, 55:69-75. 

 

Abd El-Aziz, M. (2015). Dual solutions in hydromagnetic stagnation point flow and 

heat transfer towards a stretching/shrinking sheet with non-uniform heat 

source/sink and variable surface heat flux. Journal of the Egyptian Mathematical 

Society, 24(3):479-486. 

 

Abu Bakar, N. A., Bachok, N. and Md Arifin, N. (2019). Boundary layer stagnation-

point flow over a stretching/shrinking cylinder in a nanofluid: A stability 

analysis. Indian Journal of Pure and Applied Physics, 57(2):106-117. 

 

Agbaje, T., Mondal, S., Makukula, Z., Motsa, S. and Sibanda, P. (2018). A new 

numerical approach to MHD stagnation point flow and heat transfer towards a 

stretching sheet. Ain Shams Engineering Journal, 9(2):233-243. 

 

Ahmad, S. (2009). Convection boundary layer flows over needles and cylinders in 

viscous fluids. Ph.D Thesis. Universiti Putra Malaysia. 

 

Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 

150(3805):405-406. 

 

Ali, F. M., Nazar, R. and Arifin, N. M. (2013). Effect of thermal radiation on unsteady 

stagnation-point flow with mass transfer. In AIP Proceeding of Simposium 

Kebangsaan Sains Matematik ke-20, volume 1522, pages 80-85. AIP Publishing. 

 

Alkanhal, T. A., Sheikholeslami, M., Usman, M., Haq, R.-u., Shafee, A., Al-Ahmadi, A. 

S. and Tlili, I. (2019). Thermal management of MHD nanofluid within the 

porous medium enclosed in a wavy shaped cavity with square obstacle in the 

presence of radiation heat source. International Journal of Heat and Mass 

Transfer, 139:87-94. 

 

Aman, F., Ishak, A. and Pop, I. (2011). Mixed convection boundary layer flow near 

stagnation-point on vertical surface with slip. Applied Mathematics and 

Mechanics, 32(12):1599-1606. 

 

Aman, F., Ishak, A. and Pop, I. (2013). Magnetohydrodynamic stagnation-point flow 

towards a stretching/shrinking sheet with slip effects. International 

Communications in Heat and Mass Transfer, 47:68-72. 

 

Amanulla, C. H., Nagendra, N., Subba Rao, A., Anwar Bég, O. and Kadir, A. (2018). 

Numerical exploration of thermal radiation and Biot number effects on the flow 

of a non-Newtonian MHD Williamson fluid over a vertical convective surface. 

Heat Transfer Asian Research, 47(2):286-304. 

 



 

 

90 

Anderson, J. D. (2005). Ludwig Prandtl‟s Boundary Layer. Physics Today, 42-48.  

 

Anwar, M. I., Shafie, S., Khan, I. and Salleh, M. Z. (2012). Conjugate effects of 

radiation flux on double diffusive MHD free convection flow of a nanofluid 

over a power law stretching sheet. International Scholarly Research Notices, 1-7. 

 

Arifin, N. S., Zokri, S. M., Kasim, A. R. M., Salleh, M. Z. and Mohammad, N. F. 

(2019). Two-phase mixed convection flow of dusty Williamson fluid with 

aligned magnetic field over a vertical stretching sheet. Proceedings of the Third 

International Conference on Computing, Mathematics and Statistics, 209-216, 

Springer. 

 

Aziz, A. (2009). A similarity solution for laminar thermal boundary layer over a flat 

plate with a convective surface boundary condition. Communications in 

Nonlinear Science and Numerical Simulation, 14(4):1064-1068. 

 

Babu, D. H., Ajmath, K., Venkateswarlu, B. and Narayana, P. (2018). Thermal radiation 

and heat source effects on MHD non-Newtonian nanofluid flow over a 

stretching sheet. Journal of Nanofluids, 8(5):1085-1092. 

 

Bachok, N., Ishak, A. and Pop, I. (2012). Boundary layer stagnation-point flow and heat 

transfer over an exponentially stretching/shrinking sheet in a nanofluid. 

International Journal of Heat and Mass Transfer, 55(25):8122-8128. 

 

Baehr, H. D. and Stephen, K. (2006). Heat and Mass Transfer. Springer. Berlin, 

Heidelberg. 

 

Bataller, R. C. (2008). Radiation effects for the Blasius and Sakiadis flows with a 

convective surface boundary condition. Applied Mathematics and Computation, 

206(2):832-840. 

 

Batchelor, G. K., Moffatt, H. K. and Worster, M. G. (2002). Perspectives in fluid 

dynamics. A Collective Introduction to Current Research, Cambridge University 

Press. 

 

Bejan, A. (2013). Convection heat transfer. John Wiley & Sons. New York. 

 

Besthapu, P., Haq, R. U., Bandari, S. and Al-Mdallal, Q. M. (2019). Thermal radiation 

and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over 

a convective stretching surface. Neural Computing and Applications, 31(1):207-

217. 

 

Bhattacharyya, K., Mukhopadhyay, S. and Layek, G. C. (2011). Slip effects on 

boundary layer stagnation-point flow and heat transfer towards a shrinking 

sheet. International Journal of Heat and Mass Transfe, 54(1–3):308-313. 

 

Bhatti, M., Abbas, T., Rashidi, M. and Ali, M. (2016a). Numerical simulation of 

entropy generation with thermal radiation on MHD Carreau nanofluid towards a 

shrinking sheet. Entropy, 18(6):200. 



 

 

91 

Bhatti, M., Shahid, A. and Rashidi, M. (2016b). Numerical simulation of fluid flow over 

a shrinking porous sheet by successive linearization method. Alexandria 

Engineering Journal, 55(1):51-56. 

 

Bhuvaneswari, M., Sivasankaran, S., Niranjan, H. and Eswaramoorthi, S. (2019). Cross 

diffusion effects on MHD convection of Casson-Williamson fluid over a 

stretching surface with radiation and chemical reaction. Applied Mathematics 

and Scientific Computing, 139-146. 

