Synthesis of aluminum chloride hexahydrate/polyvinyl alcohol catalyst for biodiesel production

Ismail, Nur Ishami F.^a; Sulaiman, Sarina^a; Kabbashi, Nassereldeen A.^a; Sulaiman, Siti Zubaidah^b
^a Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic
University Malaysia (IIUM), Gombak, Kuala Lumpur, 50728, Malaysia
^b Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Pahang, Kuantan, 26300, Malaysia

ABSTRACT

The replacement of traditional diesel fuels with an alternative energy source like biodiesel is an excellent choice to lessen the depletion of non-renewable energy source such as fossil fuels. For application of low-cost heterogeneous catalyst for generation of biodiesel, most of waste-based catalysts are derived from inexpensive CaO resources. In this research, heterogeneous catalyst aluminum chloride hexahydrate (AlCl36H2O)/PVA was synthesized from aluminum foil wastes supported by PVA. Transesterification was used to produce biodiesel from waste cooking oil (WCO). The effect of aluminum chloride hexahydrate (AlCl36H2O)/PVA catalyst towards the yield percentage of FAME was investigated using three different operating conditions. Parameters optimized in transesterification included methanol to oil ratio (6:1, 12:1 and 18:1), reaction temperature (55°, 60°, and 65°), and amount of catalyst (2 wt%, 5 wt%, and 8 wt%). The findings showed that the catalyst loading of 2 wt%, methanol to oil molar ratio of 6:1, and temperature of 55° yielded the highest biodiesel yield from WCO. This study proves that heterogeneous catalyst aluminum chloride hexahydrate (AlCl36H2O)/PVA can replace homogeneous catalysts and to simplify the manufacturing of biodiesel, especially in the separation phase.

KEYWORDS

Aluminium foil; Aluminum chloride hexahydrate/polyvinyl alcohol; Biodiesel; Heterogeneous catalyst; Waste cooking oil

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of the Ministry of Higher Education of Malaysia (MOHE) for the Fundamental Research Grant Scheme (FRGS) (FRGS/1/2018/TK02/UIAM/02/4 (FRGS19-065-0673)).