 

Bilal, M., Sagheer, M. and Hussain, S. (2018). Numerical study of 

magnetohydrodynamics and thermal radiation on Williamson nanofluid flow 

over a stretching cylinder with variable thermal conductivity. Alexandria 

Engineering Journal, 57(4):3281-3289. 

 

Blasius, H. (1908). Boundary layers in fluids of small viscosity. Zeitschrift für 

Angewandte Mathematik und Physik ZAMP, 56(1): 1-37. 

 

Borrelli, A., Giantesio, G. and Patria, M. C. (2012). MHD oblique stagnation-point flow 

of a micropolar fluid. Applied Mathematical Modelling, 36(9):3949-3970. 

 

Chao, B. T. and Jeng, D. R. (1965). Unsteady stagnation point heat transfer. Journal of 

Heat Transfer, 87:221-230. 

 

Chen, C. H. (2010). On the analytic solution of MHD flow and heat transfer for two 

types of viscoelastic fluid over a stretching sheet with energy dissipation, 

internal heat source and thermal radiation. International Journal of Heat and 

Mass Transfer, 53(19–20):4264-4273. 

 

Chiam, T. C. (1994). Stagnation-point flow towards a stretching plate. Journal of the 

Physical Society of Japan, 63:2443-2444. 

 

Crane, L. J. (1970). Flow Past a Stretching Plate. Zeitschrift für Angewandte 

Mathematik und Physik ZAMP, 21(4):645-647. 

 

Daniel, Y. S., Aziz, Z. A., Ismail, Z. and Salah, F. (2018). Impact of thermal radiation 

on electrical MHD flow of nanofluid over nonlinear stretching sheet with 

variable thickness. Alexandria Engineering Journal, 57(3):2187-2197. 

 

Darus, A. N. (1994). Dinamik aliran bendalir: Suatu penyelesaian. Dewan Bahasa dan 

Pustaka. Kuala Lumpur. 

 

Das, K., Acharya, N. and Kundu, P. K. (2015). Radiative flow of MHD Jeffrey fluid 

past a stretching sheet with surface slip and melting heat transfer. Alexandria 

Engineering Journal, 54(4):815-821. 

 

Dash, G., Tripathy, R., Rashidi, M. and Mishra, S. (2016). Numerical approach to 

boundary layer stagnation-point flow past a stretching/shrinking sheet. Journal 

of Molecular Liquids, 221:860-866. 

 



 

 

92 

Dessie, H. and Kishan, N. (2014). MHD effects on heat transfer over stretching sheet 

embedded in porous medium with variable viscosity, viscous dissipation and 

heat source/sink. Ain Shams Engineering Journal, 5(3):967-977. 

 

Elbashbeshy, E. M. A., Emam, T. G. and Abdelgaber, K. M. (2012). Effects of thermal 

radiation and magnetic field on unsteady mixed convection flow and heat 

transfer over an exponentially stretching surface with suction in the presence of 

internal heat generation/absorption. Journal of the Egyptian Mathematical 

Society, 20(3):215-222. 

 

Ellahi, R., Shivanian, E., Abbasbandy, S. and Hayat, T. (2016). Numerical study of 

magnetohydrodynamics generalized Couette flow of Eyring-Powell fluid with 

heat transfer and slip condition. International Journal of Numerical Methods for 

Heat and Fluid Flow, 26(5):1433-1445. 

 

Favre-Marinet, M. and Tardu, S. (2013). Convective Heat Transfer. John Wiley & Sons. 

United States. 

 

Gebhart, B. (1962). Effects of viscous dissipation in natural convection. Journal of Fluid 

Mechanics, 14(02):225-232. 

 

Gupta, P. S. and Gupta, A. S. (1977). Heat and mass transfer on a stretching sheet with 

suction or blowing. The Canadian Journal of Chemical Engineering, 55(6):744-

746. 

 

Gupta, S., Kumar, D. and Singh, J. (2018). MHD mixed convective stagnation point 

flow and heat transfer of an incompressible nanofluid over an inclined stretching 

sheet with chemical reaction and radiation. International Journal of Heat and 

Mass Transfer, 118:378-387. 

 

Hamid, A., Khan, M. and Hafeez, A. (2018a). Unsteady stagnation-point flow of 

Williamson fluid generated by stretching/shrinking sheet with ohmic heating. 

International Journal of Heat and Mass Transfer, 126: 933-940. 

 

Hamid, A., Khan, M. and Khan, U. (2018b). Thermal radiation effects on Williamson 

fluid flow due to an expanding/contracting cylinder with nanomaterials: dual 

solutions. Physics Letters A,  382(30):1982-1991. 

 

Hamid, M., Usman, M., Khan, Z., Haq, R. and Wang, W. (2018c). Numerical study of 

unsteady MHD flow of Williamson nanofluid in a permeable channel with heat 

source/sink and thermal radiation. The European Physical Journal Plus, 

133(12):527. 

 

Haq, R. U., Nadeem, S., Khan, Z. H. and Akbar, N. S. (2015). Thermal radiation and 

slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. 

Physica E: Low-dimensional Systems and Nanostructures, 65:17-23. 

 

 

 



 

 

93 

Hayat, T., Abbas, Z., Pop, I. and Asghar, S. (2010). Effects of radiation and magnetic 

field on the mixed convection stagnation-point flow over a vertical stretching 

sheet in a porous medium. International Journal of Heat and Mass Transfer, 

53(1–3):466-474. 

 

Hayat, T., Bibi, S., Rafiq, M., Alsaedi, A. and Abbasi, F. (2016a). Effect of an inclined 

magnetic field on peristaltic flow of Williamson fluid in an inclined channel 

with convective conditions. Journal of Magnetism and Magnetic Materials, 

401:733-745. 

 

Hayat, T. and Qasim, M. (2010). Influence of thermal radiation and Joule heating on 

MHD flow of a Maxwell fluid in the presence of thermophoresis. International 

Journal of Heat and Mass Transfer, 53(21-22):4780-4788. 

 

Hayat, T., Qayyum, S., Shehzad, S. A. and Alsaedi, A. (2017). Simultaneous effects of 

heat generation/absorption and thermal radiation in magnetohydrodynamics 

(MHD) flow of Maxwell nanofluid towards a stretched surface. Results in 

physics, 7:562-573. 

 

Hayat, T., Shafiq, A. and Alsaedi, A. (2016b). Hydromagnetic boundary layer flow of 

Williamson fluid in the presence of thermal radiation and ohmic dissipation. 

Alexandria Engineering Journal, 55(3):2229-2240. 

 

Hiemenz, K. (1911). DIe  Grenzschicht an einem in den gleichformigen 

Flussigkeitsstrom eingetauchten ger-aden Kreiszylinder. Dingley's Polytechnic 

Journal,  32:321-410. 

 

Ibrahim, W. and Shankar, B. (2013). MHD boundary layer flow and heat transfer of a 

nanofluid past a permeable stretching sheet with velocity, thermal and solutal 

slip boundary conditions. Computers and Fluids, 75:1-10. 

 

Ibrahim, W., Shankar, B. and Nandeppanavar, M. M. (2013). MHD stagnation point 

flow and heat transfer due to nanofluid towards a stretching sheet. International 

Journal of Heat and Mass Transfer, 56(1–2):1-9. 

 

Imran, M., Riaz, M., Shah, N. and Zafar, A. (2018). Boundary layer flow of MHD 

generalized Maxwell fluid over an exponentially accelerated infinite vertical 

surface with slip and Newtonian heating at the boundary. Results in physic, 

8:1061-1067. 

 

Incropera, F. (1996). DP deWitt. Fundamentals of heat and mass transfer. John Wiley & 

Sons. New York. 

 

Ishak, A. (2008). Penyelesaian keserupaan bagi aliran sempadan olakan dalam bendalir 

likat. Ph.D Tesis. Universiti Kebangsaan Malaysia. 

 

Ishak, A., Nazar, R. and Pop, I. (2006). Mixed convection boundary layers in the 

stagnation-point flow toward a stretching vertical sheet. Meccanica, 41(5):509-

518. 



 

 

94 

Jain, S. and Parmar, A. (2018). Radiation effect on MHD williamson fluid flow over 

stretching cylinder through porous medium with heat source. In Applications of 

Fluid Dynamics, pages 61-78, Springer. 

 

Kamal, F., Zaimi, K., Ishak, A. and Pop, I. (2019). Stability analysis of MHD 

stagnation-point flow towards a permeable stretching/shrinking sheet in a 

nanofluid with chemical reactions effect. Sains Malaysiana, 48(1):243-250. 

 

Khan, M. S., Karim, I., Ali, L. E. and Islam, A. (2012). Unsteady MHD free convection 

boundary-layer flow of a nanofluid along a stretching sheet with thermal 

radiation and viscous dissipation effects. International Nano Letters, 2(1):24-32. 

 

Khan, N. A., Khan, S. and Riaz, F. (2014). Boundary Layer Flow of Williamson Fluid 

with Chemically Reactive Species using Scaling Transformation and Homotopy 

Analysis Method. Mathematical Sciences Letters, 3(3):199-205. 

 

Khan, W., Makinde, O. and Khan, Z. (2016). Non-aligned MHD stagnation point flow 

of variable viscosity nanofluids past a stretching sheet with radiative heat. 

International Journal of Heat and Mass Transfer, 96:525-534. 

 

Kreith, F., Manglik, R. M. and Bohn, M. S. (2010). Principles of Heat Transfer: 

Stamford USA. Cengage Learning. 

 

Krishnamurthy, M., Prasannakumara, B., Gireesha, B. and Gorla, R. S. R. (2016). Effect 

of chemical reaction on MHD boundary layer flow and melting heat transfer of 

Williamson nanofluid in porous medium. Engineering Science and Technology, 

An International Journal, 19(1):53-61. 

 

Kumar, K. A., Reddy, J. R., Sugunamma, V. and Sandeep, N. (2019). Simultaneous 

solutions for MHD flow of williamson fluid over a curved sheet with 

nonuniform heat source/sink. Heat Transfer Research, 50(6):581-603. 

 

Kumaran, G. and Sandeep, N. (2017). Thermophoresis and Brownian moment effects 

on parabolic flow of MHD Casson and Williamson fluids with cross diffusion. 

Journal of Molecular Liquids, 233:262-269. 

 

Lesnic, D., Ingham, D. B. and Pop, I. (1999). Free convection boundary-layer flow 

along a vertical surface in a porous medium with Newtonian heating. 

International Journal of Heat and Mass Transfer, 42(14):2621-2627. 

 

Lienhard IV, J. H. and Lienhard V, J. H. (2011). A heat transfer textbook. Phlogiston 

Press. Cambridge.  

 

Lok, Y. Y. (2002). Nonisothermal free convection boundary layer over a vertical 

 flat plate. Master Thesis. Universiti Teknologi Malaysia.  

 

Mahapatra, T. R. and Gupta, A. S. (2002). Heat transfer in stagnation-point flow 

towards a stretching sheet. Heat and Mass Transfer, 38(6):517-521. 

 



 

 

95 

Mahmoud, M. A. A. and Waheed, S. E. (2012). MHD flow and heat transfer of a 

micropolar fluid over a stretching surface with heat generation (absorption) and 

slip velocity. Journal of the Egyptian Mathematical Society, 20(1):20-27. 

 

Majeed, A., Zeeshan, A., Mahmood, T., Rahman, S. U. and Khan, I. (2019). Impact of 

magnetic field and second-order slip flow of Casson liquid with heat transfer 

subject to suction/injection and convective boundary condition. Journal of 

Magnetics, 24(1):81-89. 

 

Makinde, O. D. and Aziz, A. (2010). MHD mixed convection from a vertical plate 

embedded in a porous medium with a convective boundary condition. 

International Journal of Thermal Sciences, 49(9):1813-1820. 

 

Makinde, O. D., Khan, W. A. and Khan, Z. H. (2013). Buoyancy effects on MHD 

stagnation point flow and heat transfer of a nanofluid past a convectively heated 

stretching/shrinking sheet. International Journal of Heat and Mass Transfer, 

62:526-533. 

 

Makinde, O. and Olanrewaju, P. (2010). Buoyancy effects on thermal boundary layer 

over a vertical plate with a convective surface boundary condition. Journal of 

Fluids Engineering, 132(4):044502. 

 

Malik, M., Bibi, M., Khan, F. and Salahuddin, T. (2016). Numerical solution of 

Williamson fluid flow past a stretching cylinder and heat transfer with variable 

thermal conductivity and heat generation/absorption. AIP Advances, 

6(3):035101. 

 

Mansur, S., Ishak, A. and Pop, I. (2015). The magnetohydrodynamic stagnation point 

flow of a nanofluid over a stretching/shrinking sheet with suction. Plos One, 

10(3):e0117733. 

 

Martin, M. J. and Boyd, I. D. (2006). Momentum and heat transfer in a laminar 

boundary layer with slip flow. Journal of Thermophysics and Heat Transfer, 

20(4): 710-719. 

 

Mehmood, R., Rana, S., Akbar, N. and Nadeem, S. (2018). Non-aligned stagnation 

point flow of radiating Casson fluid over a stretching surface. Alexandria 

Engineering Journal, 57(2):939-946. 

 

Merkin, J. H. (1994). Natural-convection boundary-layer flow on a vertical surface with 

Newtonian heating. International Journal of Heat and Fluid Flow, 15(5):392-

398. 

 

Metzner, A. (1965). Heat transfer in non-Newtonian fluids. Advances in Heat Transfer, 

2:357-397. 

 

Mohamed, M. K. A. (2013). Mathematical modeling for convection boundary layer 

flow in a viscous fluid with Newtonian heating and convective boundary 

conditions. Master Thesis. Universiti Malaysia Pahang.  



 

 

96 

Mohamed, M. K. A. (2017). Steady convective boundary layer flow in a nanofluid past 

on a bluff body with the viscous dissipation effect. Ph.D Thesis. Universiti 

Malaysia Pahang. 

 

Mohamed, M. K. A., Noar, N. A. Z. M., Ismail, Z., Kasim, A. R. M., Sarif, N. M., 

Salleh, M. Z. and Ishak, A. (2017). Slip effect on stagnation point flow past a 

stretching surface with the presence of heat generation/absorption and 

Newtonian heating. In AIP Conference Proceedings, Volume.1867, No.1, pages 

020009. 

 

Mohamed, M. K. A., Salleh, M. Z., Nazar, R. and Ishak, A. (2012). Stagnation point 

flow over a stretching sheet with newtonian heating. Sains Malaysiana, 

41(11):1467-1473. 

 

Mohamed, M. K. A., Salleh, M. Z., Nazar, R. and Ishak, A. (2013). Numerical 

investigation of stagnation point flow over a stretching sheet with convective 

boundary conditions. Boundary Value Problems, 2013(1):1-10. 

 

Mukhopadhyay, S. (2009). Effect of thermal radiation on unsteady mixed convection 

flow and heat transfer over a porous stretching surface in porous medium. 

International Journal of Heat and Mass Transfer, 52(13–14):3261-3265. 

 

Mukhopadhyay, S. (2013). Slip effects on MHD boundary layer flow over an 

exponentially stretching sheet with suction/blowing and thermal radiation. Ain 

Shams Engineering Journal, 4(3):485-491. 

 

Nadeem, S., Hussain, A., Malik, M. and Hayat, T. (2009). Series solutions for the 

stagnation flow of a second-grade fluid over a shrinking sheet. Applied 

Mathematics and Mechanics, 30(10):1255-1262. 

 

Nadeem, S., Hussain, A. and Vajravelu, K. (2010). Effects of heat transfer on the 

stagnation flow of a third-order fluid over a shrinking sheet. Zeitschrift für 

Naturforschung A, 65(11):969-994. 

 

Nadeem, S. and Hussain, S. (2014). Flow and heat transfer analysis of Williamson 

nanofluid. Applied Nanoscience, 4(8):1005-1012. 

 

Nadeem, S., Hussain, S. and Lee, C. (2013). Flow of a Williamson fluid over a 

stretching sheet. Brazilian Journal of Chemical Engineering, 30(3):619-625. 

 

Nandy, S. K. and Mahapatra, T. R. (2013). Effects of slip and heat 

generation/absorption on MHD stagnation flow of nanofluid past a 

stretching/shrinking surface with convective boundary conditions. International 

Journal of Heat and Mass Transfer, 64:1091-1100. 

 

Narayana, P. S. and Babu, D. H. (2016). Numerical study of MHD heat and mass 

transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and 

thermal radiation. Journal of the Taiwan Institute of Chemical Engineers, 59:18-

25. 

 



 

 

97 

Nasir, N. A. A. M., Ishak, A. and Pop, I. (2019). Stagnation point flow and heat transfer 

past a permeable stretching/shrinking Riga plate with velocity slip and radiation 

effects. Journal of Zhejiang University-SCIENCE A, 20(4):290-299. 

 

Nayak, M. (2017). MHD 3D flow and heat transfer analysis of nanofluid by shrinking 

surface inspired by thermal radiation and viscous dissipation. International 

Journal of Mechanical Sciences, 124:185-193. 

 

Nazar, R., Amin, N., Filip, D. and Pop, I. (2004a). Stagnation point flow of a 

micropolar fluid towards a stretching sheet. International Journal of Non-Linear 

Mechanics, 39(7):1227-1235. 

 

Nazar, R., Amin, N., Filip, D. and Pop, I. (2004b). Unsteady boundary layer flow in the 

region of the stagnation point on a stretching sheet. International Journal of 

Engineering Science, 42(11):1241-1253. 

 

Olanrewaju, P., Gbadeyan, J. and Abah, S. (2011). Radiation and viscous dissipation 

effects for the Blasius and Sakiadis flows with a convective surface boundary 

condition. International Journal of Advances in Science and Technology, 

2(4):102-115. 

 

Ozisik, M. N. (1985). Heat Transfer: A basic approach. McGraw-Hill.New York. 

 

Pal, D. and Mandal, G. (2015). Mixed convection–radiation on stagnation-point flow of 

nanofluids over a stretching/shrinking sheet in a porous medium with heat 

generation and viscous dissipation. Journal of Petroleum Science and 

Engineering, 126:16-25. 

 

Pal, D., Mandal, G. and Vajravelu, K. (2014). Flow and heat transfer of nanofluids at a 

stagnation point flow over a stretching/shrinking surface in a porous medium 

with thermal radiation. Applied Mathematics and Computation, 238:208-224. 

 

Pop, I. and Ingham, D. B. (2001). Convective heat transfer: Mathematical and 

computational modelling of viscous fluids and porous media. Elsevier. 

 

Prabhakara, S. and Deshpande, M. (2004). The no-slip boundary condition in fluid 

mechanics. Resonance, 9(5):61-71. 

 

Raisi, A., Ghasemi, B. and Aminossadati, S. (2011). A numerical study on the forced 

convection of laminar nanofluid in a microchannel with both slip and no-slip 

conditions. Numerical Heat Transfer, Part A: Applications, 59(2):114-129. 

 

Raju, C. and Sandeep, N. (2017). Unsteady Casson nanofluid flow over a rotating cone 

in a rotating frame filled with ferrous nanoparticles: a numerical study. Journal 

of Magnetism and Magnetic Materials, 421:216-224. 

 

Raju, V. N., Hemalatha, K. and Babu, V. S. (2019). MHD viscoelastic fluid flow past an 

infinite vertical plate in the presence of radiation and chemical reaction. 

International Journal of Applied Engineering Research, 14(5):1062-1069. 

 



 

 

98 

Ramesh, K. and Devakar, M. (2015). Some analytical solutions for flows of Casson 

fluid with slip boundary conditions. Ain Shams Engineering Journal, 6(3):967-

975. 

 

Rashidi, M., Ganesh, N. V., Hakeem, A. A. and Ganga, B. (2014). Buoyancy effect on 

MHD flow of nanofluid over a stretching sheet in the presence of thermal 

radiation. Journal of Molecular Liquids, 198:234-238. 

 

Rathore, M. M. (2011). Engineering Heat Transfer. Jones & Bartlett Learning. Canada. 

 

Raza, J. (2019). Thermal radiation and slip effects on magnetohydrodynamic (MHD) 

stagnation point flow of Casson fluid over a convective stretching sheet. 

Propulsion and Power Research, 8(2):138-146. 

 

Reddy, M. G., Padma, P. and Shankar, B. (2015). Effects of viscous dissipation and heat 

source on unsteady MHD flow over a stretching sheet. Ain Shams Engineering 

Journal, 6(4):1195-1201. 

 

Rehman, F. U., Nadeem, S., Rehman, H. U. and Haq, R. U. (2018). Thermophysical 

analysis for three-dimensional MHD stagnation-point flow of nano-material 

influenced by an exponential stretching surface. Results in Physics, 8:316-323. 

 

Roşca, N. C., Roşca, A. V. and Pop, I. (2014). Stagnation point flow and heat transfer 

over a non-linearly moving flat plate in a parallel free stream with slip. 

Communications in Nonlinear Science and Numerical Simulation, 19(6):1822-

1835. 

 

Sahoo, B. (2010). Flow and heat transfer of a non-Newtonian fluid past a stretching 

sheet with partial slip. Communications in Nonlinear Science and Numerical 

Simulation, 15(3):602-615. 

 

Salahuddin, T., Malik, M. Y., Hussain, A., Bilal, S. and Awais, M. (2016). MHD flow 

of Cattanneo–Christov heat flux model for Williamson fluid over a stretching 

sheet with variable thickness: Using numerical approach. Journal of Magnetism 

and Magnetic Materials, 401:991-997. 

 

Salleh, M. Z., Mohamed, N., Khairuddin, R., Khasi'ie, N. S., Nazar, R. and Pop, I. 

(2012). Free convection over a permeable horizontal flat plate embedded in a 

porous medium with radiation effects and mixed thermal boundary conditions. 

Journal of Mathematics and Statistics, 8(1):122-128. 

 

Salleh, M. Z., Nazar, R. and Pop, I. (2009). Forced convection boundary layer flow at a 

forward stagnation point with newtonian heating. Chemical Engineering 

Communications, 196:987-996. 

 

Salleh, M. Z., Nazar, R. and Pop, I. (2010). Boundary layer flow and heat transfer over 

a stretching sheet with Newtonian heating. Journal of the Taiwan Institute of 

Chemical Engineers, 41(6):651-655. 

 



 

 

99 

Sandeep, N., Sulochana, C. and Animasaun, I. L. (2016). Stagnation-point flow of a 

Jeffrey nanofluid over a stretching surface with induced magnetic field and 

chemical reaction. International Journal of Engineering Research in Africa, 

20:93-111. 

 

Schlichting, H. (1979). Boundary layer theory. McGraw-Hill. New York. 

 

Shah, Z., Bonyah, E., Islam, S., Khan, W. and Ishaq, M. (2018). Radiative MHD thin 

film flow of Williamson fluid over an unsteady permeable stretching sheet. 

Heliyon, 4(10):e00825. 

 

Sheikholeslami, M., Hayat, T. and Alsaedi, A. (2016). MHD free convection of Al2O3–

water nanofluid considering thermal radiation: a numerical study. International 

Journal of Heat and Mass Transfer, 96:513-524. 

 

Sheikholeslami, M. and Shehzad, S. (2017). Thermal radiation of ferrofluid in existence 

of Lorentz forces considering variable viscosity. International Journal of Heat 

and Mass Transfer, 109:82-92. 

 

Sobamowo, M., Jayesimi, L. and Waheed, M. (2018). Magnetohydrodynamic squeezing 

flow analysis of nanofluid under the effect of slip boundary conditions using 

variation of parameter method. Karbala International Journal of Modern 

Science, 4(1):107-118. 

 

Soundalgekar, V. M. (1972). Viscous dissipation effects on unsteady free convective 

flow past an infinite, vertical porous plate with constant suction. International 

Journal of Heat and Mass Transfer, 15(6):1253-1261. 

 

Suali, M., Asri, N. M. and Ishak, A. (2012). Unsteady stagnation point flow and heat 

transfer over a stretching/shrinking sheet with prescribed surface heat flux. 

Appl. Math. Comput. Intell, 1: 1-11. 

 

Tannehill, J. C., Anderson, D. A. and Pletcher, R. H. (1997). Computational fluid 

mechanics and heat transfer. Philadelphia: Hemisphere Publishing Corporation.  

 

Weidman, P. D., Kubitschek, D. G. and Davis, A. M. J. (2006). The effect of 

transpiration on self-similar boundary layer flow over moving surfaces. 

International Journal of Engineering Science, 44(11–12):730-737. 

 

Williamson, R. V. (1929). The flow of pseudoplastic materials. Industrial and  

Engineering Chemistry, 21(11):1108-1111. 

 

Yacob, N. A. and Ishak, A. (2011). Stagnation point flow towards a stretching/shrinking 

sheet in a micropolar fluid with a convective surface boundary condition. The 

Canadian Journal of Chemical Engineering, 90(3):621-626. 

 

 

 

 



 

 

100 

APPENDIX A 

 

 

Shooting method to obtain the solution for Chapter 3 

 



 

 

101 

 
 

 

 

 

 

 

 



 

 

102 

Maple (Shoot) Program for obtained Figure 3.2 
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APPENDIX B 

 

In this appendix, the transformation of Partial Differential Equations to Ordinary 

differential Equations in Chapter 4 will be discussed in detail by using a similarity 

transformation in exponential form. The governing equations are shown as below: 

Continuity equation: 
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where   and ( )  are dimensionless variables, while  is the stream function. Then, 

u and v can be defined as 
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Continuity Equation: 

By substituting the above equations into Equation (B.1), then 
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0

u v
cf c f

x y
 

 
    

 

  

and Equation (B.1) is identically satisfied.

 
 

 

Momentum equation: 

 

From the similarity Equations (B.5) to (B.7), it is found that 

   

 

                      
         

1 2

, , , ,
e

u
u c x f cf v c f u x ax

x
   


      

                     
B.17

 

 

 
1 2

, , ,euu c
cf a

x y x






   
   

   
       B.18 
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1 2

,
u u c

cxf
y y




 

    
    

    
                     B.19 

 

                       
1 2 1 22 2

2
,

u

yu c c c
cxf xf

y y


 

   

 
                    

        

                  B.20 

           

By substituting the above equation into momentum Equation (B.2), then 

 

2 2

2 2
2e

e

uu u u u u
u v u v

x y x y y y


    
    

       

    

               

            

 
   

1 2
1 2

1 22

2

c
cxf c f c f cxf ax a

c xf c c
cxf cxf

    



   

  

                        

       
          

        

           B.21 

 

                                

       

   

2 22 2 2 2

1 2

3 22

c x f c x f f a x c x f

c
c x f f

   

  


      

 
   

                        

B.22 

    

                                

       

   

22 2 2 2

7 2 2 1 22

c x f c x f f a x c x f

c x f f

   

   

      

 
                        

B.23

 
   

 

                                

       

   

22 2 2 2

2

7 2 2 1 22

c x f c x f f a x c x f
c x

c x f f

   

   

       
  
   

          B.24

  
 

              
           

2
2 3 2 1 2

2
2

a
f f f f c x f f

c
               

         
B.25 
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2 3

2 2a c
f f f f x f f

c
     



  
                

     B.26 

we assume 

 f f 
       

                B.27

 

therefore we get, 

   

2 3
2 2a c

f f f f x f f
c 

  
                                            

B.28

 

where, 

2
a

c


 
 

 
 (stretching parameter)

           
B.29

 

32c
x 



 
  

 
 

 (non-Newtonion Williamson fluid parameter)
       

B.30

 

 

now the momentum equation become 

    
2 2f f f f f f                 B.31

 
therefore, the new momentum equation as below  

 
2 2 0f f f f f f                                       B.32

 
 

 

Energy equation:

 
 

 From the similarity Equations (B.5) to (B.7), it is found that 

 

  

   
1 2

2 2, , ,
T c

T T b x bx
y


   

 


   
     

   
      B.33

 

 

 2
T

bx
x

 





         B.34
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1 2 1 2

2 2T T c c
bx bx

y y


   

  

                      
                 B.35    

 

 

               

     
1 2 1 22

2 2

2

T

yT c c c
bx bx

y y


   

   

 
                        

                   

B.36

 By substituting the above equation into energy Equation (B.3), then 

 

2 32

2
2p p

T T k T u u
u v

x y C y C y y



 

         
       

           

 

         

         

     

1 2
1 2 2

3 2

2 2 2 2 3 3 3

2

2

p

p

c k
c x f b x c f b x

C

c c c
b x c x f c x f

C

      
 


   

   

                      

           
                         

       B.37                

 

                 

         

   

2 2 2

3 2

2 2 3 3 3

2 0

2

p p

k
bc x f bc x f bc x

C C

c c
c x f c x f


      

 

 
 

    

   
                       

B.38

 

 

             

         

   

2 2 2

3 2 3
2 3

2 0

1 2

2

p p

k
bc x f bc x f bc x

C C

c x c
f x f


      

 

 
 

    

 
   

 
 

                  B.39

 

 

32c
x


 

 
(non-Newtonion Williamson fluid parameter )                                  B.40 
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2 2 2

3 2 3 2
2 3

2

1

2

p p

k
bc x f bc x f bc x

C C

c x c x
f f


       

 

  
 

    

 
  

 

     B.41 

 

               

         

   

2 2 2

3 2
2 3

2

1

2

p

p

k
bc x f bc x f bc x

C

c x
f f

C

       



  

 

    

 
  

 
                      

B.42

  

         

         

   

2 2 2

2

3 2
2 3

2

1

2

p

p

k
bc x f bc x f bc x

C
bc x

c x
f f

C

       



  

 

 
     

  
  

   
   

              B.43       

           

Pr
pC

k

 
 ,  Prandtl number, where 

1

Pr p

k

C
                                      B.44 

 

           

             
2

2 31
2

Pr 2p

c
f f f f

C b

 
         

 

 
        

 
            

B.45 

  

           

             
2

2 31
2

Pr 2p

c
f f f f

C b


         

 
        

 
                B.46 

    

2

p

c
Ec

C b
  (Eckert number)                      B.47 

 

 

             2 31
2

Pr 2
f f Ec f f


         

 
        

 
                  B.48 

 

we assume  

 

 

f f

  

 

 
                                                                                                                   B.49                                                                                                           
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2 31
2

Pr 2
f f Ec f f


  

 
        

                              

B.50 

 

 

                         

  2 3Pr 2 Pr
2

f f Ec f f


  
 

        
                                  

B.51 

 

                          

  2 3Pr 2 Pr 0
2

f f Ec f f


  
 

         
 

                   B.52

   

 

The boundary conditions (B.4) for the variables are carried out as follows when 0,y    

is detailed out as in Table B.1. 
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Table B.1 Formulation of Boundary Conditions 

Boundary condition Transformed Boundary Condition 

 w

u
u u x

y
 


 


  

 

 

 

 
 

   

1 2

1 2

1 2

1 2

1 2

0

0

0 1

0 1

0 1 0

w

u
u u x

y

c
cxf cx cxf

c
cxf cx cxf cx

c
f f

c
f f

c

f f

 

 


 


 



 

 












 



 
     

 

  
      

   

 
    

 

 
    

 

  

 

 

  *
w

T
T T x

y
 


 



 

   

       

       

    

  
 

   

 

1 2

2 2 2

1 2

1 2

1 2

1 2

1 2

0 0

0 0

0 0

0

0

0 1 0

0 1

w w w

w w w

w w

w

w

c
b x T T b x b x

c
T T T T T T T T

c
T T T T T T T T

T T T T

T Tc
T T

c

c

  


  


  




 



 





 



 



    



    

 





 
     

 

 
        

 

 
        

 

    
 

   
    

  

 
   

  
 
 

   0

 

 

 

  



 

 

112 

Table B.1  (continued) 

Boundary condition Transformed Boundary Condition 

0v   

   

 
 

 

1 2

1 2

0

0 0

0
0

0 0

v

c f

f
c

f







 






 

 eu u x

 

 

 

 

 

eu u x

cxf ax

a
f

c

f 



  

  

  

 

T T

 

 

 

 

  

 
 

 

2

2

0

0

0

w

w

T T x

bx T T

T bx T T

T T

T T













 

  







  

  

  

 


 

 

 

Thus, the boundary conditions are obtained after the similarity transformations 

as follows: 

         0 0, 0 1 0 , 0 1 0f f f        

 
   , 0f       as    
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APPENDIX C 

In this appendix, the transformation of Partial Differential Equations to Ordinary 

Differential Equationcs in Chapter 5 will be discussed in detail by using a similarity 

transformation in exponential form. The governing equations are shown as below: 

Continuity equation:  

        0
u v

x y

 
 

 
                                  C.1 

Momentum equation: 

          
 

22 2

2 2
2e o

e e

u Bu u u u u
u v u u u

x y x y y y


 



    
      

     
       C.2 

  

 Energy equation: 

  

2

2

r

p

qT T k T
u v

x y C y y

  
  

   
           C.3

  

corresponds to the following conditions 

 

                                        
  , 0,w wu u x v T T   at 0y                     C.4

    
                           

  ,eu u x T T  as y     

    

The following Equations (C.1), (C.2), (C.3) and (C.4) are transformed to ordinary 

differential equations by using the similarity transformations in exponential form below 

    
1 2

,
c

y


 
  
 

    C.5 

 

                              
   

1 2
,c xf  
                

                C.6                        

 

               

  ,
w

T T

T T
  







                         C.7 
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where   and ( )  are dimensionless variables, while   is the stream function. Then, 

u and v can be defined as 

    
u

y





,                     C.8 

 

    v
x


 


,           C.9 

 

Thus, we obtain 

       ,u c x f              C.10 

 

       
1 2

v c f   .        C.11 

   

Then, u and v can be derived as  

 

    

 

   

   

 

1 2

1 2

1 2

1 2

u c x f

u
y

y

c
c x f y

y

c
c x f

c x f





 



 
 

 










 
 
 

               

       



,     C.12 

 

     

   

1 2

1 2

v
x

c x f
x

c x f



 

 


 




  
 

 

,                                 C.13 
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with 

    
  

 

u
c x f

x x

c f





 


 



,                                  C.14  

 

              

   

   

 

1 2

1 2

1 2

1 2

v v

y y

c
c f y

y

c
c f

c f





 
 

 




  
 

  

                

 
   

 

 

                      C.15 

 

 

Continuity Equation: 

By substituting the above equations into Equation (C.1), then 

     
0,

u v

x y

 
 

   

                                                           

    

0

u v
c f c f

x y
 

 
    

 

                           

C.16

                

 

  

 

and Equation (C.1) is identically satisfied.

 
 

 

 

Momentum equation: 

 

From the similarity Equation (C.5) to (C.7), it is found that 

   

  
         

1 2

, , , ,
e

u
u c x f c f v c f u x a x

x
   


      

          
C.17 
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1 2

, , ,euu c
c f a

x y x






   
   

   
                            C.18 

    

                                  
 

1 2

,
u u c

c x f
y y




 

    
    

                                  

C.19

    

   

                    
   

1 2 1 22 2

2
,

u

yu c c c
c x f x f

y y


 

   

 
                  

      
                  C.20 

 

By substituting the above equation into momentum Equation (C.2), then
 

 

 
22 2

2 2
2e o

e e

u Bu u u u u
u v u u u

x y x y y y


 



    
      

       

    

         

  
 

   

 

1 2
1 2

1 22

2

2

o

c
c x f c f c f c x f

c x f c c
a x a c x f c x f

B
a x c x f

    



   

  






                       

       
           

        

   

     C.21             

 

       

      

2 2 2 2 2

1 2 2
2 22 o

c x f c f f a x c x f

Bc
c x f f a x c x f

   


   

 

     

 
     

 
 

     C.22 

 

                       

       

      

2 2 2 2 2

21 2 2
2 22 o

c x f c f f a x c x f

c xBc
c x f f a x c x f

   


   

 

      
 

  
      

              

C.23 
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2 3
2

2

2

o

a c
f f f f f f

c

a c fB

c

      






 
         

 

 
  

                    

C.24 

                 

                

           

 

2 3
2

2

2

o

a c
f f f f f f

c

B a
f

c c

      







 
         

 

 
  

 

                   C.25

 

 

where, 

2
a

c


 
 

   

(stretching parameter)           C.26 

32c
x 



 
  

 
   

(non-Newtonion Williamson fluid parameter)                 C.27 

2

oB
M

c






 

 (magnetic parameter)                                          C.28

 

 

              2 2f f f f f f M f                                       C.29

 
 

we assume  

 f f                C.30

 

 

therefore we get, 

   
 2 2f f f f f f M f                                         C.31 

now the equation become 

 

 2 2 0f f f f f f M f                                       C.32                         
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Energy equation: 

 

 From the similarity Equation (C.5), it is found that 

 

                

   
1 2 4

2 2 4
, , ,

3
r

T c T
T T b x b x q

y k y

 
   

 



 

   
      

             

C.33

 

                

     
4 3 44 3T T T T                                C.34 

 

                        
 2

T
b x

x
 




                                                  
C.35

    

                    

     
1 2 1 2

2 2T T c c
b x b x

y y v v


   



      
        

                          

C.36

   

              
     

1 2 1 22
2 2

2

T

yT c c c
b x b x

y y


   

   

 
                     

                    

C.37 

 

                       

 
3 32

2

2

16 16

3 3

rq T TT c
b x

y k y k

 
 



 

 

 

     
      

          

C.38 

 

By substituting the above equation into energy Equation (C.3), then 

 

2

2

r

p

qT T k T
u v

x y C y y

  
  

   
 

 

         

   

1 2
1 2 2

3
2 2

2

16

3p

c
c x f b x c f b x

Tk c c
b x b x

C k

      



   

  







                     

       
        

           

C.39 
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2 2 2

3
2

2

16

3

p

k c
bc x f bc x f b x

C

T c
b x

k

       
 


 









  
      

  

   
    

                  

C.40 

  

               

         2 2 2

3

2

16

3p

c
bc x f bc x f b x

Tk

C k

       












 
     

 

 
  

 

                          C.41 

 

                

         2 2 2

2

3

2

16

3p

c
bc x f bc x f b x

bc x
Tk

C k

       












  
      

  


  
      

     

C.42

  

                    

       
  316

2
3p

Tk
f f

C k

  
     

 







 
     

 
                       C.43

 

 

                   

       
  316

2 1
3p

k T
f f

C k

  
     









  
    

 
                           C.44

 

 

Pr
pC

k

 
 (Prandtl number)           C.45 

       

         
341 4

2 1
Pr 3

pT C
f f

k k

 
       







 
      

 
                    C.46

 

 

34 *

*

pT C
Nr

k k

 
  (thermal radiation parameter)                                         C.47

  

       
         

1 4
2 1

Pr 3
f f Nr       

 
     

                              

C.48
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we assume  

 

 

f f

  

 

 
                                   C.49

 

therefore we get, 

    

1 4
2 1

Pr 3
f f Nr  

 
     

 

                           

C.50

                   now the equation becomes 

                                         
 

4
1 Pr 2 0

3
Nr f f  

 
      
                               

C.51

 

 

The boundary conditions (C.4) for the variables are carried out as follows when 0,y 

is detailed out as in Table C.1 

Table C.1 Formulation of Boundary Conditions 

Boundary condition Transformed Boundary Condition 

0v   

   

 
 

 

1 2

1 2

0

0 0

0
0

0 0

v

c f

f
c

f







 






 

 wu u x   

 

 

 

0

0

0 1

wu u x

cxf c x

c x
f

c x

f
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Table C.1  (continued) 

Boundary condition Transformed Boundary Condition 

T T

 

 

 

 

 

 

2 2

2 2

2 2

2

2

1

bx T bx T

bx T T bx

bx bx

bx

bx











 

 

   

   

 

 

 

 

 eu u x

 

 

 

 

 

eu u x

cxf ax

a
f

c

f 



  

  

  
 

 T T x
 

 

 

 

  

 
 

 

2

2

0

0

0

w

w

T T x

bx T T

bx T T

T T

T T













 

 







  

  

  

 


 
 

 

Thus, the boundary conditions are obtained after the similarity transformations 

as follows: 

         0 0, 0 0, 0 0f f    at 0                    C.52 

                    , 0f       as    
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